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Abstract

Precise point positioning (PPP) uses precise satellite orbits, clock corrections and
biases derived from a global network of reference stations to enable accurate
positioning worldwide. Natural Resources Canada’s Canadian Spatial Reference
System (CSRS) PPP is a free Web service offering automated PPP processing. A
critical factor limiting the adoption of PPP in many applications is the conver-
gence time needed to reach centimeter-level accuracies. To address this issue,
CSRS-PPP now implements PPP with ambiguity resolution (PPP-AR). This fea-
ture required the development of new algorithms, such as sequential normal
stacking for least-squares filtering/smoothing, and the weighted integer decision
concept for ambiguity validation. New satellite product lines (ultra-rapid, rapid,
final) also have been deployed to enable PPP-AR processing with various laten-
cies. This analysis demonstrates that sub-centimeter horizontal accuracies can be
obtained in less than one hour for both static and kinematic modes. Using prod-
uct lines with longer latencies is beneficial, although improvements are typically
within the reported uncertainties.
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ferential positioning, that is, using nearby base stations
(Ghoddousi-Fard & Dare, 2006). This positioning service

The Canadian Spatial Reference System Precise Point
Positioning (CSRS-PPP) service was launched in 2003
(Mireault et al., 2008). It allows users of Global Navigation
Satellite Systems (GNSS) to collect data in the field and
upload this data to Natural Resources Canada (NRCan)
servers. Within minutes, users receive an estimate of their
position, or trajectory, along with quality estimates and a
report for visual quality control.

CSRS-PPP uses precise satellite orbits, clock correc-
tions, equipment delay bias estimates and Earth orienta-
tion parameters derived from a global network of GNSS
receivers to determine accurate user positions. This strat-
egy differs from online positioning services based on dif-

offered by NRCan has been used more than five million
times since its inception. In 2020, the system processed
more than 2,500 daily user requests from approximately
7,000 active users. Nearly 83% of submissions were pro-
cessed in static mode, and 43% contained 24 hours of
observations. For datasets shorter than 24 hours (56%),
the mean session length was 2.9 hours. The geographi-
cal distribution of users suggests that CSRS-PPP is being
used not only for surveying purposes, but also for the
oil and gas industry, geophysical analyses, glaciology,
road construction, and more (Klatt & Johnson, 2017).
Despite the overall usage of the service, the conver-
gence time required to reach centimeter-level accuracies

© 2021 Her Majesty the Queen in Right of Canada NAVIGATION © 2021 Institute of Navigation. Reproduced with the permission of the Minister of Natural Resources Canada.

NAVIGATION. 2021;68:433-451.

wileyonlinelibrary.com/journal/navi | 433


https://orcid.org/0000-0002-7362-3503
mailto:Simon.Banville@canada.ca
https://wileyonlinelibrary.com/journal/navi

BANVILLE ET AL.

= L WiLEY BION

is a limiting factor for further adoption of PPP in many
applications.

In the past decade, algorithms for PPP with ambigu-
ity resolution (PPP-AR) have matured from experimental
to operational solutions (Geng et al., 2019; Loyer et al.,
2012; Schaer et al., 2018; Strasser et al., 2019). Ambi-
guity resolution offers significant benefits for users by
transforming ambiguous carrier-phase observations into
precise ranges. As a result, centimeter-level accuracies
often can be obtained more rapidly (Choy et al., 2017).
Furthermore, due to satellite geometry, resolving carrier-
phase ambiguities is especially beneficial for the longitude
(East) component (Ge et al., 2008; Santerre, 1991).

On October 20, 2020, NRCan released CSRS-PPP version
3, implementing the PPP-AR methodology. The purpose
of this paper is to describe the main algorithms support-
ing this service: the functional and stochastic models, the
estimation process, and the ambiguity resolution strategy.
These algorithms were developed to cope with challenges
associated with an online positioning service, such as reli-
ability and timeliness in delivering the results. Next, the
different product lines (i.e., ultra-rapid, rapid and final)
enabling PPP-AR are described. A comparison of CSRS-
PPP versions 2 and 3 is then presented in both static and
kinematic modes for various session lengths, and the per-
formance achieved with the different products is analyzed.
The conclusion briefly introduces the roadmap for future
releases of CSRS-PPP.

2 | IMPLEMENTATION

This section describes the current implementation of PPP-
AR algorithms supporting CSRS-PPP version 3. It covers
the functional and stochastic models, estimation process,
and integer ambiguity estimation and ambiguity validation
strategies.

2.1 | Functional and stochastic models

CSRS-PPP uses uncombined carrier-phase (L) and code
(C) observables described, in units of meters, as:

Loms =—€x -0x+dTg+&;, - 0T, + & - [Gy

omf = —€x *0x +dTg + &5, - 0T, +{},

where the overbar symbol indicates misclosures. The
superscript s designates a satellite and subscripts g, m
and f represent GNSS, modulation and frequency band,
respectively. The direction cosine vector between the satel-
lite and user is expressed as e, and multiplies the vector
of corrections to a priori coordinates (dx). An indepen-
dent receiver clock parameter (dT) is set up for every
satellite system. This distinction is essential, since satel-
lite clock corrections for different GNSS can be based on
different reference clocks. Even with a common refer-
ence clock, receiver-induced, constellation-specific equip-
ment delays can also occur. The residual tropospheric
zenith delay (6T,) is multiplied by the wet Vienna Map-
ping Function 1 (VMF1) (Boehm et al., 2006), denoted {3
Tropospheric gradients in the North and East directions
(Gy and Gg) are also included in the model, scaled by
the gradient mapping function ({;,) and a trigonometric
function of the azimuth (a) (Chen & Herring, 1997). The
slant ionospheric delay (I) is multiplied by a frequency-
dependent scaling factor: u, r = F§,1 /Fz, 7+ With F being
the frequency of carrier f. The carrier-phase ambigu-
ity (N) is multiplied by the carrier wavelength (1). The
receiver phase and code biases are symbolized by b and
B, respectively. It should be noted that phase biases are
considered to be independent of modulation, as speci-
fied in the RINEX standard (IGS, 2021). In the event that
phase observations have non-integer offsets among mod-
ulations of the same frequency, as determined by a sim-
ple comparison of measurements from the RINEX file,
ambiguity resolution is deactivated. Error sources such as
observation noise and multipath are neglected here for
simplicity.

All quantities on the right-hand side of Equations (1) and
(2) are parameters to be estimated in the PPP filter. The
first column of Table 1 provides an overview of the param-
eters included in the solution at a given epoch. A typi-
cal dataset, containing dual-frequency GPS and GLONASS
carrier-phase and code measurements on one modula-
tion per frequency, would have 59 active parameters if we
consider 15 visible satellites. Unobserved ambiguities are
removed from the system as soon as possible, and slant
ionospheric delay parameters are kept for up to five min-
utes to enable faster re-convergence (Geng et al., 2010).

cos(a) + Ggsin(a)] — ug - I* + Agst;,m,f +bg s 1)
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TABLE 1 Initial parameter constraints and process noise. n, is the number of constellations, n, the total number of visible satellites, n¢
the number of frequencies per constellation, and n,, the number of modulations per frequency

Parameter Quantity Initial constraint [m] Process noise [m/ \/ s]

Coordinates 3 None Static: 0.0

Kinematic: co

Receiver clocks g None )

Tropospheric zenith delay 1 0.05 5.0e-5

Tropospheric gradients 2 0.003 1.7e-6

Slant ionospheric delays n None 0.1

Carrier-phase ambiguities Ny - ng None 0.0

Receiver code biases Ng Ny - Ny None 00

Receiver phase biases ny None* 0.0

*Phase biases are fixed on the forward run, but constraints are removed on the backward run.

The misclosures in Equations (1) and (2) are obtained as:

—S
Loms= L;’m’f —p5 +drs — bg,f -T5 - 5Lfg’m’f 3)

—S
Comy =C,y =Py +dt* =B

_ s N
o m.f T, 5Cg,m’f 4)

The a priori range between the satellite and receiver
positions is denoted by p;. The satellite clock correction
is expressed as dt°, and the satellite phase and code biases
are b; , and B® mf respectively. The a priori tropospheric
zenith delay for the dry and wet components, mapped into
the slant direction for each satellite (), is computed using
the VMF1 grids following Kouba (2008). The last terms in
Equations (3) and (4) include corrections for other physical
effects such as: antenna phase center variations (Schmid
et al., 2005), carrier-phase windup (Wu et al., 1993), spe-
cial relativity and Shapiro effects (Ashby, 2003), as well
as Earth tides, ocean tides and pole tides (IERS Conven-
tions, 2010). In the current implementation, higher-order
ionospheric corrections (Bassiri & Hajj, 1993) are not being
applied.

Due to linear dependencies between the receiver clock
and code-bias parameters, additional constraints must be
set up in the filter to remove rank deficiencies. For each
GNSS constellation, the receiver code biases for one mod-
ulation on each of the first two frequency bands (e.g.,
CIW and C2W for GPS) are fixed to zero. This process
is performed at every epoch so that different modula-
tions can be selected if the list of tracked signals changes
from one epoch to the next. All phase-bias parameters are
also fixed to zero on the forward run to remove the rank
deficiency with carrier-phase ambiguity parameters. Addi-
tional details on this aspect are provided in Subsection 2.3.

It is well known that frequency division multiple access
(FDMA) causes inter-frequency biases for GLONASS.
Since ambiguity resolution is not attempted for this system,
apparent inter-frequency phase biases can be absorbed by

the ambiguity parameters. For code observations, setting
up one inter-frequency code bias (IFCB) parameter per
satellite and signal is a rigorous means of modelling this
error source. However, this leads to a significant increase
in the number of parameters. To avoid this drawback,
an alternate method is used in which GLONASS IFCBs
are determined using an on-the-fly running average of
GLONASS code residuals (Kozlov et al., 2000). The com-
puted values are then removed from the GLONASS code
observations and, as a consequence, the functional model
of Equation (2) also applies to GLONASS.

The stochastic model uses nominal standard deviations
at zenith of 0.0035 m for carrier-phase and 0.6 m for
code measurements. These values are pessimistic, con-
sidering the tracking performance of modern geodetic
receivers, but may be optimistic for low-cost receivers or
users located in challenging environments. The impact of
an incorrect stochastic model on ambiguity resolution is
discussed in Subsection 2.4. Standard deviations at zenith
are increased by 1/sin(e) where e is the elevation angle of
the satellite above the horizon. The weight of GLONASS
code measurements is further reduced by a factor of two
to account for a possible mis-modeling of inter-frequency
code biases. Since satellite clock corrections are provided at
30-second intervals, measurements can be contaminated
by clock interpolation errors when observations are col-
lected at a faster rate. For this reason, observation standard
deviations are increased using the satellite clock’s Allan
deviation (Hesselbarth & Wanninger, 2008). This clock
characterization allows assigning more weight to obser-
vations associated with stable satellite clocks, since it is
expected that interpolation errors are smaller for these
satellites.

Identifying outliers and carrier-phase cycle slips is
critical for accurate positioning. For this purpose,
a geometry-based, multi-step approach using time-
differenced observations is utilized. First, code observa-
tions are validated for blunders. Second, large cycle slips
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are flagged on a satellite-by-satellite basis. Finally, all
satellites are used together in an integrated adjustment
to identify smaller cycle slips. This process is detailed by
Banville and Langley (2013).

2.2 | Estimation

Since its inception, CSRS-PPP uses a sequential least-
squares filter with the addition of process noise (Kouba
& Héroux, 2001). Smoothed parameter estimates in
kinematic processing were obtained from a simplified
summation of forward- and backward-reduced normal
equations (Kouba, 2004). In CSRS-PPP version 2, a Rauch-
Tung-Striebel (RTS) smoother (Rauch et al., 1965) replaced
this algorithm, leading to slightly improved kinematic
solutions. However, given the possibility of numerical
instabilities in the RTS smoother (Vaclavovic & Dousa,
2015), version 3 adopts a different approach, herein termed
sequential normal stacking.

The adopted sequential normal stacking process is
equivalent to a batch least-squares adjustment but carried
out sequentially. A sequential adjustment simplifies out-
lier detection, since blunders can be eliminated at their
epoch of occurrence rather than contaminating parame-
ters from several epochs. The approach differs from the
traditional least-squares with back-substitution, since it
allows for process noise to be added directly within the
normal equations (Ge et al., 2006). It also distinguishes
itself from sequential least-squares and Kalman filtering in
the sense that it is carried out in normal space rather than
covariance space. It improves on the numerical stability of
the RTS smoother by avoiding subtractions, and it is sim-
pler to implement than the square root filter (smoother),
as it does not require orthogonalization schemes. Further-
more, it allows recovering the full covariance matrix of
epoch parameters, which was not possible in the original
single-parameter elimination proposed by Ge et al. (2006).
Having access to epoch covariance matrices is critical for
ambiguity resolution.

Sequential normal stacking requires both forward and
backward runs to obtain the final estimates and covariance
matrices for the parameters. On the forward run, at epoch
i, the normal equations are defined as:

(Ni+Nif+>' x;=U;, (5)

where N; and U; are the epoch’s normal matrix and vector,
respectively, and vector x; contains corrections to a priori
parameters estimated at the current epoch. Matrix N lf *is
the predicted normal matrix and will be described here-
after. The normal matrix and vector can be further decom-
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posed into:
N; = A] P,A,, (6)
U = Al Pw (7

where A; is the design matrix containing the partial deriva-
tives of the misclosures of Equations (1) and (2) with
respect to the estimated parameters, and vector w; con-
tains these misclosures. Matrix P; is the diagonal weight
matrix, which depends on the precision of the observables,
discussed in the previous section. To save memory and pro-
cessing time, the design matrix, weight matrix and misclo-
sure vectors are never explicitly formed; rather, the system
is built directly into the normal matrix and vector of Equa-
tion (5). At the first epoch, matrix N lf * contains initial con-
straints on the parameters. The values adopted for these
constraints are presented in Table 1.

The system of Equation (5) is solved at every epoch,
and outliers are identified and removed using the detec-
tion, identification and adaptation (DIA) procedure (Teu-
nissen, 1990). Once the epoch processing is complete, the
a priori parameter values, misclosures, observation stan-
dard deviations and partial derivatives are saved to a file for
the backward run. This approach reduces computational
load by minimizing duplicate processing, at the expense of
increased disk space usage.

The predicted normal matrix N lf * for the next epoch is
produced by adding process noise following the detailed
algorithm provided by Ge et al. (2006). Table 1 provides
the process noise values for each parameter type. Parame-
ters are also removed or added to provide consistency with
active parameters at the next epoch. The predicted normal
matrix N lf " is saved to a temporary file for the backward
run. Since a priori parameters are updated at every epoch,
there is no need to store the predicted normal vector.

Once all epochs have been processed, the final param-
eter estimates and covariance matrices are obtained, in
reverse chronological order (i.e., the backward run), from
the combination of three systems of normal equations:

(N/" 4N+ NP x = Uy 4 T ®)
I+ b\

Qx; = <Nl. +N; +N! +) ©)

X; = Qy,; - <Ul~ + Ul.b+) (10)

At each epoch, the normal matrix (N;) and vector (U;)
are formed again following Equations (6) and (7) using
the partial derivatives, standard deviations and misclo-
sures saved on the forward run. The smoothed epoch
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covariance matrix is obtained using two additional normal
matrices: the predicted normal matrix saved on the for-
ward run (N lf +), and the predicted normal matrix from the
backward run (N ib ). The latter is initialized with the null
matrix and, for subsequent epochs, contains the sum of the
epoch normal matrices N;, but only using epochs follow-
ing epoch i to ensure that data are only used once. Process
noise is also added to N ib * at every epoch, in a similar fash-
ion as for N lf * on the forward run.

The smoothed epoch estimates require vector Ul.b+. Sim-
ilar to matrix N l.b+, it is equal to the null vector at the
first epoch of the backward run and is successively built
by accumulating normal vectors U;. In this case, process
noise is added to this vector from one epoch to the next,
following the algorithm of Ge et al. (2006). For the simple
addition of normal vectors in Equation (10) to work, a pri-
ori values for the parameters must match. Since both N lf *
and N; are based on the same a priori values, we apply the
following correction to Ul.bJr (Brockmann, 1997):

AU =N!* - Ax,, 1)

where Ax, contains the difference between the forward
and backward a priori estimates. An example provid-
ing additional insights into sequential normal stacking is
included in the Appendix.

2.3 | Integer ambiguity estimation

To improve accuracy and reduce position convergence
times, CSRS-PPP version 3 implements ambiguity reso-
lution. This process can be divided into two concepts:
1. the estimation of carrier-phase ambiguities having
integer properties, and 2. the validation of integer ambi-
guities. This section explains the first concept, while ambi-
guity validation will be described in the next section.

As previously explained, sequential normal stacking
requires a forward run where parameters are estimated
using a sequential filter. Then, back-substitution is per-
formed on the backward run to obtain the final param-
eter values. To avoid singularities, phase-bias parameters
are fixed on the forward run. However, to obtain integer
ambiguities, these constraints are removed on the back-
ward run and an ambiguity datum is defined (Collins et al.,
2010). This concept is implemented by fixing, a priori, one
ambiguity per phase-bias parameter. These datum ambigu-
ities propagate into phase-bias and ambiguity parameters,
thereby revealing their integer properties. A single ambi-
guity datum is required for the entire solution unless all
ambiguities are re-initialized simultaneously. In this case,
new datum ambiguities are selected again.

WILEY @3ION--~

Ambiguity resolution is only performed during the back-
ward run to ensure that all information is available prior
to resolving ambiguities. Starting with the last epoch suc-
cessfully processed on the forward run, ambiguity vali-
dation is attempted using the algorithm described in the
next section. To further improve the reliability of ambiguity
validation, integer ambiguities are only deemed resolved
when a minimum of four satellites have simultaneously
resolved ambiguities. Ambiguities resolved as integers are
then removed from the system of Equation (8) after adjust-
ing their a priori values using a correction similar to Equa-
tion (11). The remaining ambiguities are left as float values
in the system of normal equations.

Subsequent epochs are then combined in reverse order
(from last to first epoch) using Equations (8) to (10). When
the current epoch contains a new ambiguity (with respect
to the previous epoch on the backward run), ambiguity
validation is again performed using all unresolved ambigu-
ities observed at the current epoch. This sequential ambi-
guity resolution is not theoretically optimal: Attempting
ambiguity resolution on all ambiguities within the session
simultaneously should yield better results. However, it is
subject to significant computational load constraints for
datasets with numerous (e.g., hundreds or more) ambi-
guity parameters. The sequential algorithm adopted adds
negligible processing time and typically provides results
identical to the optimal algorithm.

For longer sessions, it is likely that the selected datum
ambiguities are not observed for the whole duration
of the dataset. As ambiguities from other satellites are
resolved, the datum is maintained and implicitly prop-
agated through all epochs. Even when no ambiguities
are resolved and datum ambiguities are removed from
the normal equations, the system is still solvable, since
phase biases are modeled as constant parameters. How-
ever, in this case, ambiguities are more likely to be resolved
in their single-differenced form (Dach et al., 2007). This
implementation further acts as a safeguard when biases
contaminate datum ambiguities, since single-differenced
ambiguities cancel such biases.

Hence, solely when no datum and uncombined resolved
ambiguities remain in the normal equations, CSRS-PPP
version 3 forms single-differenced ambiguities:

SA=D-A (12)

Qs = D-Q;-D', (13)
where vector 2 contains the float ambiguities and is
obtained from Equation (10). Similarly, the ambiguity
covariance matrix Q can be extracted from Equation (9).
Each row of matrix D has two non-zero entries consist-
ing either of +1 or -1 values, allowing for the definition
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of single-differenced ambiguities. For single-differenced
ambiguities identified as integers, constraints are added to
Equation (8) using pseudo-observations with large weights
(Brockmann, 1997). Finally, since the addition of con-
straints associated with resolved ambiguities incorporated
new information into the system of equations, the sequen-
tial normal stacking process is repeated one last time to
obtain the final parameter estimates and their covariance
matrix.

2.4 | Ambiguity validation

Ambiguity validation plays a critical role in ensuring that
reliable estimates are obtained from the positioning fil-
ter. This task is especially challenging for PPP due to the
ionosphere (Collins et al., 2012). Without precise external
ionospheric corrections, a PPP user must rely on noisy
code observations to estimate this error source. Conse-
quently, successful ambiguity validation requires multiple
epochs, which adds complexity to stochastic modelling.
When neglecting time-correlated errors, the covariance
matrix obtained from GNSS data processing is known to
become overly optimistic (El-Rabbany & Kleusberg, 2003).
This issue is exacerbated in an online positioning service,
since various receiver types, data sampling rates and data
collection environments lead to heterogeneous stochastic
properties. It is well known that changes in the stochastic
model impact ambiguity validation (Teunissen, 1997).

Partial ambiguity resolution is also essential for PPP-
AR, since ambiguities observed for a short duration will
be poorly defined and are likely to corrupt validation of
the full set. Several approaches to partial ambiguity resolu-
tion were proposed in the literature. Sequentially exclud-
ing satellites allows eliminating problematic ambiguities
but can be computationally expensive (Li & Zhang, 2015).
Using the integer bootstrapping success rate to identify
a subset of fixable ambiguities (Cao, 2009) is a theoret-
ically rigorous approach but can be impacted by imper-
fections in the stochastic model. Another approach to
partial ambiguity estimation is to compute a weighted
average of integer candidates, as initially proposed by Ble-
witt (1989). When GNSS observations follow a normal dis-
tribution, the weights can be obtained from the probability
density function of the multivariate Gaussian distribution
(Teunissen, 2005). However, due to unmodelled errors, it
is likely that misclosures do not follow a normal distribu-
tion, which impacts the validity of this definition for the
weights (Duong et al., 2020).

From the above discussion, it is clear that the stochas-
tic model plays a critical role in ambiguity validation and
that partial ambiguity resolution is essential to a success-
ful identification of integer vectors. For these reasons, a
new approach called Weighted Integer Decision (WID) is

implemented in CSRS-PPP version 3. As with most ambi-
guity validation methods, it uses the ambiguity residual
norm, defined as:

Q= (i, —n) Q7 (i, —n) (14)

The ambiguity residual norm can be computed for any
integer vector #i; and is a measure of its proximity to A in
the metric of the ambiguity covariance matrix. The integer
vector minimizing Equation (14), herein labelled 71, is the
integer least-squares solution (Teunissen, 1995).

Specifically, the WID algorithm begins by identifying a
set of relevant integer vectors #i;, denoted by ©. Then, for
each ambiguity parameter, a scan of all vectors in © is per-
formed. If a single integer value is common to all integer
vectors, then this integer is deemed validated. Since the
scan is performed independently for each ambiguity, par-
tial ambiguity resolution is enabled.

The success of the method relies on the definition of the
subset O of integers. If the subset is too large, a unique
identification of integer values will be challenging. Alter-
natively, considering too few integer vectors could result in
an incorrect validation. The definition of © is based on the
concept of weights, defined as:

w; = exp (—a;-Q;), (15)

where a; is a scaling factor to be defined. The subset © is

defined by accepting all integer vectors satisfying:
— >¢ (16)

with w; the weight associated with 7i; and € a user-defined
threshold value.

Selecting the scaling factor a; as a; =0.5 implies
weights derived from the multivariate Gaussian distri-
bution. However, since the stochastic model is often
unknown and misclosures do not always follow a normal
distribution, adopting an empirical scaling factor is justi-
fied. The objective of «; is, therefore, to prevent an overly
optimistic ambiguity covariance from corrupting ambigu-
ity validation. From extensive testing using hundreds of
real-world datasets, a scaling factor was defined to reduce
the occurrence of incorrect fixes:

= 1
a] \/Q_J‘B (7)
with
B=1 ifQ, <r (182)
5:,/(% if Q >, (18b)
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where r is the number of float ambiguities and Q; is the
ambiguity residual norm associated with vector 7;. When
the covariance matrix is overly optimistic, Q, is typically
large, and the exponential function in Equation (15) con-
verges very quickly to zero, which effectively shrinks the
subset of integer vectors ©. In this case, § acts as a safe-
guard by scaling down all ambiguity residual norms and
minimizing the risk of incorrect validation. The proposed
scaling factor is not theoretically rigorous and, therefore,
not optimal. Nonetheless, its performance for practical
ambiguity validation was deemed satisfactory.

By defining €, all elements are available for ambigu-
ity validation based on the WID approach. Using Equa-
tions (15), (16) and (17), it is possible to determine a
threshold value for Q;:

Q-

j <

2
v - % In(e) ] 19)

Having identified #7i; and its ambiguity residual norm,
the subset of relevant integer vectors ® can be defined from
Equation (19). Based on our experience, avalue ofe = 0.01
provides an acceptable balance between including enough
integer vectors to identify resolvable ambiguities and keep-
ing the processing load manageable.

Since the ambiguity residual norm of Equation (14) is
not affected by a reparameterization of the ambiguities, the
LAMBDA method (Teunissen, 1995) is used to improve the
computational efficiency of the integer vector search. In
addition, the critical value of Equation (19) is used to con-
strain the search space. When more than 20,000 integer
vectors satisfy Equation (19), the search process is aborted
to minimize the computation load, and float ambiguity
estimates are kept in the filter. While additional ambigui-
ties could, at times, be fixed by applying the WID algorithm
directly in the decorrelated space provided by LAMBDA,
the scan for unique ambiguity candidates is nevertheless
performed in the original ambiguity space to avoid the
bookkeeping complexity associated with fixing linear com-
binations of ambiguities.

3 | PRODUCTS ENABLING CSRS-PPP

Depending upon the time of data submission, there are
three options for PPP corrections products that can be
used by CSRS-PPP: ultra-rapid, rapid and final. Their name
refers to their latency, which is given in Table 2. Under
normal operating conditions, users can obtain a PPP solu-
tion approximately 60 minutes after the last epoch of data
collection in the field by using ultra-rapid products. This
delay is defined by the time required to download GNSS
data from globally distributed stations and process the data

WILEY @ION--=

TABLE 2 Satellite orbit, clock, bias and Earth orientation
parameters products used in CSRS-PPP
Product Product
line code Availability Latency
Ultra-rapid DCU Hourly 60 minutes after the
hour
Rapid DCR Daily 12-18 hours after the
end of the day
Final DCF Weekly 12-15 days after the

end of the week

to estimate precise satellite orbits, clock corrections, and
equipment delay biases. The rapid solution, available daily,
generally includes more stations than the ultra-rapid solu-
tion. Both the ultra-rapid and rapid solutions are generated
by NRCan. The satellite clock corrections are based on the
decoupled-clock model of Collins et al. (2010), leading to
what is often referred to as “integer clocks.” The combined
use of these clock corrections, along with corresponding
satellite phase and code biases, is what allows for ambi-
guity parameters to converge to integer values on the user
end.

Prior to CSRS-PPP version 3, the final products con-
sisted of the IGS combined orbits and clock corrections
(Johnston et al., 2017). Since these products do not include
GLONASS information, the NRCan final GLONASS solu-
tion was incorporated into the IGS products to provide a
multi-GNSS solution. Since the IGS does not currently pro-
duce combined satellite clock corrections enabling PPP-
AR, an in-house combination is performed (Banville et al.,
2020). The combined products are similar to the IGS solu-
tion in terms of quality but preserve the characteristics of
integer clocks provided by analysis centers such as NRCan,
the Center for Orbit Determination in Europe (CODE)
(Schaer et al., 2018) and the Centre National d’Etudes Spa-
tiales (CNES) (Loyer et al., 2012). The strategy for includ-
ing GLONASS information has been maintained in version
3. When the IGS provides operational multi-GNSS prod-
ucts supporting PPP-AR, CSRS-PPP will likely switch to
using those products. Code biases are obtained from a daily
combination of differential code biases provided by NRCan
(Ghoddousi-Fard, 2014), CODE (Villiger et al., 2019), the
Chinese Academy of Science (CAS) (Wang et al., 2016),
and the German Space Operations Center (DLR) (Mon-
tenbruck et al., 2014).

4 | EXPERIMENTAL RESULTS

To characterize the benefits of releasing the new version of
CSRS-PPP for the user community, four aspects are eval-
uated: the WID algorithm for ambiguity validation, the
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accuracy and convergence time offered by PPP-AR, the
performance of the various product lines, and an analysis
of the day-boundary crossing.

4.1 | Ambiguity validation

Even though a detailed evaluation of the WID algorithm is
out of the scope of this paper, its application is presented
using data collected on August 29, 2018, at station FRDN
in Fredericton, New Brunswick, Canada (see Figure 4). At
first, only GPS data are processed, in static mode, from
00:00:00 to 02:00:00 GPS Time. For the purpose of our
demonstration, only satellites available at the first epoch
are considered, since ambiguities of rising satellites would
require partial ambiguity resolution to be implemented for
all validation tests considered. This dataset is selected since
the float solution takes a long time to reach centimeter-
level accuracy. The exact cause for this slow convergence
is not clear, but it constitutes an interesting case for ambi-
guity validation assessment.

Ambiguity validation has received much attention in
the past decades, and a plethora of methods were pro-
posed. We herein limit our comparison to three common
approaches, although we recognize that better ones may
exist. The first approach uses the bootstrap estimator to
define a lower bound on the success rate (SR) (Teunissen,
1999), and integer ambiguities are accepted if the success
rate is greater than 99.9%. The last two approaches are the
ratio test (RT) (Euler & Schaffrin, 1991) and the difference
test (DT) (Tiberius & de Jonge, 1995). Since there is no theo-
retical foundation supporting the definition of critical val-
ues for these tests, we selected a value of two for the ratio
test and 15 for the difference test. The WID algorithm is

also included, and its critical value is defined as per Equa-
tion (19).

Figure 1 illustrates the slow convergence of the float
solution to centimeter-level horizontal accuracies. The
integer least-squares solution (ILS) is computed at every
epoch from the float solution and shows jumps as inte-
ger ambiguities switch from one pull-in region to another
(Teunissen, 1998). The success rate rises to over 99.9% in 30
minutes, which leads to the acceptance of the ILS solution
while it is in the incorrect pull-in region. The same applies
to the difference test (33 minutes) and the ratio test (45
minutes). Once ambiguities are incorrectly resolved, the
solution remains biased until the end of the session. When
ambiguity validation is performed using the WID algo-
rithm, the float solution is maintained until about 01:50,
when integer ambiguities are finally accepted to the cor-
rect values.

To gain more insights into the validation process, Fig-
ure 2 shows the two shortest ambiguity residual norms (Q;
and Q,) and the critical values from selected validation
tests. The drop in values at 01:33:30 is associated with a
satellite being removed from the solution as it is observed
below the elevation angle mask. At this point, the short-
est ambiguity residual norm is associated with the incor-
rect integer vector for a short period of time (refer to Fig-
ure 1), leading to a rapid increase in Q; until the float esti-
mates lie in the pull-in region of the correct integer vector
a few minutes later. From Figure 2, it is apparent that the
difference test will lead to faster validation as the norms
increase, since the critical value is very close to Q;. The
ratio test appears to offer a wider margin, although the
critical value was below Q, from 00:45 to shortly before
01:00, leading to an incorrect validation of the ambiguities.
The WID critical value is more conservative: It does not
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correspond to a constant difference or ratio, but rather
adapts itself as a function of the magnitude of the shortest
ambiguity residual norm.

When adding GLONASS to the above example, geom-
etry is improved and convergence time of the float
solution is significantly reduced. Note that GLONASS
ambiguities are not resolved and kept as float parame-
ters in the PPP filter. Figure 3 shows the horizontal errors
obtained with the various validation methods. The ratio
test exceeds the critical value of two very rapidly (six min-
utes), fixing ambiguities to incorrect integers. All other val-
idation tests perform well, with the difference test resolv-
ing ambiguities first (15 minutes), followed by the WID and
success rate tests around the 24-minute mark. This exam-
ple confirms that ambiguity validation based on the WID

test is not overly conservative and allows rapid ambiguity
resolution when the model allows for it.

4.2 | Accuracy and convergence

The performance of CSRS-PPP version 3 is evaluated from
a client’s perspective by comparing results against ver-
sion 2. Hence, differences in results originate from a
combination of new algorithms and products. Data from
20 Canadian active control stations (CACS) are used, as
shown in Figure 4. One day per week is processed over
the 52-week period covering the year 2018, for a total of
1,015 datasets. This number takes into consideration rejec-
tions due to lack of observations or missing reference
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coordinates from the IGS combined daily solution. Only
GPS and GLONASS observations are processed, since
other constellations are not yet supported by the CSRS-PPP
service, and ambiguity resolution is only attempted for the
GPS constellation.

Figure 5 compares solution convergence between CSRS-
PPP versions 2 and 3 in static mode. The errors displayed
represent the root mean square (RMS) errors computed
from all 1,015 datasets, divided into the latitude, longi-
tude and height components. Since ambiguity resolution
is only performed at the end of the session, convergence is
displayed by connecting RMS values obtained from ses-
sions of 0.25, 0.5, 0.75, 1.5, 3, 6, and 12 hours. The benefits
of ambiguity resolution are especially clear for shorter ses-
sions, before the float solution has fully converged. How-
ever, ambiguity resolution is not achieved consistently for
15-minute sessions, which explains why improvements in
terms of percentage are typically lower than sessions with
a duration of 30 minutes or more. With high-quality GNSS
receivers and antennas, and good tracking conditions, sub-
centimeter horizontal accuracies are obtained in less than

45 minutes in version 3, thanks to ambiguity resolution,
while close to three hours are necessary with version 2.
For 1.5-hour sessions, an improvement of approximately
40%, 70%, and 20% is seen for the latitude, longitude, and
height components, respectively. Even though ambiguity-
fixed solution accuracy increases for longer sessions, the
improvement over a float solution becomes less significant,
as the latter also converges to millimeter accuracy. After
24 hours (not shown on this plot), the longitude compo-
nent has an RMS error of 2.0 mm for version 2 and 1.2 mm
for version 3. Even though the improvement is small in
absolute terms, it still amounts to a 40% reduction of error.
Additional details regarding the performance of daily solu-
tions are presented in Figure 10.

Figure 6 demonstrates positioning results in station-
ary kinematic mode, assuming independent position esti-
mates from epoch to epoch. For sessions of one, three,
and 24 hours, the RMS error of the latitude, longitude,
and height components are computed for each dataset.
The 90™ percentile of these RMS errors over all sessions is
then computed and reported in Figure 6. While there is a
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clear reduction in RMS errors for all components, the lon- 4.3 | Kinematic test

gitude again benefits the most from ambiguity resolution,

with an 84% improvement for one-hour sessions. Once PPP. The performance of PPP-AR in kinematic mode depends
solutions have converged, positioning errors are driven  Jargely on signal tracking quality. In several applications,
mainly by geometry and observation noise/multipath. This  obstructions cause cycle slips in carrier-phase observa-
can explain why longer sessions do not yield signifi-  tions, leading to a significant degradation of the solution.
cantly better results than shorter sessions with ambiguity =~ Therefore, generalizing the performance of CSRS-PPP in
resolution. such applications is not possible.
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TABLE 3 Equipment used in kinematic drive test
Solution Receiver Antenna % ambiguities
label type type resolved
GS16B Leica GS16 Internal 89.1%
GS16R Leica GS16 Internal 93.0%
R10#3 Trimble R10 Internal 65.0%
F9P-WHI u-blox FOP External 50.0%
patch
F9P-RED u-blox FOP External 0.0%
patch

For demonstration purposes, we present kinematic
results from a vehicle obtained under good sky coverage
with some low-elevation obstructions caused by moun-
tains. The drive was conducted in Alberta, Canada, on
October 26, 2020, from 15:50:00 to 19:17:30 GPS Time and
covered a distance of approximately 137 km. GPS and
GLONASS data were collected by five receivers installed
on the roof of a car, as shown in Figure 7. The trajec-
tory includes four short static periods between 10-30 min-
utes. The GNSS equipment used in the test is presented in
Table 3. Two Leica GS16 (labeled B and R in the test) and
a Trimble R10 (labeled #3) integrated units were set up,
in addition to two u-blox FI9P receivers (labeled WHI and
RED) connected to external patch antennas. Even though
data were collected at a 1 Hz sampling rate, only 30-second
intervals are considered for this test.

Experimental setup for the kinematic drive test [Color figure can be viewed in the online issue, which is available at

Data were processed using CSRS-PPP versions 2 and 3.
As previously described, these versions use different satel-
lite clock and bias products, and ambiguity resolution is
only attempted in version 3. Table 3 gives the percentage of
GPS ambiguities resolved for each solution. This quantity
isdefined as the number of carrier-phase observations with
fixed ambiguities divided by the total number of phase
measurements. The percentage of ambiguities resolved for
the u-blox F9P receivers is typically much lower, because
this receiver type does not track the C2W signal and, as a
consequence, only provides single-frequency data for GPS
IIR satellites. When a mix of single- and dual-frequency
data are provided for a constellation, CSRS-PPP discards
single-frequency satellites. Therefore, solution geometry
from u-blox F9P receivers is currently degraded, which
impacts ambiguity resolution capabilities. The FOP-WHI
receiver performed better than the FOP-RED, since the lat-
ter rejected an additional epoch, which led to shorter data
arcs and compromised ambiguity resolution.

The tracking conditions of the R10#3 solution are
depicted in the ambiguity status plot of Figure 8. Float
ambiguities are represented in olive, fixed ambiguities
in green, datum ambiguities in cyan, and cycle slips are
depicted by vertical red lines. Several ambiguity resets
occurred about 30 minutes into the session, and integer
ambiguities could not be identified confidently for the
Trimble R10 prior to this interruption, leading to a lower
percentage of ambiguities being resolved. Note that all
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TABLE 4 Improvement in horizontal baseline lengths between While these results may not be representative of all kine-
CSRS-PPP version 2 and 3 matic datasets, it shows how, under good tracking condi-
GS16B GS16R R10#3 F9P-WHI tions, ambiguity resolution can be beneficial for real mov-
GS16R 42.0% ing receivers.
R10#3 48.5% 39.3%
F9P-WHI 40.3% 37.8% 46.1% .
FOP-RED  4.0% 11% —36%  0.4% 4.4 | Productlines

GLONASS ambiguities are float, since ambiguity resolu-
tion is currently performed only for GPS.

Since no reference trajectory is available, our focus is
on the repeatability of the horizontal fixed baseline length
between receivers. These baselines are computed from
independent PPP-derived positions and should not be con-
fused with differential baseline processing such as real-
time kinematic (RTK). Even though the car travelled in
mountainous terrains, it was verified that the slope of the
terrain did not produce tangible effects on the horizontal
baselines. Figure 9 presents the baseline estimates for the
receiver pair GS16B and GSI16R for all epochs involved. The
baseline length provided by version 3 is clearly more stable,
especially between 16:30 and 17:30. Overall, the standard
deviation of all epochs is reduced from 11.9 mm to 6.9 mm,
an improvement of 42%.

Standard deviation improvements for all baselines are
presented in Table 4. For all receivers where ambiguity
resolution was, to a certain extent, successful, a reduction
near 40% is observed. For the FOP-RED solution, where no
ambiguities could be resolved, small differences between
solutions can be justified by the different products used, by
the different parameterizations in both versions (version
3 includes phase biases in the functional model), and by
other minor changes in the software.

Table 2 presents three product lines enabling PPP-AR solu-
tions. To quantify the impact of product latency, a sec-
ond test is performed using 19 Canadian stations. All sta-
tions displayed in Figure 4 are included in this evaluation,
except KUUJ, which had been decommissioned. In total,
21 days of data are analyzed, from May 10-30, 2020, for a
total of 399 sessions. Datasets are processed with the ultra-
rapid (DCU), rapid (DCR), and final (DCF) products. GPS
and GLONASS observations are processed using CSRS-
PPP version 3, and ambiguity resolution is attempted in all
sessions on GPS ambiguities only.

Figure 10 presents the latitude, longitude, and height
RMS errors for all product lines in static mode. While
there is a benefit in waiting for products with longer laten-
cies, the improvements are typically at the sub-millimeter
level, which is clearly within the reported uncertainties. In
other words, users can obtain as accurate a solution with
ultra-rapid products available within an hour as with final
products. Still, the combined solution offered through the
final products normally reduces noise, improves robust-
ness, and offers better integration into the reference frame.

Figure 11 shows results from a similar analysis in sta-
tionary kinematic mode. Again, all product types offer a
similar performance, but including more stations in the
rapid products (DCR) leads to more precise orbit and clock
estimates, which reduces noise over the ultra-rapid (DCU)
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products. Similarly, the final products (DCF) can further
reduce the noise by performing a weighted combination of
solutions from several analysis centers. Differences in the
90" percentiles amount to only a few millimeters or less,
which is smaller than the typical kinematic standard devi-
ations, which are at the centimeter level.

4.5 | Day-boundary analysis

A benefit of integer clocks is that they can be precisely
aligned from one day to the next by shifting them by an
integer multiple of their wavelength. As a consequence,
position jumps occurring when observations span two GPS
days can be minimized. As an example, data from station
ALGO (see Figure 4) were processed from August 14, 2019,
23:00:00 to August 15, 2019, 01:00:00 using CSRS-PPP ver-
sion 2 (Figure 12a) and version 3 (Figure 12b).

With CSRS-PPP version 2, position jumps of approxi-
mately 6 cm in latitude and 7 cm in longitude can be
noticed, even though the receiver maintained continuous
lock on all satellites. This is a consequence of IGS clock
products not being aligned between two consecutive days,

and ambiguity parameters being reset. With CSRS-PPP
version 3, no jump can be seen in latitude, and the dis-
continuity in longitude has been significantly reduced. The
latter is caused by satellite orbit interpolation errors asso-
ciated with the use of two orbit (SP3) files. The consis-
tency between satellite orbits and clocks is recovered after
crossing midnight, eliminating the slight divergence expe-
rienced prior to the day boundary. Still, the benefits of com-
bining PPP-AR with products aligned for consecutive days
are obvious.

5 | CONCLUSION

To support increasing user needs for timely and accurate
geodetic information, NRCan continues to modernize its
openly available CSRS-PPP online positioning service. The
latest improvement is the implementation of algorithms
enabling precise point positioning with ambiguity reso-
lution. Offering PPP-AR solutions in an online service is
complex due to the vast diversity in terms of user equip-
ment and data collection strategies. As a consequence, new
features had to be developed.
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The sequential normal stacking algorithm was pro- While ambiguity resolution reduces PPP convergence
posed to cope with potential numerical stability issues in times and improves the overall positioning accuracy,
the Rauch-Tung-Striebel smoother. This process allows  reaching centimeter-level accuracies still requires tens of
adding process noise and integer ambiguity constraints = minutes. To further improve convergence times, subse-
into normal equations, while providing access to the quent CSRS-PPP releases will introduce regional slant
rigorous epoch covariance matrices needed for ambiguity = ionospheric delay corrections and process signals from
resolution. Another key component of CSRS-PPP version 3 additional GNSS constellations and frequencies.
is the Weighted Integer Decision algorithm for ambiguity
validation. The method defines empirical weights leading A cKNOWLEDGEMENTS
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APPENDIX
This appendix presents a two-epoch example of sequential
normal stacking. At the first epoch, initial constraints from

Table 1 are included in matrix N{ *and a priori parame-

ter values are contained in vector x{ . Using Equations (6)

and (7), N; and U, can be computed, and the epoch esti-
mates are obtained from Equation (5):

-1
X, = (Nl +N{+) U1|X{+ (Al)

where U1|x 7+ indicates that the normal vector was com-
1

puted using the parameter values x{ *. This nuance is
important, since it allows reconciliating a priori values on
the backward run.

For the next epoch, the estimated parameters are propa-
gated such that:

x£+ =X (A2)

While CSRS-PPP adds process noise directly into the
normal equations using the method of Ge et al. (2006), we
use an equivalent, but computationally more expensive,
formulation for our demonstration:

_ -1
NIt = [<N1+N{+) 1+W] (A3)

where W is a diagonal process noise matrix. The final esti-
mates of epoch 2 can now be obtained as:

-1
X, = (NZ +N{+> U2|x£+ (A4)

where N, and Ule 7+ are the epoch normal matrices based
2

. . + . . .
on the a priori parameters xg . The final covariance matrix
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for this epoch is:

Q,, = (N2 +N/ +)_1 (AS)

The backward run allows recovering final parameter
estimates and their covariance matrix at epoch 1. This is
achieved from Equations (8) to (10):

-1
Qu = (le LN+ Nf+) (A6)

b _ b+
X =Qu - (Ullx{+ +U e + AU> (A7)
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where superscript b identifies the backward run, and

-1
NP* = (N;'+ W) (A8)
Ubt = NPt (A9)
1lx;

Equations (A8) and (A9) are again equivalent expres-
sions to the in-system operations of process noise addition
from Ge et al. (2006). Matrix AU accounts for different a
priori parameters and is obtained from Equation (11):

AU =N (x4 - 2] (A10)
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