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Abstract
A navigation concept is being developed that relies on passive one-way ranging
using pseudorange and beat carrier-phasemeasurements of high-frequency (HF)
beacon signals that travel along non-line-of-sight paths via ionosphere refraction.
This concept is being developed as an alternative to GNSS positioning services.
If the set of signals that reaches a user receiver has sufficient geometric diversity,
then the position of that receiver can be determined uniquely. Ionospheric mod-
eling uncertainty causes errors in the deduced user position, but these errors are
compensated by estimating corrections to a parametric model of the ionosphere
as part of the navigation solution. A batch filter estimates the user position and
corrections to an a priori ionosphere model. In simulated case studies involving
significant errors in the a priori ionospheric parameters, the total positioning
error is on the order of tens of meters in the horizontal plane and on the order of
meters vertically.

1 INTRODUCTION

Satellite-based navigation vulnerability to electronic jam-
ming and spoofing is of immense concern for develop-
ers of both civil and defense systems. A broad search for
alternative methods has been conducted and widely dis-
cussed in the navigation literature in the past decade.High-
frequency (HF) signals propagating in the atmosphere
have been used for communications and over-the-horizon
radar. Signals with frequencies in the range 2–10 MHz can
bounce successively off the ionosphere and the Earth to
arrive at a receiver along a non-line-of-sight (NLOS) path.
Such signals have been proposed for geolocation purposes,
as in Huang and Reinisch (2006). The present study repre-
sents a further effort to examine the potential use of such
signals as an alternative radio navigation method.
Given perfect knowledge of the electron density distri-

bution in the ionosphere and of the number of bounces
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between a transmitter and a receiver, it is possible to
develop amodel of themeasured pseudorange, also known
in the literature as range-equivalent group delay, which is
the difference between a signal’s reception and transmis-
sion times multiplied by the speed of light. The pseudor-
ange depends on the unknown user receiver location and
the receiver’s unknown clock offset. Given four or more
such pseudoranges from four or more independent trans-
mitters with an appropriately diverse geometry, it should
be possible to solve for the unknown user position and
clock offset, similar to GPS.
The problem with such an approach is that the

ionosphere’s HF signal propagation/refraction/reflection
properties are highly uncertain due to the variability of
its three-dimensional electron density distribution. The
approach of Huang and Reinisch (2006) and Zaalov et al.
(2017) is to use ionosonde data (Juras, 1985) in order to
refine a local electron density model. This local model is
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then used to estimate the unknown location of a transmit-
ter. Fridman et al. (2006) suggests an alternative procedure
for local electron density modeling using GPS data inver-
sion. Nickisch et al. (2016) further expands the work of
Fridman et al. (2006) to assimilate HF near-vertical prop-
agation time delay, HF Doppler shift, and HF angle-of-
arrival measurements in ionosphere 3D electron density
characterization. Performance is then evaluated based on
a comparison between computed and measured angle-of-
arrival values, where the reference measured values are
provided by highly accurate equipment.
The present study, however, seeks to estimate simultane-

ously the location of an unknown receiver, its clock offset,
and corrections to relevant portions of the electron den-
sity distribution. The approach taken for the estimation
problem, model, and solution method involves several
components. They are 1) a nominal ionosphere model, 2)
estimated corrections to that model, 3) raytracing calcu-
lations for the paths of the HF signals and their observ-
ables, and 4) model inversion calculations to estimate the
user receiver position, the user clock offset, and correc-
tions to the ionosphere model. These model inversion cal-
culations are carried out using a modified nonlinear batch
least-squares solution technique.
Given a limited number of transmitters and a lim-

ited number of observables, a key question for such
an approach concerns ionosphere parameter observabil-
ity and the extent to which position accuracy can be
attained. It has been demonstrated in Baumgarten &
Psiaki (2017) that it is possible to combine a priori infor-
mation for a parameterized model of ionosphere electron
density with measured pseudoranges in order to arrive
at a reasonable result. The work described in Baum-
garten & Psiaki (2017) demonstrated feasibility for the joint
positioning/ionosphere-characterization approach based
on a simplified thin-sheet ionosphere model for propagat-
ing signals. The present paper describes a follow-up study
that utilizes a 3D ionosphere electron density variation
model, raytracing calculations that rely on advanced sig-
nal propagation models, and an enhanced batch-filtering
algorithm. Its fundamental input data are the measured
pseudoranges between an array of transmitters at known
locations and the user receiver. A second type of measure-
ment, introduced to this study, is the beat carrier phase.
It counts carrier cycles over an arbitrary time interval and
differences the resulting count with the expected nominal
count for the transmitted signal waveform (Misra & Enge,
2011). The ionosphere model utilized in both phases of this
study is a Chapman vertical profile whose three parame-
ters vary with latitude and longitude.
The current study makes three contributions to the

area of radio navigation based on bouncing HF signals.
First, it develops a model of the pseudorange and beat

carrier-phase measurements of multi-hop HF signal paths
from known beacon transmitter locations to an unknown
user receiver location. This model includes techniques
for solving its nonlinear bounce conditions and for com-
puting first-partial derivative sensitivities of the bounces
and of the pseudorange and beat carrier-phase measure-
ments with respect to the unknown user location and
the unknown ionosphere parameters. Second, this study
develops a batch nonlinear least-squares estimation algo-
rithm for determining the unknown user receiver posi-
tion, user receiver clock offset, and ionospheric parameter
corrections. This algorithm incorporates a priori informa-
tion about the ionosphere parameters in order to compen-
sate for the lack of strict simultaneous observability of the
location, clock offset, and ionosphere parameters. Third,
the potential performance of the proposed HF navigation
scheme is evaluated in a preliminary manner using data
from a truth-model simulation.
The remainder of this paper is divided into six sections.

Section II covers the physical and mathematical models
of HF signals propagating in the ionosphere. It describes
the fundamentals of the raytracing computations that this
study uses to model HF signal paths. Section III presents
models for the Earth and the ionosphere, including the
parameterized Chapman vertical profile model. Section
IV covers definitions and derivation of bounce points and
their equations, ray-hops, and multi-hop ray paths. It also
discusses the two measurement models. Section V devel-
ops the batch filter that estimates the quantities of interest.
It starts by formulating the batch-filtering problem, and
it outlines a modified Gauss-Newton method that solves
the problem. Section VI presents a preliminary evalua-
tion of the batch filter’s performance and this method’s
potential accuracy. Section VII summarizes this study’s
developments.

2 SIGNAL PROPAGATION IN THE
IONOSPHERE AND RAYTRACING
COMPUTATIONS

2.1 High frequency signals
and signal propagation

This study considers transmitted RF signals with carri-
ers in the range 2 MHz–10 MHz. Transmitted signals are
assumed tomaintain a constant carrier frequency or to uti-
lize a smoothed stepping pattern for altering their carrier
frequencies. The latter type of signal can be useful for nav-
igation and ionosphere correction if its beat carrier phase
is well defined at the transmitter and accurately measured
at the receiver. Beat carrier-phase measurements are made
after a given frequency step is complete and the signal is
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oscillatingwith a new, constant frequency. Thesemeasure-
ments are particularly useful because the signal traverses a
perturbed ray path due to the frequency change and there-
fore probes more of the ionosphere.
The presumed ability to measure pseudorange depends

on the signal having been modulated by a binary phase-
shift keying (BPSK) pseudo-random code or some simi-
lar spread-spectrum modulation. The resulting accuracy
for this sort of ranging in terms of measurement noise 1
sigma is about 1 kilometer assuming a signal bandwidth
of 100 KHz. Carrier-phase measurements are assumed
to be derived using a stable internal oscillator and a
phase-lock loop so that the expected accuracy for a range-
equivalent beat carrier-phase measurement is 1 meter
based on extrapolation of the fraction-of-a-cycle phase
accuracy that can be resolved for L-band signals using stan-
dard signal-processing techniques.
The wave propagation mechanism that is considered

in this study relies on ionospheric refraction that bends
skyward-propagating radio waves back towards the Earth
in a way that resembles reflection. This effect can occur for
signals in the frequency range of up to 40 MHz (Hysell,
2018). HF signals traveling in the ionosphere are charac-
terized not only by a curved trajectory shape, but also by
the frequency- and path-dependent propagation speeds of
their BPSKmodulated code and carrier phase. Propagation
speed dependence on wave frequency is known as disper-
sive wave propagation and is typical of propagation in a
plasma (Cummer, 2000; Ishimaru, 2017; Juras, 1985). Fur-
ther details about the behavior of electromagnetic waves
as they traverse through plasma are provided in (Baum-
garten, 2018).
Electromagnetic wave propagation in the birefringent,

inhomogeneous, and lossy ionosphere obeys theAppleton-
Hartree formula (Yeh & Liu, 1972):

𝑛2 = 1 −
𝑋
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2
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and where n is the index of refraction, θ is the angle
between the magnetic field B and the wave vector k, ω is
the wave frequency, ωp is the plasma frequency, and Ωe
is the electron gyrofrequency. The latter is dependent on
Earth’s magnetic field. The two solutions for the refractive
index correspond to the ordinary (O)mode and the extraor-

dinary (X) mode that have different polarization and, con-
sequently, different ray paths and measured observables
(Baumgarten, 2018; Seybold, 2005). This formula makes it
straightforward to obtain the conditions for which waves
propagate, i.e., the conditions on Y, X, and θ for which
n2 > 0.

2.2 Raytracing

Raytracing calculations lie at the core of this study. The
ability to accurately model signal trajectories in the iono-
sphere is essential to the modeling of the pseudorange
and beat carrier-phase observables. Calculations are based
on a numerical solution to the wave equations through
propagation of Hamilton’s equations that apply for an
RF signal traversing in an ionized medium (Bennett
et al., 2004). The fundamental set of raytracing equations
is provided by Jones & Stephenson (1975) in the form
of nonlinear ordinary differential equations that can be
written as
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H is the Hamiltonian, and the independent variable P’≡ctg
is the range-equivalent group delay parameter that takes
the value P’0 = 0 at the beginning of the trajectory and P’f
at its end. The same Hamiltonian can be used to develop a
differential equation for the range-equivalent carrier phase
P = ϕ/k0 with ϕ being the carrier phase in radians. This
differential equation takes the form:

dP
𝑑𝑃′

= −

[
dH
𝑑𝑘

𝑘

]
[
dH
𝑑𝑘0

𝑘0

] , (4)

where k0 =ω/c is the free-spacewave numberwithω being
the transmission frequency. Note that the last two equa-
tions would have taken a somewhat different form had the
position been given in geographic coordinates as in Nick-
isch (1988).
Jones and Stephenson (1975), which combines the work

of Lighthill (1965) and Haselgrove (1954), gives several
Hamiltonians that can be used in Equation (3). They are
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generally based on the Appleton-Hartree formula. Alter-
native Hamiltonian formulations are presented in Psiaki
(2019). The latter are the Hamiltonians that are utilized
with this study. The firstHamiltonian,which is usedwhere
the electron density is relatively small, is given by

𝐻 =
1

2
real

{[(
𝑘

𝑇
𝑘

𝑘0
2

)
− 𝑛AH

2

(
𝑟
𝑤

,
𝑘‖𝑘‖ , 𝑘0, 𝑝

)]

×
[
(1 − jZ)

2
− 𝑌2

]
(1 − jZ)

}
, (5)

where p is a vector of parameters that characterizes the
ionosphere electron density profile, and nAH is the lossy
Appleton-Hartree index of the refraction of Yeh & Liu
(1972). A second Hamiltonian is used near a reflection
point/spitze. This second Hamiltonian, given in Baum-
garten (2018), is used because it does not experience any
singularities in this vicinity.
A state space system of equations is defined for the

unknown wave-front position and wave vector. It is based
on the two expression of Equation (3) and takes the form:
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Thus, the state vector consists of the three Cartesian
coordinates of the propagating wave front’s position, rw,
and the three components of its wave vector, k. For prac-
tical reasons, the state vector that is used with the current
numerical implementation is defined in the normalized
form:

𝑋 =
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𝑟
𝑤
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Normalization of the first term by P’f and of the
second term by k0 results in a non-dimensional state
vector, whose derivative with respect to the non-
dimensionalized independent variable τ≡P’/P’f is given
by

𝑑𝑋
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)
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This nonlinear differential equation can be numeri-
cally propagated from the initial point at τ = 0 to the
final point at τ = 1. The terminal value P’f is unknown
and must be determined as part of a two-point bound-
ary value problem solution. Further details about the
raytracing two-point boundary value problem numeri-
cal solution technique are given in Section III of Psiaki
(2019).

3 EARTH AND IONOSPHEREMODELS

Models of the Earth and the ionosphere are used to
define the physical environment for the propagating sig-
nals. These models have been chosen because they satisfy
the need for a reasonably realistic representation of physi-
cal phenomena and the need to limit the complexity of the
models and the resulting computational effort.

3.1 Earth geometry and magnetic field
models

The Earth is modeled as a closed, continuous and smooth
surface that is known as the WGS-84 ellipsoid (National
Geospatial Intelligence Agency, n.d.). The implicit equa-
tion for the ellipsoid in Cartesian Earth Centered Earth
Fixed (ECEF) coordinates is

𝑟1
2

𝑅𝑐
2

+
𝑟2

2

𝑅𝑐
2

+
𝑟3

2

𝑅𝑃
2

= 1

𝑅𝑐 = 6378137 [𝑚]

𝑅𝑃 = 6356752.31425 [𝑚], (9)

where r1, r2, and r3 are the Earth-fixed Cartesian coordi-
nates of the surface point in meters.
This approach for modeling the Earth has been chosen

for its relative simplicity and the fact that it does not rely
on availability of additional data. A more realistic method
for modeling the shape of the Earth would use biquintic
surfaces, approximating an existing digital representation
of the Earth such as a digital terrainmodel (DTM) or digital
elevation map (DEM).
Raytracing computations for propagating HF signals

require knowledge of the Earth’s magnetic flux vector field
at any desired location. This study uses the 11th generation
model for the International Geomagnetic Reference Field
(IGRF), known as IGRF-11. Its magnetic flux is modeled
as the gradient of a time-varying spatial potential function.
Additional information about this model can be found in
International Association of Geomagnetism and Aeron-
omy (2019). It should be noted that an updated model for
the Earth’s magnetic flux vector field that is based on a
2020 epoch, IGRF-13, is now available.

3.2 The ionosphere model

A three-parameter Chapman beta vertical profile is used
to model the location-dependent electron density dis-
tribution of the ionosphere. This model regards the
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F IGURE 1 A map for the 424 nodes for an example latitude/longitude bi-quintic spline [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com and www.ion.org]

ionosphere as a medium with an altitude-dependent elec-
tron density, whose altitude density distribution is char-
acterized by parameters that vary with latitude and longi-
tude. Under certain assumptions for radiation, geometry,
and chemistry, the Chapman profile can be regarded as the
exact solution for an ionosphere density profile (Stankov
et al., 2003).
For a given date and time, electron density is given by
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where ϕ(r), λ(r), and halt(r) are, respectively, the lati-
tude, longitude, and altitude above the WGS-84 ellip-
soid of the ECEF position r. Ne(r) is the electron
density at this position given in units of electrons/m3.
The quantity hmax[ϕ(r),λ(r)] is the altitude of the maxi-
mum electron density of the Chapman profile. The quan-
tity VTEC[ϕ(r),λ(r)] is the vertical total electron content –
the integral of the electron density along a vertical path.
The quantityhsf[ϕ(r),λ(r)] is theChapmanprofile’s altitude
scale height. These last three functions depend on the date
and the time of day in addition to latitude and longitude,
but this dependence is not explicitly noted for the sake of
convenience. The Ne(r) function is assumed to be slowly
time varying so that it can be assumed to be constant over
the short interval of an HF radio wave propagation from a
transmitter beacon to a user receiver.

Note that one could switch to using Ne,max[ϕ(r),λ(r)] as
one of the three Chapman profile parameters in place of
VTEC[ϕ(r),λ(r)]. Such a switchmight be appealing because
the top-side contributions to VTEC do not affect the
bottom-side refraction that matters to the present develop-
ments. In practice, such a switch is unlikely to change the
underlying performance of this concept.
The latitude/longitude dependencies of the three

Chapman profile parameter functions hmax[ϕ(r),λ(r)],
VTEC[ϕ(r),λ(r)], and hsf[ϕ(r),λ(r)] are modeled using
a special bi-quintic spline. It works with data that are
defined at spline nodes. Spline nodes are placed at pre-
defined latitudes and longitudes with subsets of nodes
grouped into common small circles of constant latitude.
Along each small circle, the spline nodes can have any
desired longitude spacing, and this spacing can vary.
There is no need to align node longitudes on one small
circle with node longitudes on adjacent small circles. The
latitude spacing between small circles is also free to vary.
Figure 1 illustrates the placement of spline nodes, where
each node is identified by a unique number, starting at 1
for the node that is located at the South Pole and ending at
424 for the node that is located at the North Pole. The set
of spline nodes that is used in this study has been defined
in a way that gives a sufficient density of nodes over North
America, the region in which simulation and analysis
cases are planned to be considered.
The latitude/longitude variations of the three Chapman

vertical profile parameters are modeled using bi-quintic
splines as described in Baumgarten (2018) and Psiaki et al.
(2019). Three sets of parameters are stored for each grid
node. Each set consists of the natural logarithm of a Chap-
man parameter’s value and eight of its partial derivatives
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with respect to latitude ϕ and longitude λ. Thus, a vector
of 3 × 9 = 27 parameters, 𝑝

−𝑖

, is associated with the ith node

as follows:
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Note that special shortened forms of this parameter vec-
tor apply at the North and South Poles. These special forms
have only 18 elements rather than 27 elements.
The natural logarithms of the three Chapman profile

parameters are modeled rather than the parameters them-
selves as an ad hocmeans of ensuring that the final param-
eter values will be positive. The spline models of their
natural logarithms can take on any real values. The param-
eters themselves will be positive after their splined natural
logarithms have been input to exponential calculations.
Given the latitude ϕ0 and the longitude λ0 of a point at

which one wants to compute electron density (and pos-
sibly various of its partial derivatives), the spline calcula-
tions use the nearest four bi-quintic spline nodes that lie
northwest, northeast, southwest, and southeast of (ϕ0,λ0).
The details of the spline evaluation procedure are given in
Baumgarten (2018) and Psiaki et al. (2019).
It is important to note that the simplistic Chapman

model ignores the possibility of distinct D and E lay-
ers, including a sporadic E layer. This level of simplifica-
tion may produce unsatisfactory results if working with
real daytime data, but it is reasonable to use a Chapman
profile at this stage of simulation- and analysis-based study
of the proposed system’s potential accuracy.

3.3 The ionosphere parameters
variability matrix

Let p denote a stacked vector of all 424 pi vectors. This
means that a given vector p stores information that
describes the entire electron density distribution near the
Earth at a particular time. Understandably, p vectors that
describe electron density distributions at different times
take different values. While the values that the various

terms of p take may vary significantly with time, the man-
ner at which they vary reflects the fact that those val-
ues represent physical phenomena. For instance, at a spe-
cific time, values for a particular Chapman parameter
at neighboring spline nodes, that are relatively near, are
expected not to differ by much, while values that are mea-
sured for one of its derivatives at a single spline node, but
at different yet close times, are similarly expected to be
close.
The batch-filtering algorithm that is used in this study

requires a model for the likely correlations between the
various terms of p. This model should effectively embody
the manner at which these terms vary in time and the
interdependencies between them. One method for gen-
erating such a model is computing an empirical covari-
ance matrix through the processing of parameterized
models of the ionosphere that have been computed for a
large series of times. The International Reference Iono-
sphere (IRI) model was used to compute the best-fit Chap-
man parameter values four times a day throughout the
calendar year 2009. See Bilitza (2001) and Reinisch and
Bilitza (2004) on current IRI modeling and Bilitza (2011)
on further improvement efforts. See Psiaki et al. (2015) on
the Chapman parameter fitting procedure. The resulting
365 × 4 = 1,460 parameter vectors were used to compute
a covariance matrix for p, i.e., for the natural logarithm
and natural logarithm partial derivatives of all three Chap-
man model parameters at the spline nodes. This matrix
is defined to be the ionospheric parameters’ variability
matrix, designatedM0 throughout this paper. It character-
izes the likely variability of the p vector over a year, and it
contains information about the correlations between ele-
ments of p. It should be noted that M0, which has 11,430
rows and 11,430 columns, contains much more informa-
tion than is requiredwhen considering a typicalHFnaviga-
tion problem. ThematrixM is anNpxNp covariancematrix
that was constructed from theM0 matrix by retaining only
the rows and columns that are associated with the set of
applicable spline nodes, i.e., spline nodes that define grid
cells through which propagating rays travel. The value Np
is the number of ionosphere parameters that apply for a
particular problem setup – typically in the order of hun-
dreds.

4 RAY PATHS, MULTIPLE-HOP
CALCULATIONS, ANDMEASUREMENT
MODELS

4.1 Definitions

In the scope of this study, it is assumed that waves are
perfectly reflected from the Earth’s surface in a specular
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F IGURE 2 The ray-path definitions and notation

manner at bounce points. This simplification of the quasi-
isotropic nature of ground reflections has been chosen for
its relative simplicity in the multi-hop path analysis. This
model will most likely need to change when dealing with
real HF data to characterize ground reflections’ sensitivity
to surface conditions and polarization.
The position of the kth bounce point in Cartesian coor-

dinates is denoted by ηk. The unit vector that is perpen-
dicular to the Earth’s surface at bounce point k is called
the bounce point normal vector and is denoted by uk. The
ray-path direction from which a signal approaches bounce
point k is vf,k. The direction of the reflected signal at
bounce point k is v0,k. The curved signal trajectory between
the transmitter and the first bounce point, between two
sequential bounce points, or between the final bounce
point and the receiver is termed a ray hop. The kth ray hop
is denoted sk. An ordered sequence of ray hops that starts
at a transmitter and ends at the location of the receiver, rR,
constitutes a ray path.
Figure 2 illustrates these definitions, showing three

sequential bounce points, the receiver location, the ray
hops connecting them, and other terms. The associated
vector pj̑ consists of all ionosphere parameters that apply
in the vicinity of the jth ray path that is illustrated in the
figure. All P’x,y and Px,y terms refer, respectively, to range-
equivalent group delays and beat carrier phases that will
be considered in a later discussion.

4.2 Bounce-point equations

Three equations are used to implicitly define each bounce
point. The kth Type-A constraint equation requires that the
kth bounce point lie on the Earth. The Type-B constraint
equation enforces co-planarity between the directional
vector of the incoming ray-hop signal as it approaches the
bounce point, the directional vector of the reflected ray
hop, and the normal vector to the Earth’s surface at the
given bounce point. For the kth bounce point, which links
the kth ray hop and the (k+1)st ray hop, the following equa-

tion definition for gB,k applies:

0 = 𝑔𝐵,𝑘

(
𝑣

𝑓,𝑘
, 𝑣

0,𝑘
,
⌢
𝜂

𝑗
, 𝑢

𝑘

(
⌢
𝜂

𝑗

))
= 𝑢

𝑘

(
⌢
𝜂

𝑗

)
⋅
(

𝑣
𝑓,𝑘

× 𝑣
0,𝑘

)
, (12)

where
⌢
𝜂

𝑗
is a stacked vector of all ηk bounce-point loca-

tions of that ray path, and uk is the outward unit vector nor-
mal to the Earth’s surface at the kth bounce point (Baum-
garten, 2018).
Each Type-C equation constrains the normal vector to

the Earth at the bounce point to bisect the angle between
the incoming and reflected ray hops. It can be written in
the form:

0 = 𝑔𝐶,𝑘

(
𝑣

𝑓,𝑘
, 𝑣

0,𝑘
,
⌢
𝜂

𝑗
, 𝑢

𝑘

(
⌢
𝜂

𝑗

))
= 𝑢

𝑘

(
⌢
𝜂

𝑗

)
⋅

(‖‖‖𝑣
𝑓,𝑘

‖‖‖𝑣
0,𝑘

+
‖‖‖𝑣

0,𝑘

‖‖‖𝑣
𝑓,𝑘

)
. (13)

Finally, the set of three equations that defines the kth
bounce point of a given ray path can be written in the fol-
lowing shorthand form:

0 = 𝑔
𝑘

= 𝑔
𝑘

(
𝑣

𝑓,𝑘
, 𝑣

0,𝑘
, 𝜂

𝑘
, 𝑢

𝑘

(
⌢
𝜂

𝑗

))
. (14)

Recognizing that a signal’s trajectory within a single ray
hop, and in particular its directional vectors v0 and vf,
depends on the location of the hop’s start and end points
and on the values taken by the ionosphere parameters that
apply in the vicinity of that hop, Equation (14) can be
rewritten as

0 = 𝑔
𝑘

(
⌢
𝜂

𝑗
, 𝑟

𝑅
,
⌢
𝑝

𝑗

)
, (15)

where the formulation in Equation (15) implicitly uses
the ray-tracing calculations for each of the single hops in
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order to compute the corresponding v0,k-1 and vf,k direc-
tions from the given bounce-point locations defined from
components of

⌢
𝜂

𝑗
and the transmitter location for the ini-

tial hop or the receiver location rR for the final hop. Both
formulations of Equations (14) and (15) for the set of three
equations are used in this study. The first is used withmost
batch-filtering Gauss-Newton process-related calculations
and the secondwith the ray-path solver that is described in
this section. Additional details are available in Baumgarten
(2018).

4.3 Single-hop calculations

Given the signal trajectory’s known start and end locations
for a single hop, and given a set of applicable ionosphere
parameters, one can determine the ray-hop trajectory by
determining the initial state X0 of the raytracing differen-
tial equation in Equation (8) that applies at the beginning
of the hop’s trajectory and the total signal range-equivalent
group delay P’f for which the signal ultimately arrives at
the known end location. This two-point boundary value
problem (TPBVP) and an iterative solution method are
thoroughly discussed in Psiaki (2019).
Baumgarten (2018) puts the discussion inPsiaki (2019) in

the context of the current study. It shows how the problem
is solved based on the principle of a zero-valued Hamilto-
nian, which is kept fixed throughout the signal propaga-
tion along its trajectory. It additionally describes how the
problem is solved using a Newtonmethod and outlines the
derivation of the sensitivity matrices that are required for
the computation of each Newton step within this process.
The Newton’s method solution uses ray-path sensitivity
calculation of partial derivatives with respect to the initial
unknown wave vector and with respect to the unknown
total range-equivalent group delay. Related calculations
can be used to compute the partial derivative sensitivity of
the resulting ray path with respect to changes in the ini-
tial or final bounce points and with respect to changes in
the ionosphere parameters that affect the single hop. These
latter sensitivities are not needed in order to solve a given
single ray hop, but they are needed by the solution proce-
dure for a multi-hop ray path and by the partial derivative
sensitivity calculations of the batch filter that uses ray-path
solutions tomodel HF pseudorange and beat carrier-phase
observables.

4.4 Multiple-hop calculations

The work that is presented in this subsection utilizes the
single-hop method of Psiaki (2019) as reviewed in the pre-
vious subsection. In the following discussion, single-hop

calculations are extended tomultiple-hop calculations that
determine the bounce points’ locations, the group delays,
the range-equivalent beat carrier phases, and these quan-
tities’ partial derivative sensitivities to inputs.
Determination of the ray path for an HF signal that is

traversing from a transmitter beacon to a receiver involves
the solution of coupled, nonlinear equations that define
the physical characteristics of its trajectory. Given the loca-
tions of the receiver and the transmitter, the number of
ray-path hops connecting them, and a model for the iono-
sphere, the objective is to solve for the position of all
of the ground bounce points in

⌢
𝜂

𝑗
in a way that satis-

fies the governing reflection equations while also solving
for the set of single hops that properly connect the bounce
points. Ultimately, bounce-points solutions in

⌢
𝜂

𝑗
depend

on the receiver position rR and the relevant ionosphere
parameters pj̑.
An algorithm for determining this nonlinear function

⌢
𝜂

𝑗
(rR,pj̑) has been developed based on the implicit equa-

tions that define it. It is called a ray-path solver. The ray-
path solver assumes fixed known locations for the signal’s
start and end points, fixed ionosphere parameters, and a
known number of sequenced ray hops that constitute the
ray path. The ray-path solver’s standard outputs are the
locations of the bounce points. Auxiliary outputs include
the ray-traced single hops’ trajectories between each pair
of bounce points along with the pseudorange and beat
carrier-phase increments along each single hop. If required
by the batch filter, associated computations can deter-
mine the partial derivatives of bounce-point locations,
total group delays, and beat carrier-phase increments with
respect to the location of the ray path’s end point location
rR and with respect to the ionosphere parameters in pj̑
The multi-hop solution is obtained using Newton’s iter-

ative method to solve

0 =
⌢
𝑔

𝑗

(⌢
𝜂

𝑗
, 𝑟

𝑅
,
⌢
𝑝

𝑗

)
(16)

through minimization of

𝐽RP

(⌢
𝜂

𝑗

)
=

1

2

⌢
𝑔

𝑗

(⌢
𝜂

𝑗
, 𝑟

𝑅
,
⌢
𝑝

𝑗

)𝑇⌢
𝑔

𝑗

(⌢
𝜂

𝑗
, 𝑟

𝑅
,
⌢
𝑝

𝑗

)
(17)

with respect to
⌢
𝜂

𝑗
. Here,

⌢

𝑔
𝑗
denotes the vector ofm stacked

Equation (15)-type formulations of the set of three reflec-
tion equations that apply at each of the m bounce points
of ray path j. The ray path consists of m+1 connected ray
hops. The stacked vector

⌢
𝜂

𝑗
contains the 3m coordinates

of them ray paths’ bounce points, and the vector function
⌢

𝑔
𝑗
has 3m elements. Therefore, Equation (16) is a system

of 3m nonlinear equations in 3m unknowns.
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The iterative solution procedure uses linearization about
a current guess to compute a solution increment. It takes a
step along the resulting search direction with a step-length
scaling in the

⌢
𝜂

𝑗
space that is chosen to ensure that the

Equation (17) new cost at the new guess of the solution
is lower than the cost at the previous guess. A line search
starts by determining the Newton step through lineariza-
tion of Equation (16) with respect to

⌢
𝜂

𝑗
, where all terms

are evaluated at a current guess ηj̑,guess

𝐷
⌢

𝑔
𝑗

𝐷
⌢
𝜂

𝑗

||||||||⌢𝜂
𝑗,𝑔𝑢𝑒𝑠𝑠

Δ
⌢
𝜂

𝑗
= −

⌢

𝑔
𝑗

(
⌢
𝜂

𝑗,𝑔𝑢𝑒𝑠𝑠
, 𝑟

𝑅
,
⌢
𝑝

𝑗

)
, (18)

and where D denotes the total derivative operator. The
solution for Δηj̑,guess, which constitutes the Gauss-Newton
step (or correction vector), is computed by matrix inver-
sion. For bounce point k, the required set of sensitivity
matrices that are included in the leftmost term of Equa-
tion (18) is obtained through computation of the total
derivative

𝐷𝑔
𝑘

𝐷𝜂
𝑙

=
𝜕𝑔

𝑘

𝜕𝑣
𝑓,𝑘

𝜕𝑣
𝑓,𝑘

𝜕𝜂
𝑙

+
𝜕𝑔

𝑘

𝜕𝑣
0,𝑘

𝜕𝑣
0,𝑘

𝜕𝜂
𝑙

+
𝜕𝑔

𝑘

𝜕𝜂
𝑙

, (19)

where 𝑔
𝑘
is the subset of the elements of

⌢

𝑔
𝑗
, consist-

ing of the three equations that apply at bounce point ηk.
ηl is the lth bounce point of that ray path where l takes
the values k-1, k, and k+1. Computations of ∂𝑔

𝑘
/∂v0,k,

∂𝑔
𝑘
/∂vf,k, and ∂𝑔

𝑘
/∂ηk are analytical and therefore immedi-

ate as noted earlier. However, computations of ∂vf,k/∂ηk-1,
∂vf,k/∂ηk, ∂v0,k/∂ηk, and ∂v0,k/∂ηk+1 are implemented as
auxiliaries of numerical raytracing as described in Baum-
garten (2018) and Psiaki (2019).
An initial guess for

⌢
𝜂

𝑗
is generated using several meth-

ods that are described in Baumgarten (2018). The pos-
sible methods include the use of the simplified ray-
path solver of Baumgarten and Psiaki (2017), the use of
a latitude/longitude/altitude-dependent thin-shell iono-
sphere model, and the use of a constant-altitude thin-shell
ionosphere model.

4.5 Ray paths’ feasibility and solution
uniqueness

Every ray path is evaluated for physical feasibility. Physical
feasibility concerns the question of whether there exists a

ray path between the given transmitter and receiver loca-
tions with the given number of hops at the given carrier
frequency and for a given set of ionospheric parameters.
For simulated test cases, feasibility is evaluated by trying
to compute a raytracing solution using the true ionosphere
model. The answer for the feasibility question is often not
straightforward as it consists of the questions of whether a
solution for a given set of inputs exists and, if so, whether it
can be found with the ray-path solver. In the absence of an
ability to distinguish between anegative answer for the two
questions, a failure in obtaining a solution for

⌢
𝜂

𝑗
during

this phase of assessment is generally regarded as an indi-
cation that the path is physically infeasible for the given
inputs.
Ray-path solution uniqueness is a second matter of con-

cern. Multiple solutions are theoretically possible if the
cost function has multiple minima that are zero as demon-
strated in Australian Government (2016). In the early work
that utilized a simplified ray-path model (Baumgarten &
Psiaki, 2017), a given set of inputs that included transmitter
and receiver position, an ionosphere model, and the num-
ber of ray hops sometimes yielded more than one possible
solution. Such observations have not beenmade so farwith
the full, raytracing-based model of the present paper. The
current study, therefore, does not consider the possibility
of having more than one solution for

⌢
𝜂

𝑗
.

4.6 Measurement models

In the context of this study, range measurements are based
on signal propagation timemeasurements andwave-phase
measurements. Errors in processing the measured data
may arise from 1) errors in the modeled signal propaga-
tion paths, 2) clock synchronization errors, and 3) signal-
processing related errors. The first two types of error
sources are addressed through proper modeling of these
error sources in the batch-filtering-based algorithm. The
third error source is generalized as a noise term in the fol-
lowing measurement equations.
A typical signal runs from the transmitter, traverses

through the ionosphere in a refraction-based curved tra-
jectory, bounces off of Earth, and eventually arrives at the
receiver. Let ρg,j = P’f,m(j) be the true total range-equivalent
group delay of the jth ray path, which equals the true
signal propagation time multiplied by the speed of light
c. Let yg,j be the measured range-equivalent group delay
of that ray path, which equals the speed of light multi-
plied by the difference between the measured reception
time according to the erroneous receiver clock and the
true transmission time according to a calibrated beacon
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transmitter clock. Let δ be the receiver clock’s offset and
let xg = [rRT,cδ]T denote the vector of unknown receiver
position components and the range-equivalent clock off-
set. Then, the jth groupdelaymeasurement equation can be
written as

𝑦𝑔,𝑗 = ℎ𝑔,𝑗

(
𝑥

𝑔
,
⌢
𝑝

𝑗

)
+ 𝜈𝑔,𝑗 = ℎ̆𝑔,𝑗

(
𝑟
𝑅
,
⌢
𝑝

𝑗

)
+ 𝑐𝛿 + 𝜈𝑔,𝑗

= ℎ̃𝑔,𝑗

[
𝑟
𝑅
,
⌢
𝜂

𝑗

(
𝑟
𝑅
,
⌢
𝑝

𝑗

)
,
⌢
𝑝

𝑗

]
+ 𝑐𝛿 + 𝜈𝑔,𝑗, (20)

where the computed functions ℎ̆g,j and ℎ̃g,j both model the
true range-equivalent group delay of the jth ray path. νg,j
is a zero-meanmeasurement noise term that embodies the
effect of signal-processing related errors.
The measurement model in Equation (20) applies

for a total of N measured pseudoranges in a given
navigation/ionosphere-correction problem. For conve-
nience in batch estimation, this model is stacked into an
N-dimensional vector equation model of all the measure-
ments. Let p ̑ equal the union of all pj̑ vectors applying for all
N ray paths. The stackedmeasurement model vector equa-
tion takes the form:

𝑦
𝑔

= ℎ
𝑔

(
𝑥

𝑔
,
⌢
𝑝
)

+ 𝑣
𝑔
; 𝐸

[
𝑣

𝑔

]
= 0; 𝐸

[
𝑣

𝑔
𝑣

𝑔
𝑇
]

= 𝑅𝑔

(21)

with measurement error covariance matrix Rg typically a
diagonal matrix. Note that it is possible for two or more
of the N ray paths to originate from the same transmit-
ter location. In that case, either the signal transmission
frequency, the number of hops, or both must be differ-
ent in order for the measurements to provide independent
information.
The second type of measurement used in this study,

beat carrier phase, is based on a comparison betweenmea-
sured changes in the received signal’s phase and changes
in the phase of a receiver-generated nominal replica sig-
nal. In effect, the beat carrier phase is the negative of the
time integral of the received carrier Doppler shift (Ben-
nett, 1967). This measurement involves an unknown bias
term that originates from its integral nature, i.e., it is an
unknown integration constant. Let ρc,j = Pf,m(j) be the total
true range-equivalent beat carrier phase of the jth ray path,
and let yc,j be the measured range-equivalent beat carrier
phase of that ray path. Recall that P is computed by inte-
grating the differential equation in Equation (4). Let λw,j
be the corresponding signal’s wavelength, and let βi(j) be
an unknown bias term in units of carrier cycles. Then, the
jth beat carrier-phase measurement equation can be writ-

ten as

𝑦𝑐,𝑗 = ℎ𝑐,𝑗

(
𝑥

𝑐
,
⌢
𝑝

𝑗

)
+ 𝜈𝑐,𝑗 = ℎ̆𝑐,𝑗

(
𝑟
𝑅
,
⌢
𝑝

𝑗

)
+ 𝑐𝛿

+ 𝜆𝑤,𝑗𝛽𝑖(𝑗) + 𝜈𝑐,𝑗 = ℎ̃𝑐,𝑗

[
𝑟
𝑅
,
⌢
𝜂

𝑗

(
𝑟
𝑅
,
⌢
𝑝

𝑗

)
,
⌢
𝑝

𝑗

]
+ 𝑐𝛿

+ 𝜆𝑤,𝑗𝛽𝑖(𝑗) + 𝜈𝑐,𝑗, (22)

where xc = [rT,cδ,βT]T and where the computed functions
ℎ̆c,j and ℎ̃c,j both model the ionosphere-refraction-induced
range-equivalent carrier-phase change of the jth ray path,
ρc,j. The vector β consists of all unknown bias terms that
apply for all N beat carrier-phase measurements.
The integer function i(j) in the index of βmaps ray-path

indices j to indices of their corresponding terms in β. The
ability tomap a common bias term tomultiple beat carrier-
phase measurements is needed because the beat carrier-
phase data are not useful unless multiple measurements
are made with a common bias. This can be accomplished
by transmitting a signal with a frequency time history that
follows a smoothed staircase pattern with a known con-
tinuous phase time history at the transmitter. Coherent
reception of this signal with a PLL that tracks phase fol-
lowed by differencing of the measured phase time history
from the known transmitted phase time history results in
a set of beat carrier-phase measurements that have a com-
mon bias in terms of cycles, a common transmitter loca-
tion, and a common number of hops, but a different trans-
mission frequency. If the beat carrier-phase measurement
data are used from a set of two or more times when the
signal is temporarily staying at a constant frequency, but
with a different constant frequency for each of those times,
then the model in Equation (22) applies for more than
one value of j that map to an identical bias index i(j). It is
assumed that a given transmitter’s smoothed stair-stepping
frequency transmission time history will occur over a rela-
tively short time window, perhaps just 10 msec, so that the
receiver location, the receiver clock offset, and the iono-
sphere model can be assumed to remain constant during
that window.
As with group delay measurements, carrier-phase mea-

surement equations are stacked into an N-dimensional
vector measurement model equation that takes the form:

𝑦
𝑐

=
⌣

ℎ
𝑐

(
𝑟
𝑅
,
⌢
𝑝
)

+ 1𝑐𝛿 + Λ𝛽 + 𝑣
𝑐

𝐸 [𝑣𝑐] = 0; 𝐸
[
𝑣

𝑐
𝑣

𝑐
𝑇
]

= 𝑅𝑐, (23)

where Λ is an NxNβ matrix and Nβ is the dimension of β.
The randommeasurement noise vector, νc, is characterized
by its mean (assumed to be zero) and its covariance matrix
Rc.
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Finally, both types of measurement vector, the first for
the range-equivalent group delays and the second for the
range-equivalent beat carrier phases, can be stacked into a
single 2N-dimensional measurement vector. The same can
be done with the vector functions hg and hc and with the
noise vectors νg and νc:

𝑦 =

[
𝑦

𝑔

𝑦
𝑐

]
; ℎ

(
𝑥

𝑐
,
⌢
𝑝
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𝑐

(
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𝑐
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𝑝
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𝑧
=
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𝑔

𝑣
𝑐

]
;

𝑅 = 𝐸
[
𝑣

𝑧
𝑣

𝑧
𝑇
]

=

[
𝑅𝑔 0

0 𝑅𝑐

]
. (24)

Note that xg⊂xc so that h is conveniently defined as a
function of xc. The resultingmeasurementmodel takes the
form:

𝑦 = ℎ
(

𝑥
𝑐
,
⌢
𝑝
)

+ 𝑣
𝑧
. (25)

4.7 Measurement model sensitivity
matrices

Gradient-based nonlinear estimation algorithms, such as
batch least-squares, require partial derivatives of the mea-
surement model with respect to the unknown estimated
quantities. These sensitivities must be computed at a suc-
cession of improved guesses of the optimal estimates of
the unknowns. In the present context, the required partial
derivatives are those of each hj measurement model func-
tion with respect to the elements of the unknown x and p ̑

vectors. Derivatives with respect to the elements of r and p ̑

require special calculations. The sensitivity of the jth range
measurement to the input variables rR and pj̑ is
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The column vector g̑j is a stacked vector consisting of
the m three-term gk function vectors associated with the
m bounce points of ray path j. Similarly, v0̑,j, v ̑f,j, and uj̑
are stacked column vectors for the m three-term vectors
of the approaching signals, reflected signals, and bounce-
point normal vectors, respectively.
Of the terms on the right-hand side of Equation (27), the

following terms can be evaluated analytically through dif-
ferentiation of the bounce-point equations that were intro-
duced earlier: ∂g̑j/∂

⌢
𝜂

𝑗
, ∂g̑j/∂v0̑,j, ∂g̑j/∂vf̑,j, and ∂g̑j/∂uj̑. Other

terms, however, can only be evaluated in tandem with
the raytracing calculations that determine single ray hops:
∂vf̑,j/∂pj̑, ∂v0̑,j/∂pj̑, ∂vf̑,j/∂

⌢
𝜂

𝑗
, ∂v0̑,j/∂

⌢
𝜂

𝑗
, and ∂v0̑,j/∂rR. The

computation of these terms has been described in Baum-
garten (2018) and Psiaki (2019).

5 BATCH ESTIMATION OF RECEIVER
POSITION, RECEIVER CLOCK OFFSET,
AND IONOSPHERE PARAMETERS

A batch filter has been developed. It estimates xc and p by
minimizing a cost function that includesweighted squared
differences between the measurements and their modeled
values and between the estimated p elements and their a
priori estimates.

5.1 Batch-filter problem definition

In the general case, the batch-filtering problem seeks the
values that jointly minimize the cost function:

𝐽1

(
𝑥

𝑐
, 𝑝

)
=

1

2
[𝑦 − ℎ

(
𝑥

𝑐
, 𝑝

)
]𝑇𝑅

−1
[
𝑦 − ℎ

(
𝑥

𝑐
, 𝑝

)]
+

1

2
𝜁(𝑝 − 𝑝)

𝑇
𝑀−1

(
𝑝 − �̄�

)
, (28)

where y is the 2Nx1 stacked vector of theNmeasured pseu-
doranges and N measured range-equivalent beat carrier
phases for the given N ray paths. R is the square, symmet-
ric, 2N-by-2N, positive-definite measurement error covari-
ance matrix. p ̅ is the a priori estimate of the ionosphere
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parameter vector, andM is the square, symmetric, positive
definite covariance matrix that models the uncertainty in
the a priori ionosphere parameter vector p.̅ The elements
of p consist of ionosphere parameters, which apply in the
vicinity of the unknown, true signal ray paths. ζ is a positive
scaling parameter that effectively re-scales the inverse of
the a priori ionosphere parameter error covariance matrix.
Its role is described in more detail in Baumgarten (2018).
The batch least-squares cost function of Equation (28)

does not include a priori values of the elements of xc
with penalties for differences between those values and the
estimated xc. This means that no prior knowledge about
receiver position, receiver clock offset, or beat carrier-
phase biases is assumed.
The minimizing solution to this estimation problem

is equivalent to the optimal least-squares solution to the
following over-determined system of nonlinear equations:

[
𝑅−1∕2𝑦√
𝜁𝑀−1∕2�̄�

]
=

⎡⎢⎢⎣
𝑅−1∕2ℎ

(
𝑥

𝑐
, 𝑝

)√
𝜁𝑀−1∕2𝑝

⎤⎥⎥⎦ + 𝜈
1
, (29)

where R−1/2 and M−1/2 are the inverses of the Cholesky-
factor square roots of, respectively, the matrices R and M,
and where ν1 is a zero-mean, identity-covariance Gaussian
random error vector whose norm squared is minimized by
the batch solution. Baumgarten (2018) provides additional
details about this nonlinear least-squares problem.
In some cases, it is desirable to solve for the unknown

ionosphere model (and, potentially, for the unknown beat
carrier-phase biases) while the receiver location and clock
offset are assumed known and fixed (or, at least, closely
monitored and corrected). In such cases, the optimization
problem takes the general form:

𝐽4(𝛽, 𝑝) =
1

2
[𝑦 − ℎ(𝛽, 𝑝)]

𝑇
𝑅−1[𝑦 − ℎ(𝛽, 𝑝)]

+
1

2
𝜁(𝑝 − �̄�)

𝑇
𝑀−1(𝑝 − �̄�). (30)

If beat carrier-phase measurements are not processed,
then the problem reduces to estimation of ionosphere
parameters only.

5.2 A modified Gauss-Newton solution
algorithm

TheGauss-Newtonmethod has been used to solve this esti-
mation problem by finding the minimum of the cost func-
tion in Equation (28). Thismethod is described in Gill et al.
(1995) and Nocedal and Wright (2006). It is additionally
discussed in the context of convex function optimization
through nonlinear programing in Bertsekas (1997). Adap-

tations to this method have been made in order to address
some special characteristics of the present problem.
Each iteration starts with guesses of the optimizing val-

ues of xc and p. The Gauss-Newton method linearizes
Equation (29) about these guessed values. Next, it solves
the resulting over-determined linear least-squares prob-
lem to get candidates for improved solution guesses of xc
and p. Finally, it searches along the line in [xc;p] space from
the old guess to the candidate new guess in order to find a
new guess that reduces the cost J1(xc,p).
Linearization of Equation (29) about the current guess

for the unknown xc and p, xc,guess and pguess, takes the form
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. (31)

This over-determined system of equations is solved
through a short series of operations. The details of these
procedures are presented in Baumgarten (2018). The
sequence of procedures is repeated iteratively until the cost
function is minimized.
The method used in this study deviates from the clas-

sic Gauss-Newton method in two respects. First, it uses an
approach that allows the sets of considered measurements
to change during the iterative process. This feature, which
requires modifications to the way cost function reduction
is approached, has been developed in order to deal with
occasional failures in ray-path solving attempts due to a
poor estimate for the location of the receiver and the iono-
spheric parameters, to difficulties in the numerical raytrac-
ing computation for one or more of the ray path’s ray hops,
or to the physical non-feasibility of the ray path. Regardless
of the cause, the particular measurements that failed to be
computable in the filter’s model are temporarily excluded
from the set of measurements that are considered. A sec-
ond feature that is used with the batch filer is a measure-
ment rejection mechanism. These are common practice in
sensor-based systems due to the potential of significant,
un-modeled measurement errors that affect sensor read-
ings. In the context of this study, excessive measurement
errors are handled with likelihood tests that are designed
to detect and reject outliers as bad data.
Recognizing the challenges posed to the first-order

Gauss-Newton method when it starts with a guess that
is far from the receiver’s true location, the algorithm
distinguishes between two cases. In the nominal case
that has been described above, the current position guess
is assumed to be close to the solution. In this case, the
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algorithmwill consider variations in the three components
of the ECEF representation of the receiver’s location rR,
variations in the range-equivalent receiver clock offset cδ,
variations in the carrier-phase measurement biases β, and
variations in the ionosphere parameters at all bi-quintic
spline nodes that affect the ray paths. If the current posi-
tion guess is suspected of being far from the final solution,
however, then only group-delaymeasurementswill be pro-
cessed. In addition, the algorithm will only consider vari-
ations in the receiver position’s latitude and longitude and
in its clock bias. Variations of altitude and of ionospheric
model parameters are excluded in the calculation of the
Gauss-Newton step. Additional details about this far-from-
the-solution case are described in Baumgarten (2018).

6 PRELIMINARY RESULTS

Assessment of the proposed navigation system’s effective-
ness evaluates the batch filter’s performance in terms of
positioning accuracy and its ability to estimate corrections
to an erroneous a priorimodel of the ionosphere. A limited
assessment has been performed through analyzing several
test cases that differ in the number of ground stations and
their placement, the number of ray paths, and the differ-
ence between true and a priori ionospheric models.

6.1 Truth-model simulation

A truth-model simulation has been developed for algo-
rithm validation and assessment and for solution accuracy
analysis. The simulation enables testing of different combi-
nations of ground station arrays, ionosphere error models,
and other parameters. Computation for an Ne(r) electron
density truth model utilizes a Chapman profile that is fit
to an IRI model for a particular time (Psiaki et al., 2015). A
similar procedure is used to generate an a priori estimate of
the ionosphere parameter vector for use in the batch filter’s
cost function. The values that characterize this estimate
may deviate substantially from the values that character-
ize the truth-model ionosphere parameters. This would be
the case of an inaccurate a priori ionosphere model.
The simulation uses truth values of the x and p vec-

tors in the vector pseudorange and beat carrier-phase
measurement models of Equations (21) and (23) to gen-
erate measurement values that are input directly into the
main batch-filtering algorithm.

6.2 Solution convergence

Akey event in the execution of themain solver algorithm is
identifying solution convergence. This is performed using

a step magnitude criterion that is applied to the correction
vector generated at every iteration of the Gauss-Newton
solver. In theory, the Gauss-Newton method with line
search is guaranteed to converge to a local minimum, but
the minimum is not guaranteed to be global. Testing expe-
rience indicates that convergence to a local minimum that
is different from the global minimum occurs rarely, if ever.
Therefore, for all simulation-generated test cases, the algo-
rithm seems to be insensitive to the initial guess and the
corresponding magnitude of the initial error and is nearly
guaranteed to converge to its global minimum. Validity of
the latter statement is further explored and demonstrated
in Baumgarten (2018).

6.3 A posteriori position and
ionosphere model accuracy

A test case that considers a setupwith 32 varying-frequency
signals transmitted from 11 ground stations has been stud-
ied. In this test case, parameterized ionosphere models for
the true ionosphere and the a priori ionosphere that is
input to the batch filter are similar. This is the case where
a relatively accurate model for electron density in the
vicinity of the transmitting stations and the receiver is
available, possibly due to the use of one of the ionosphere-
characterization methods mentioned in the introduction.
Position accuracy for this test case is within 30 meters hor-
izontal and 2 meters vertical 90% of the time, where the
mean error is within meters from the receiver’s true loca-
tion. These results imply that, with a sufficient number of
signals received and dual group-delay/beat-carrier-phase
measurement processing, the achieved accuracy is ade-
quate for the purpose of navigation and guidance for many
significant applications.
A second test case, that considers only 17 transmitted sig-

nals, exhibited somewhat inferior position accuracy with
errors that are roughly three times larger horizontally. Ver-
tical accuracy, however, remained in the order ofmeters. In
a third test case, that is characterized by a less accurate a
priorimodel for the ionosphere, the mean error rose from
several meters to 60 meters, resulting in total errors up to
a hundred meters.
With respect to the filter’s ability to apply corrections

to an erroneous a priori ionosphere model, the algorithm
has proven successful in reducing errors in the ionosphere
model parameters. As one might expect, smaller errors
have been observed near the locations where ray paths
travel through the ionosphere. A posteriori ionosphere
models are improved for all test cases in comparison to
their a priori counterparts, evident in smaller a posteriori
errors computed for the three Chapman profile parameters
in the vicinity of the true ray paths.
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Additional details on the studied test cases are available
in Baumgarten (2018) and Baumgarten and Psiaki (2019).

6.4 Further performance assessment

A thorough study of performance for the developed batch
filter is reported in Baumgarten (2018) and Baumgarten
and Psiaki (2019) and may be published in a future jour-
nal article. It includes an analysis of a series of test cases
that differ in the sets of parameters that define them. These
parameters include the following: type of available mea-
surements, number of ground stations and their place-
ment, number of ray paths, ray-path geometry, the number
of hops for each ray path, signal frequencies, true vs. a pri-
ori ionospheric models, receiver clock error, and the true
location of the receiver. Analyses of results for these test
cases explore the positioning sensitivity to scenario param-
eters. They also explore the extent to which errors in an
a priori parameterized ionosphere model can be reduced.
Additional analyses study other aspects of the filter’s per-
formance. These include filter convergence characteristics,
scenario setup feasibility, and algorithm robustness.

7 SUMMARY AND CONCLUSION

An algorithm has been developed that utilizes group-
delay/pseudorange and beat carrier-phase measurements
from HF signals propagating in the ionosphere to solve
a combined positioning/ionosphere-corrections problem.
These HF signals are transmitted from stationary ground-
based beacons at known locations. They propagate to
an over-the-horizon user receiver at an unknown loca-
tion via refraction-induced bounces off of the ionosphere
and, possibly, intervening reflections off of the Earth’s
surface.
A navigation filter estimates user position, user clock

error, beat carrier-phase measurement biases, and cor-
rections to parameters that characterize the ionosphere’s
three-dimensional electron density profile. The nonlinear
batch least-squares estimation problem is solved using a
modified Gauss-Newton method. This method has a high
rate of achieving successful convergence to the optimal
value of the underlying cost function.
This paper presents the main assets that have been

developed in this study: physical models for the Earth and
the ionosphere, a model for signals propagating in the
ionosphere, two different signalmeasurementmodels, and
a batch filter that estimates the user location and correc-
tions to an a priori parameterizedmodel of the ionosphere.
A limited investigation of system performance has been

carried out using a truth-model simulation. Simulated

test cases that consider different combinations of problem
characteristics have been studied. Results indicate feasibil-
ity for the combined HF navigation/ionosphere-correction
concept. It has been shown that, with sufficient avail-
ability of received signals, navigation grade accuracy for
positioning may be achievable. Furthermore, a posteriori
ionosphere model estimates are consistently improved for
these cases in comparison to their a priori counterparts.
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