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Abstract
Aiming to improve the position and velocity precision of the INS/GNSS sys-
tem during GNSS outages, a novel system that combines unscented Kalman fil-
ter (UKF) and nonlinear autoregressive neural networks with external inputs
(NARX) is proposed. TheNARX-basedmodule is utilized to predict themeasure-
ment updates of UKF during GNSS outages. A new offline approach for selecting
the optimal inputs of NARX networks is suggested and tested. This approach is
based on mutual information (MI) theory for identifying the inputs that influ-
ence each of the outputs (the measurement updates of UKF) and lag-space esti-
mation (LSE) for investigating the dependency of these outputs on the past values
of the inputs and the outputs. The performance of the proposed system is veri-
fied experimentally using a real dataset. The comparison results indicate that the
NARX-aided UKF outperforms other methods that use different input configu-
rations for neural networks.
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1 INTRODUCTION

In order to overcome the shortcomings associated with
the stand-alone operation of Inertial Navigation Systems
(INS) and Global Navigation Satellite Systems (GNSS), and
to combine advantages of each system, INS and GNSS
are often integrated to obtain accurate navigation solution
with superior performance in comparison with either a
GNSS or an INS stand-alone system. Many fusion algo-
rithms are employed to fuse INS and GNSS data; the tra-
ditionally employed fusion techniques are Kalman filters
(KF), such as extended Kalman filter (EKF) (Al Bitar &
Gavrilov, 2019; Crassidis, 2006; Faruqi & Turner, 2000)
and unscented Kalman filter (UKF) (Al Bitar & Gavrilov,
2019; Chang, 2014; Crassidis, 2006). With correct dynamic
and stochastic models of GNSS and INS errors, KF can
produce very accurate solutions, if there is continuous

access to GNSS signals. However, KF does have limita-
tions. Themajor inadequacy related to the utilization of KF
for INS/GNSS integration is the necessity to have accurate
stochasticmodels for each of the sensor errors. The inaccu-
rate description of the system noises, measurement errors,
and uncertainty in the dynamic models lead to unreliable
estimates and degradation in accuracy, especially during
GNSS outages when KF operates in predictionmode based
on the predefined state error models, which are not nec-
essarily correct. In addition, there are several significant
drawbacks of KF, such as sensor dependency and observ-
ability problems (Hong et al., 2005; Klein &Diamant, 2018;
Tang et al., 2008).
The limitations of KF have motivated researchers to

investigate alternativemethods for improving the accuracy
of navigation solution during GNSS outages. These meth-
ods were predominantly based on artificial intelligence
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(AI). Much research has been conducted to investigate the
use of AI-based techniques to bridge GNSS signal outages
in INS/GNSS systems. Researchers have utilized various
approaches for combining the AI module(s) with the rest
of the INS/GNSS system (Al Bitar et al., 2020).
Chiang et al. (2008) suggested the replacement of KF

by AI module using the so-called position update architec-
ture (PUA). The proposed scheme was implemented using
a constructive neural network (CNN) to overcome the lim-
itations of conventional techniques that are predominantly
based on the KF. The PUA module is used to estimate the
INS position error duringGNSS signal outages using veloc-
ity and azimuth of the INS.
Chiang and Huang (2008) proposed position, velocity

and azimuth update architecture (PVAUA) based on mul-
tilayer perceptron neural networks (MLPNN). The PVAUA
module uses the velocity, azimuth of the INS and time
to estimate the INS position error during GNSS signal
outages.
El-Sheimy et al. (2004) introduced an alternative

INS/GPS integration method using an adaptive neuro-
fuzzy inference system (ANFIS). The ANFIS-based
module is implemented to predict the error drift of the
standalone INS-estimated position during GNSS signal
blockage using the INS position and time.
In fact, the replacement of KF by an AI module worked

well for navigational-grade INS. However, these tech-
niques showed a very limited success when applied to
a MEMS-based INS/GNSS navigation system, due to the
high noise level and bias instability of MEMS inertial sen-
sors. As a result, KF is kept as the primary state estimation
tool in INS/GNSS integration, and thus the logical stepwas
toward an integration technique that uses both KF and AI
module in the same system.
Wang et al. (2007) first proposed the concept of aid-

ing KF. The authors utilized radial basis function neu-
ral networks (RBFNN) to predict the position differences
between INS and GNSS in three orthogonal directions to
form estimates of the measurement update of EKF during
GNSS outages. The input parameters of the RBFNNs are
the attitude angles and the changes of vehicle velocity and
attitude angles in each epoch. However, only positionmea-
surements of KF are predicted during GNSS outages. This
means that KF is not fully operational as no velocity mea-
surements are predicted.
Chen and Fang (2014) proposed a hybrid prediction

method for bridging GNSS outages using RBFNN and
time series analysis, which aided EKF by forecasting
position and velocity measurement updates. The proposed
hybrid prediction method uses RBFNN to predict the
six components of position and velocity measurement
updates. The inputs of RBFNN are the measurements of
accelerometers and gyroscopes. These measurements are

first passed through a Wavelet denoising filter in order to
lower the noise level. The residual error of training the
RBFNN is modelled as a time series. The outputs of the
RBFNN and the time series are summed together to form
the final prediction of position and velocity measurement
updates for EKF during GNSS outages. However, the
complexity of the proposed system is not suitable for
real-time implementation.
Jingsen et al. (2016) proposed a hybrid prediction

method that combines extreme learning machines (ELM)
and EKF. ELMs are applied to predict EKF position and
velocity observations during GNSS outages. The measure-
ments of gyroscopes and accelerometers are selected as
inputs of the ELMs. The use of rawmeasurements of gyro-
scopes and accelerometers without a denoising stage com-
plicates the learning process of ELMs, especially in the case
of MEMS-based INS, as the level of noise is relatively high.
Yao et al. (2017) proposed a hybrid fusion algorithm

to provide a pseudo position information to assist the
integrated navigation system during GNSS outages using
MLPNN. The proposed MLPNN-based model relates the
current and past one-step values of velocities, angular rates
and specific force of INS to the increments of the GNSS
position. The GNSS position increments are accumulated
to achieve the pseudo-GNSS position measurements.
Yao and Xu (2017) proposed robust least squares support

vector machine (RLS-SVM)-aided fusion methodology
for INS during GNSS outages. The RLS-SVM is used to
predict the pseudo-GNSS position during GNSS outages
similar to the previously proposed system in Al Bitar et al.
(2020). The inputs of the RLS-SVM model are the specific
force, velocity, and yaw information.
Wang et al. (2019) proposed a fusion algorithm based

on back propagation neural networks (BPNNs) to predict
the pseudo-GNSS position during GNSS outages. The
proposed BPNN-based model relates the current and past
values of velocities, angular rates, specific force of INS
and the time elapsed since the beginning of GNSS signal
outage to the increments of the GNSS position.
Recently, Fang et al. (2020) proposed an algorithm

based on long short-term memory (LSTM) to predict the
pseudo-GNSS position during GNSS outages. The inputs
of LSTM model are the four-step information of specific
force, angular rates, velocity and yaw.
There are some common drawbacks related to the

methods mentioned above. It is clear that the selection
of inputs of an AI module differs from one method to
another without any justification or comparison. In fact,
the selection of the inputs of an AI module affects the sys-
tem. A fewer number of inputs means a simpler internal
structure of AI module and, consequently, less training
time, while a large number means more complicated
structure and thus longer learning time and less real-time
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capability. Including a wrong input or excluding a right
input lead to degradation in prediction accuracy of the AI
module. The selection of the measurements of gyroscopes
and accelerometers as inputs of an AI module is usually
justified by the fact that the outputs of INS (position, veloc-
ity and attitude angles) are the result of the mathematical
integrating (over time) of these measurements. In other
words, the measurement errors (noises) of gyroscopes and
accelerometers are embedded in the errors of INS outputs.
As a result, the erroneous INS outputs (during GNSS
outages) can be used as inputs of an AI module instead of
the raw measurements of gyroscopes and accelerometers.
One advantage of using erroneous INS outputs instead
of the measurements of gyroscopes and accelerometers is
that they do not require a denoising stage, as the process
of mathematical integration smooths them.
The second drawback of all aforementioned methods is

using EKF as the only choice for fusing INS and GNSS
data. Other options, such as UKF, for example – which is
proven to be less sensitive to the nonlinearities of process
and observationsmodels compared to EKF –were not con-
sidered.
The third drawback is that these methods use the same

covariance matrices of KF during the availability and the
outages of GNSS. This is not true, as the measurements
provided by the aid of the AI module during GNSS signal
have error characteristics that differ from those of GNSS
measurements.
This paper considers the problem of aiding KF in

INS/GNSS systems using a nonlinear autoregressive neu-
ral network with external inputs (NARX) (Siegelmann
et al., 1997). The paper also addresses the problems
mentioned above. First, UKF is chosen as the integrat-
ing filter instead of EKF. Secondly, a new approach for
selecting the optimal inputs of an AI module (NARX
networks, in our case) is proposed. This approach is
based on mutual information (MI) theory (Brown, 2009;
Peng et al., 2005) for identifying the inputs that influ-
ence each of the outputs (the measurement update for
UKF during GNSS outages), and lag-space estimation
(LSE) (He & Asada, 1993) for determining the model
order (i.e., the dependency of the outputs on the past
values of inputs and the outputs themselves). Third,
the covariance matrices of UKF are linked to the pre-
diction errors of AI module. The proposed method is
shortly called “NARX-aidedUKF.” The performance of the
NARX-aided UKF is experimentally verified using a real
dataset.
The rest of this paper is organized as follows: A

detailed explanation of the proposed method is given
in Section 2. The performance of the proposed method
is presented in Section 3. Conclusions are presented in
Section 4.

2 STRUCTURE OF THE PROPOSED
SYSTEM

2.1 Principle of operation

The main idea of the proposed system is to employ a
NARX network to predict the measurement update (the
difference between GNSS outputs and the outputs of INS)
of UKF during GNSS outages. The system works in two
modes: learning mode when a GNSS signal is available,
and prediction during GNSS outages. Two copies of INS
are created, INS1 and INS2. In learning mode, INS1 and
GNSS are integrated using a loosely coupled scheme. The
positions and velocities 𝑃𝐺𝑁𝑆𝑆, 𝑉𝐺𝑁𝑆𝑆 provided by GNSS
are merged as updates of the INS1 estimates of position
and velocity 𝑃𝐼𝑁𝑆1, 𝑉𝐼𝑁𝑆1 through a UKF (Figure 1). UKF
estimates the errors on state of INS1 𝛿𝑋̂𝐼𝑁𝑆1. These esti-
mates are added to state of INS1 𝑋𝐼𝑁𝑆1 to form corrected
values 𝑋𝐶 . At the same time, INS2 works autonomously,
and its outputs 𝑃𝐼𝑁𝑆2, 𝑉𝐼𝑁𝑆2 are corrected periodically
every 60 seconds by GNSS measurements, as shown by
the dashed arrows. In fact, the 60-s duration is related
to real-life scenarios; in real life, the GNSS signal may
be lost when moving through tunnels or around obsta-
cles in urban areas. The duration of these outages in
most cases is less than 60 s. The position and veloc-
ity of INS2 are then subtracted from the ones of the
GNSS to form error signals of position 𝛿𝑃𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2 and
velocity 𝛿𝑉𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2. These error signals are used as tar-
get values for training NARX networks. The estimates of
gyro drifts and accelerometer biases are fed back to INS1
and INS2mechanization equations, as shownby the dotted
arrows.
The training algorithm of NARX networks starts after

collecting a specific amount of training data that repre-
sents the 60-s simulated outage duration. This amount is
called a window ( 𝛿𝑃GNSS∕INS2, 𝛿𝑉GNSS∕INS2. The inputs of
NARXnetworks are chosen from the outputs of INS1 (posi-
tion, velocity and attitude angles), the past values of errors,
and the time elapsed since the beginning of GNSS signal
outage. The process of selecting the inputs of NARX net-
works is based on MI theory and LSE, and it is conducted
in offline stage, as will be explained later in Subsection 2.5.
When real GNSS signal outage occurs, the system

switches to prediction mode, as shown in Figure 2.
The NARX module predicts the errors 𝛿𝑃̂𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2,

𝛿𝑉̂𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2. These errors are added to the position
and velocity of INS2 𝑃𝐼𝑁𝑆2, 𝑉𝐼𝑁𝑆2 to form estimations
of position and velocity of GNSS 𝑃̂𝐺𝑁𝑆𝑆, 𝑉̂𝐺𝑁𝑆𝑆 . The
difference between 𝑃̂𝐺𝑁𝑆𝑆, 𝑉̂𝐺𝑁𝑆𝑆 and 𝑃𝐼𝑁𝑆1, 𝑉𝐼𝑁𝑆1
forms the estimation of measurement update for UKF
𝛿𝑃̂𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆1, 𝛿𝑉̂𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆1. Using these updates, UKF
continues to operate as if no GNSS outage had occurred.
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F IGURE 1 Principle of operation of proposed method for aiding UKF during GNSS signal outages - training mode

F IGURE 2 Principle of operation of proposed method for
aiding UKF during GNSS signal outages - prediction mode

To train the NARX networks in online mode, a training
procedure that utilizes non-overlap moving window tech-
nique is used. The non-overlap moving window doesn’t
have the disadvantage of redundancy in the information
when using sliding window; thus, it doesn’t require a long
time for data processing compared to the sliding win-
dow technique. The NARX networks are updated (trained)
within thiswindow. For real-time purposes, theNARXnet-

works are trained until reaching certain minimum mean-
squared error (MSE) or after completing a certain number
of training epochs (determined empirically). This proce-
dure is repeatedwhen a newwindow is acquired, as shown
in Figure 3. Whenever a GNSS outage occurs, the NARX
networks switch to predictionmode and provide estimates
of errors ( 𝛿𝑃̂𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2, 𝛿𝑉̂𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2).

2.2 Navigation equations

Taking into consideration the coordinate frames shown in
Figure 4, the navigation equations written in N-frame are
given as follows (Jekeli, 2012):

𝑽̇ = −
(
𝛀𝑁
𝐼𝑁
+ 𝛀𝑁

𝐼𝐸

)
𝑽 + 𝒇𝑁 + 𝒈̄𝑁 (1)

𝑷̇ = 𝑨̄𝑽 (2)

where 𝑷 = [𝜑 𝜆 ℎ]𝑇 is the object’s position and 𝜑, 𝜆, ℎ
are the latitude, longitude, and height of the object’s
center of mass. 𝑽 = [𝑣𝑁 𝑣𝐸 𝑣𝐷 ]

𝑇 = 𝑪𝑁
𝐸
𝒓𝐸 is the object’s

velocity relative to the E-frame written in N-frame. 𝒓𝐸 is
the object’s center-of-mass coordinate vector in e-frame,
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F IGURE 3 Online training of NARX networks

F IGURE 4 Coordinate frames: 𝑂𝑋𝐼𝑌𝐼𝑍𝐼 is the geocentric
inertial coordinate system (I-frame); 𝑂𝑋𝐸𝑌𝐸𝑍𝐸 is the geocentric
Earth coordinate system (E-frame); 𝑂𝑁𝐸𝐷 is the Local
North-East-Down coordinate system (N-frame); 𝑂𝑋𝑌𝑍 is the body
fixed coordinate system (B-frame); 𝑎 is the semi-major axis of the
ellipsoid, 𝑏 is the semi-minor axis of the ellipsoid, 𝜔𝐸 is the Earth’s
angular rate, and 𝑡 is the time

and 𝑪𝑁
𝐸
is the matrix of direction cosines from E-frame

to N-frame. 𝒇𝑁 = 𝑪𝑁
𝐵
𝒇𝐵 is the vector of specific force

in N-frame, where 𝒇𝐵 is the vector of specific force in
B-frame (the output signals of the accelerometer triad) and
𝑪𝑁
𝐵
is the matrix of direction cosines from B-frame to N-

frame. 𝛀𝑁
𝐼𝐸
= [𝝎𝑁

𝐼𝐸
×],𝛀𝑁

𝐼𝑁
= [𝝎𝑁

𝐼𝑁
×] are skew-symmetric

matrices composed of angular velocities 𝝎𝑁
𝐼𝐸
, 𝝎𝑁

𝐼𝑁
, where

𝝎𝑁
𝐼𝐸
is the angular rate vector of E-frame relative to I-frame

written in N-frame, and𝝎𝑁
𝐼𝑁
is the angular rate vector of N-

frame relative to I-frame written in N-frame. 𝑨̄ is a diago-
nal matrix 𝑨̄ = diag(1∕(𝑀 + ℎ), 1∕((𝑁 + ℎ)cos𝜑), −1)3×3,
where 𝑀 and 𝑁 are radii of curvature of ellipsoid (the
figure of the Earth is described by biaxial ellipsoid (Jekeli,
2012). 𝒈̄𝑁 = 𝒈𝑁 − 𝑪𝑁

𝐸
𝛀𝐸
𝐼𝐸
𝛀𝐸
𝐼𝐸
𝒓𝐸 is the gravity vector

written in N-frame, where 𝒈𝑁 = [ 0 0 𝑔 ]𝑇is gravitational
vector, and 𝑔 is given according to World Geodetic System
WGS-84 and 𝛀𝐸

𝐼𝐸
= [𝝎𝐸

𝐼𝐸
×], where 𝝎𝐸

𝐼𝐸
is the angular

rate vector of E-frame relative to I-frame written in
E-frame.
The matrix 𝑪𝑁

𝐵
can be represented through the

Rodrigues–Hamilton parameters (quaternions) 𝒒̄ =

[ 𝑞1 𝑞2 𝑞3 𝑞4 ]
𝑇 . The time behavior of quaternion is

described by the following differential equation:

𝑑𝒒̄

𝑑𝑡
= ̇̄𝒒 =

1

2
𝛀 𝒒̄ (3)

where

𝛀 =

⎡⎢⎢⎣
−
[(
𝝎𝑁
𝐼𝑁
+ 𝝎𝐵

𝐼𝐵

)
×
]

𝝎𝐵
𝐼𝐵
− 𝝎𝑁

𝐼𝑁(
𝝎𝑁
𝐼𝑁
− 𝝎𝐵

𝐼𝐵

)𝑇
0

⎤⎥⎥⎦
4×4

(4)

where 𝝎𝐵
𝐼𝐵
is the angular rate vector of the B-frame rela-

tive to I-frame (the output signals of the gyroscopes triad).
The attitude angles (Euler angles) are calculated from
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quaternion components using the following equations:

𝜃 = arcsin (−2 (𝑞2𝑞1 + 𝑞3𝑞4))

𝜙 = arctan 2
(
2 (𝑞1𝑞3 − 𝑞2𝑞4) , 1 − 2

(
𝑞2
2
+ 𝑞2

3

))
𝜓 = arctan 2

(
2 (𝑞2𝑞3 − 𝑞1𝑞4) , 1 − 2

(
𝑞2
1
+ 𝑞2

3

)) (5)

where 𝜃, 𝜙, 𝜓 are pitch, roll and yaw angles.

2.3 Measurement model of inertial
sensors

The inaccurate measurements of inertial sensors are
explained by various reasons, among them, nonorthogo-
nality of the measuring axes of the units of accelerome-
ters and gyroscopes, and biases that can be represented as
a sum of systematic and random components. The mea-
surement model of accelerometers and gyroscopes based
onMEMS technology can be written in a generalized form
as (El-Sheimy et al., 2007; Jafari et al., 2014; Quinchia et al.,
2013)

𝒇̃𝐵 =
(
𝑰3 + 𝑺

𝐴
)
𝒇𝐵 + 𝑩𝐴,𝑆 + 𝑩𝐴𝐶𝐶𝑅𝑊 + 𝑩𝐴,𝐺𝑀 +𝑾𝑉𝑅𝑊

(6)

𝝎̃𝐵
𝐼𝐵
=
(
𝑰3 + 𝑺

𝐺
)
𝝎𝐵
𝐼𝐵
+ 𝑩𝐺,𝑆 + 𝑩𝑅𝑅𝑊 + 𝑩𝐺,𝐺𝑀 +𝑾𝐴𝑅𝑊

(7)

𝑩̇𝐴,𝑆 = 0 (8)

𝑩̇𝐺,𝑆 = 0 (9)

𝑩̇𝐴𝐶𝐶𝑅𝑊 = 𝑾𝐴𝐶𝐶𝑅𝑊 (10)

𝑩̇𝑅𝑅𝑊 = 𝑾𝑅𝑅𝑊 (11)

𝑩̇𝐴,𝐺𝑀 = 𝑻𝐴,𝐶𝑩𝐴,𝐺𝑀 +𝑾𝐴,𝐺𝑀 (12)

𝑩̇𝐺,𝐺𝑀 = 𝑻𝐺,𝐶𝑩𝐺,𝐺𝑀 +𝑾𝐺,𝐺𝑀 (13)

where 𝒇̃𝐵, 𝝎̃𝐵
𝐼𝐵

are the three-dimensional vectors of the
output signals of the accelerometers and the gyro-
scopes, respectively, and 𝒇𝐵, 𝝎𝐵

𝐼𝐵
are their true val-

ues. 𝒇𝐵, 𝝎𝐵
𝐼𝐵

are 3 × 3 coefficient matrices. 𝑰3 is 3 ×

3 unity matrix. 𝑩𝐴,𝑆, 𝑩𝐺,𝑆 are the systematic com-
ponents of the accelerometer biases and gyro drifts,
respectively. 𝑩𝐴𝐶𝐶𝑅𝑊, 𝑩𝑅𝑅𝑊 are the acceleration and the
rate random walks, respectively, and 𝑾𝐴𝐶𝐶𝑅𝑊,𝑾𝑅𝑅𝑊

are zero-mean white noises. 𝑩𝐴,𝐺𝑀, 𝑩𝐺,𝐺𝑀 are first order
Gauss-Markov (GM) processes, 𝑻𝐴,𝐶, 𝑻𝐺,𝐶are 3 × 3 corre-
lation matrices, and 𝑾𝐴,𝐺𝑀,𝑾𝐺,𝐺𝑀are zero-mean white

noises. 𝑾𝑉𝑅𝑊,𝑾𝐴𝑅𝑊 are zero-mean white noises that
represent the velocity and the angle randomwalks, respec-
tively, and 𝑺𝐴, 𝑺𝐺 are coefficientmatrices that include scale
factors and other coefficients due to the non-orthogonality
of measuring axes of the accelerometers and the gyro-
scopes blocks.

2.4 Unscented Kalman filter

The UKF uses a deterministic sampling technique known
as the unscented transformation to pick a minimal set
of 2L + 1 sample points (called sigma points) around the
mean, where L is the size of state vector. The sigma points
are then propagated through the non-linear functions,
from which a new mean and covariance estimate are then
formed (Al Bitar & Gavrilov, 2019; Crassidis, 2006). In
addition, the UKF removes the requirement to calculate
the Jacobians, which can be a difficult task for complex
functions. Compared to EKF, UKF is less sensitive to the
nonlinearities of process and observation models. In order
to apply the algorithm of UKF, it is necessary to write
the process and measurement equation of INS/GNSS in
discrete time. The process equation in discrete time can
be written as

𝑿𝑘+1 = 𝒇 (𝑿𝑘,𝑾𝑘) (14)

where 𝑿𝑘 is the state-vector of INS and𝑾𝑘 is the vector of
process noise:

𝑿𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒒̄𝑘

𝑷𝑘

𝑽𝑘

𝑩
𝐺,𝑆
𝑘

𝑩𝑅𝑅𝑊
𝑘

𝑩
𝐺,𝐺𝑀
𝑘

𝑩
𝐴,𝑆
𝑘

𝑩𝐴𝐶𝐶𝑅𝑊
𝑘

𝑩
𝐴,𝐺𝑀
𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
28×1

, 𝑾𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑾𝐴𝑅𝑊
𝑘

𝑾𝑅𝑅𝑊
𝑘

𝑾
𝐺,𝐺𝑀
𝑘

𝑾𝑉𝑅𝑊
𝑘

𝑾𝐴𝐶𝐶𝑅𝑊
𝑘

𝑾
𝐴,𝐺𝑀
𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
18×1

(15)

𝒇(𝑿𝑘,𝑾𝑘) is nonlinear vector-function that can be written
by transforming Equations (1)–(3) and Equations (8)–(13)
into discrete time

𝒇 (𝑿𝑘,𝑾𝑘) =

⎡⎢⎢⎢⎣
𝒇1
𝑘

⋮

𝒇9
𝑘

⎤⎥⎥⎥⎦
28×1

, (16)
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𝒇1
𝒌
=

(
𝑰4 +

𝑻𝑺
2
𝛀𝒌

)
𝒒̄𝒌, 𝒇2

𝒌
= 𝑷𝒌 + 𝑻𝑺𝑨̄𝒌𝑽𝒌,

𝒇3
𝒌
= 𝑽𝒌 + 𝑻𝑺

(
−
(
𝛀𝑵
𝑰𝑵,𝒌

+ 𝛀𝑵
𝑰𝑬,𝒌

)
𝑽𝒌 + 𝒇

𝑵
𝒌
+ 𝒈̄𝑵

𝒌

)
,

𝒇4
𝒌
= 𝑩

𝑮,𝑺

𝒌
, 𝒇5

𝒌
= 𝑩𝑹𝑹𝑾

𝒌
, 𝒇6

𝒌
=
(
𝑰3 + 𝑻𝑺𝑻

𝑮,𝑪
)
𝑩
𝑮,𝑮𝑴

𝒌
,

𝒇7
𝒌
= 𝑩

𝑨,𝑺

𝒌
, 𝒇8

𝒌
= 𝑩𝑨𝑪𝑪𝑹𝑾

𝒌
, 𝒇9

𝒌
=
(
𝑰3 + 𝑻𝑺𝑻

𝑨,𝑪
)
𝑩
𝑨,𝑮𝑴

𝒌
.

(17)

where 𝑇𝑆 is the sampling time of INS.
The measurement equation of UKF is given as

𝒁𝑘 = 𝒉 (𝑿𝑘) + 𝝊𝑘 (18)

where 𝒁𝑘 is the vector of GNSS position and velocity mea-
surements:

𝒁𝑘 =

[
𝑷𝐺𝑁𝑆𝑆
𝑘

𝑽𝐺𝑁𝑆𝑆
𝑘

]
6×1

, 𝒉 (𝑿𝑘) =

[
𝑷𝑘

𝑽𝑘

]
6×1

(19)

where 𝝊𝑘 is measurement noise, which is assumed to be
zero-mean white noise with covariance matrix 𝑹𝑘. The
measurement covariance matrix 𝑹𝑘 is given by

𝑹𝑘 = diag
((
𝝈𝐺𝑁𝑆𝑆
𝑃

)2
,
(
𝝈𝐺𝑁𝑆𝑆
𝑉

)2)
6×6

(20)

where 𝝈𝐺𝑁𝑆𝑆
𝑃

, 𝝈𝐺𝑁𝑆𝑆
𝑉

are the standard deviations of GNSS
position and velocity measurements’ noise, respectively.
The UKF can be represented as a “prediction–

correction” procedure. To initialize the UKF, weight
coefficients are calculated for each of the 2𝐿 + 1 sigma-
points according to the following rules:

𝑊𝑀𝐸𝐴𝑁
𝑗

=

⎧⎪⎨⎪⎩
1

𝐿 + 𝜂
, 𝑗 = 0,

𝜂

2 (𝐿 + 𝜂)
, 𝑗 = 1,… , 2𝐿

𝑊𝐶𝑂𝑉
𝑗

=

⎧⎪⎨⎪⎩
1

𝐿 + 𝜂
+
(
1 − 𝛼2 + 𝛽

)
, 𝑗 = 0

𝜂

2(𝐿+𝜂)
, 𝑗 = 1,… , 2𝐿

,

𝜂 = 𝛼2 (𝐿 + 𝜅) − 𝐿.

(21)

where 𝛼, 𝛽, 𝜅 are parameters that determine the position
of sigma points in state-space. 𝛼, 𝜅 regulate the spread of
points relative to their expected value. Parameter 𝛽 is used
to incorporate prior knowledge of the distribution. For a
normal distribution, it is conventional to set the values
of these parameters: 𝜅 = 0, 𝛽 = 2, 𝛼 ∈ [10−4, 1] (Crassidis,
2006).

At the prediction stage, 2𝐿 + 1 sigma-points are gen-
erated. These sigma-points form the 2𝐿 + 1 columns of
matrix 𝑆𝑘−1 as follows:

𝑺𝑘 =

[
𝑿𝑘|𝑘, 𝑿𝑘|𝑘 ± 𝛾√𝑷𝐶𝑂𝑉𝑘|𝑘 + 𝑸𝑘

]
𝐿×(2𝐿+1)

, 𝛾 =
√
𝐿 + 𝜂

(22)
where 𝑿𝑘|𝑘, 𝑷𝐶𝑂𝑉𝑘|𝑘 are the posterior estimates of state-
vector and covariance matrix, respectively. 𝑸𝑘 is process
noise covariance matrix. The Cholesky decomposition is
an effective method for calculating the square root of
𝑷𝐶𝑂𝑉
𝑘|𝑘 . Further, to denote a column of 𝑺𝑘 we use the index
𝑗 = 0, 1, … , 2𝐿. For example, 𝑺𝑘,𝑗 means a j-th column of
matrix 𝑺𝑘. The columns of 𝑺𝑘 are propagated through non-
linear function𝒇(∗)

𝑺𝑘+1 = 𝒇 (𝑺𝑘) (23)

Then, the a priori estimates of state-vector and covari-
ance matrix are calculated using weighted sums

𝑿𝑘+1|𝑘 =
2𝐿∑
𝑗=0

𝑊𝑀𝐸𝐴𝑁
𝑗

𝑺𝑘+1,𝑗 (24)

𝑷COV
𝑘+1|𝑘 =

2𝐿∑
𝑗=0

𝑊COV
𝑗

(𝑺𝑘+1,𝑗 − 𝑿𝑘+1|𝑘)(𝑺𝑘+1,𝑗 − 𝑿𝑘+1|𝑘)𝑇 + 𝑸𝑘
(25)

At the correction stage, the a priori estimates of state-
vector and covariance matrix are updated (corrected)

𝑿𝑘+1|𝑘+1 = 𝑿𝑘+1|𝑘 + 𝛿𝑿̂𝑘+1|𝑘 (26)

𝛿𝑿̂𝑘+1|𝑘 = 𝑲𝑘+1 (𝒁𝑘+1 − 𝒁𝑘+1|𝑘) (27)

𝑷𝐶𝑂𝑉
𝑘+1|𝑘+1 = 𝑷𝐶𝑂𝑉𝑘+1|𝑘 − 𝑲𝑘+1𝑷𝐶𝑂𝑉𝑘+1|𝑘𝑲𝑇

𝑘+1
(28)

where

𝒁𝑘+1|𝑘 =
2𝐿∑
𝑗=0

𝑊𝑀𝐸𝐴𝑁
𝑗

𝒉
(
𝑺𝑘+1,𝑗

)
(29)

𝑲𝑘+1 = 𝑷
𝐶𝑂𝑉,𝑋𝑍
𝑘+1|𝑘

(
𝑷
𝐶𝑂𝑉,𝑍𝑍
𝑘+1|𝑘

)𝑇
(30)

𝑷
COV,XZ
𝑘+1|𝑘
=

2𝐿∑
𝑗=0

𝑊COV
𝑗

(
𝑺𝑘+1,𝑗 − 𝑿𝑘+1|𝑘) (𝒉 (𝑺𝑘+1,𝑗) − 𝒁𝑘+1|𝑘)𝑇

(31)
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𝑷
COV,ZZ
𝑘+1|𝑘
=

2𝐿∑
𝑗=0

𝑊COV
𝑗

(𝒉(𝑺𝑘+1,𝑗) − 𝒁𝑘+1|𝑘)(𝒉(𝑺𝑘+1,𝑗) − 𝒁𝑘+1|𝑘)𝑇 + 𝑹𝑘
(32)

The initial value of covariance matrix 𝑷𝐶𝑂𝑉
0

is given by

𝑷𝐶𝑂𝑉
0

= 𝑑𝑖𝑎𝑔

(
(Δ𝒒̄𝐼𝐴)

2
,
(
𝝈𝐺𝑁𝑆𝑆
𝑃

)2
,
(
𝝈𝐺𝑁𝑆𝑆
𝑉

)2
,
(
Δ𝑩

𝐺,𝑆
0

)2
,

(
𝝈𝑅𝑅𝑊

)2
,
(
𝝈𝐺,𝐺𝑀

)2
,
(
Δ𝑩

𝐴,𝑆
0

)2
,(

𝝈𝐴𝐶𝐶𝑅𝑊
)2
,
(
𝝈𝐴,𝐺𝑀

)2)
28×28

(33)

where Δ𝒒̄𝐼𝐴 denotes the accuracy of the initial align-
ment of the INS, Δ𝑩𝐴,𝑆

0
, Δ𝑩

𝐴,𝑆
0

denote the initial errors
in determining constant gyro drifts and accelerometer
biases, 𝝈𝑅𝑅𝑊, 𝝈𝐴𝐶𝐶𝑅𝑊 are the standard deviations of the
noises of the rate and the acceleration random walks, and
𝝈𝐺,𝐺𝑀, 𝝈𝐴,𝐺𝑀 are the standard deviations of the noises of
GM processes.

2.5 Offline stage

Four essential tasks are performed in offline stage: 1) the
selection of the optimal inputs of NARX networks, 2)
the design of the internal structure (the number of lay-
ers/neurons) of NARX networks, 3) preliminary training
of NARX networks, and 4) calculating the new covariance
matrices of UKF that will be used during GNSS outages (in
online mode).

2.5.1 Offline data

Adataset is acquired fromboth INS andGNSS during a trip
that contains as many maneuvers as possible. The data of
INS1 andGNSS are fused byUKFusing the loosely coupled
scheme, as shown in Figure 5.
The target values (the measurement updates)

𝛿𝑃𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2, 𝛿𝑉𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2 are obtained as follows:

𝛿𝑷𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2 = 𝑷𝐺𝑁𝑆𝑆 − 𝑷𝐼𝑁𝑆2 =
[
𝛿𝜑 𝛿𝜆 𝛿ℎ

]𝑇
𝛿𝑽𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2 = 𝑽𝐺𝑁𝑆𝑆 − 𝑽𝐼𝑁𝑆2 =

[
𝛿𝑣𝑁 𝛿𝑣𝐸 𝛿𝑣𝐷

]𝑇
(34)

The target valueswill have the shape of the signal shown
in Figure 5. The INS2 outputs are position 𝑷𝐼𝑁𝑆2, velocity

F IGURE 5 The calculation of target values and candidate
inputs for NARX networks

𝑽𝐼𝑁𝑆2 and attitude angles 𝑨𝐼𝑁𝑆2

𝑷𝐼𝑁𝑆2 =
[
𝜑 𝜆 ℎ

]𝑇
𝑽𝐼𝑁𝑆2 =

[
𝑣𝑁 𝑣𝐸 𝑣𝐷

]𝑇
𝑨𝐼𝑁𝑆2 =

[
𝜙 𝜃 𝜓

]𝑇 (35)

The goal is to choose a set of inputs from the
group 𝐼𝐼𝑁𝑆2 = {𝜑, 𝜆, ℎ, 𝑣𝑁, 𝑣𝐸, 𝑣𝐷, 𝜙, 𝜃, 𝜓, 𝑡} that have an
impact on each of the six error components from
the group 𝑇 = {𝛿𝜑, 𝛿𝜆, 𝛿ℎ, 𝛿𝑣𝑁, 𝛿𝑣𝐸, 𝛿𝑣𝐷}, where 𝑡 is the
time elapsed since the loss of the GNSS signal and
varies in interval [0, 60 s]. The measurement updates
{𝛿𝜑, 𝛿𝜆, 𝛿ℎ, 𝛿𝑣𝑁, 𝛿𝑣𝐸, 𝛿𝑣𝐷} are predicted using six NARX
networks. The inputs ofNARXnetworks are selected based
on MI criterion and the LSE. First, the MI criterion ranks
the inputs in group 𝐼𝐼𝑁𝑆2, where the inputs with posi-
tive rank are selected. Then, LSE is used to determine the
model orders, that is, the dependency of each error com-
ponent in group𝑂𝑂𝑈𝑇 = {𝛿𝜑, 𝛿𝜆, 𝛿ℎ, 𝛿𝑣𝑁, 𝛿𝑣𝐸, 𝛿𝑣𝐷} on the
past values of the error itself and the past values of the
inputs chosen by MI.
Next, the theoretical background of MI and LSE is pre-

sented (subsections 2.5.2 and 2.5.3). The structure of NARX
network is presented in Subsection 2.6.

2.5.2 Mutual information

The relation between the inputs 𝐼𝐼𝑁𝑆2 and outputs 𝑇 is
not linear, so the methods based on linear relations (like
correlation) are prone to mistakes and will not give accu-
rate results. The MI criterion is a good candidate to solve
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this problem, as it measures the arbitrary (linear or non-
linear) dependencies between variables. MI is widely used
in machine learning for canonical tasks, such as classifica-
tion, clustering and feature selection (Brown, 2009; Peng
et al., 2005). MI is one of the feature selection methods.
These methods define a statistical criterion that is used to
rank characteristics (or features) according to their use-
fulness for classification. The characteristics with a high
rating are chosen, and characteristics with a low rating
can be discarded. Given two random variables 𝑥 and 𝑦,
their mutual information is determined through probabil-
ity density functions 𝑝(𝑥), 𝑝(𝑦), 𝑝(𝑥, 𝑦)

𝐼 (𝑥; 𝑦) =
∑
𝑥∈𝐷𝑥

∑
𝑦∈𝐷𝑦

𝑝 (𝑥, 𝑦) log
𝑝 (𝑥, 𝑦)

𝑝 (𝑦) 𝑝 (𝑥)
(36)

where 𝐷𝑥, 𝐷𝑦 are the spaces of (𝑥, 𝑦). The concept of MI
can be employed for arranging or ranking a number of
candidates (features) 𝑥𝑙, 𝑙 = 1, … ,𝑀 according to their use-
fulness or influence on target signal 𝑦, based on 𝑁 sam-
ples of 𝑥𝑙 and 𝑦. Peng et al. (2005) proposed a solution for
this problem by calculating a rank based on the Maximum
Relevance Minimum Redundancy (MRMR) criterion. The
rank is calculated as follows:

𝐽𝑀𝑅𝑀𝑅 (𝑥𝑙) = 𝐼 (𝑥𝑙; 𝑦) −
1

𝑀 − 1

𝑀∑
𝑘=1

𝐼 (𝑥𝑙; 𝑥𝑘) (37)

The MRMR criterion takes into account the redun-
dancy of candidates 1

𝑀−1

∑𝑀

𝑘=1
𝐼(𝑥𝑙; 𝑥𝑘) and subtracts it

from 𝐼(𝑥𝑙; 𝑦). The MRMR criterion can be summarized as
“a set of features should not only be individually relevant,
but also should not be redundant in relation to each other.”
By calculating 𝐽𝑀𝑅𝑀𝑅(𝑥𝑙), the features can be arranged or
ranked; the feature with the largest 𝐽𝑀𝑅𝑀𝑅 has the largest
effect or influence on 𝑦 and vice versa. The MRMR crite-
rion is applied to rank the candidate inputs in group 𝐼𝐼𝑁𝑆2
in accordance to their impact on each of the six error com-
ponents from the group 𝑇. The results of applying MI cri-
terion are provided in Subsection 3.2.

2.5.3 Lag-space estimation

The next task is to investigate the dependency of each
error component in group 𝑇 on the past values of the
error itself and the past values of the inputs that were
chosen by MRMR criterion. This problem is referred to
as lag-space estimation, or model order estimation. The
use of higher order dependencies in the modeling pro-
cess leads to possibly over-parameterized, and thus less
efficient, models. It is therefore important to estimate the
optimal lag-space, that is, to find the primary dependen-

cies. This allows minimizing the number of parameters
and optimizing the predictive abilities of the AI module
(NARX module, in our case). In system theory, a nonlin-
ear dynamical system is generally described by differential
or difference equations that represent input/output rela-
tions. However, in many practical situations, it is difficult
to write down the accurate state dynamics and observa-
tion equations for a continuous or a discrete time system.
What are available are the input and output data of the
unknown dynamical system, that is, 𝑢(𝑡) and 𝑦(𝑡), which
are observed at sampling times 𝑡𝑖 = 𝑖𝑇𝑆, 𝑖 = 0, … ,𝑁 − 1. It
has been shown that under some mild assumptions, the
following input/output model (Siegelmann et al., 1997):

𝑦 (𝑡) = 𝑔
(
𝑦 (𝑡 − 1) , ⋅ ⋅ ⋅, 𝑦

(
𝑡 − 𝑛𝑦

)
,

𝑢 (𝑡) , 𝑢 (𝑡 − 1) , ⋅ ⋅ ⋅, 𝑢 (𝑡 − 𝑛𝑢)) (38)

can represent nonlinear dynamical systems described by
differential or difference equations, where 𝑔(∗) is nonlin-
ear function, and parameters 𝑛𝑦 and 𝑛𝑢 are orders of the
input/output model that should be determined. In our
case, 𝑢(𝑡), is a subset of the group 𝐼𝐼𝑁𝑆2 and 𝑦(𝑡) is one
of the six error components in group 𝑇. Authors He and
Asada (1993) proposed a method to identify model orders
𝑛𝑦, 𝑛𝑢 based onLipschitz quotients. According to them, the
model described by Equation 38 can be written as

𝑦 = 𝑔 (𝑥̄) = 𝑔 (𝑥1, 𝑥2, … , 𝑥𝑛) (39)

where 𝑥̄ = [𝑥1, 𝑥2, … , 𝑥𝑛] = [𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡),

𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛𝑢)] are the input variables and 𝑛 is
the number of input variables 𝑛 = 𝑛𝑦 + 𝑛𝑢 + 1. Now, the
goal is to reconstruct the function 𝑔(∗) based on the
pairs (𝑥̄(𝑖), 𝑦(𝑖)). The Lipschitz quotient for 𝑚 input
variables can be calculated by

𝑞
(𝑚)
𝑖,𝑗

=
|𝑦 (𝑖) − 𝑦 (𝑗)|√

(𝑥1 (𝑖) − 𝑥1 (𝑗))
2
+⋯+ (𝑥𝑚 (𝑖) − 𝑥𝑚 (𝑗))

2
, 𝑖 ≠ 𝑗

(40)
Usually, the following index is used to determine the

optimal amount of input variables

𝑞(𝑚) =

(
𝑝∏
𝑘=1

√
𝑚𝑞(𝑚) (𝑘)

)1∕𝑝
(41)

where 𝑞(𝑚)(𝑘) is the k-th largest Lipschitz quotient among
all 𝑞(𝑚)

𝑖,𝑗
(𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑖, 𝑗 = 1,… ,𝑁) with 𝑚 input variables,

and 𝑝 is a positive parameter (𝑝 = 0.01𝑁 ∼ 0.02𝑁). If 𝑛 is
the optimal number of input variables, then 𝑞(𝑛+1) is very
close to 𝑞(𝑛) and 𝑞(𝑛−1) is much larger than 𝑞(𝑛). More-
over, 𝑞(𝑛−2) is much larger than 𝑞(𝑛−1) and 𝑞(𝑛+2) is very
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F IGURE 6 The typical curve of 𝑞(𝑚)

close to 𝑞(𝑛+1). Therefore, looking at the curve of 𝑞(𝑚) as a
function of 𝑚, we can observe that starting from a certain
value 𝑚 = 𝑛, further increase in 𝑚 will not significantly
change the index 𝑞(𝑚) and thus the value of 𝑛 can be deter-
mined (Figure 6). The results of applying this LSE method
are provided in Subsection 3.2.

2.5.4 The reconfiguration of the covariance
matrices of UKF

During GNSS outages, the proposed system works in pre-
diction mode. The measurements obtained by the aid of
NARX networks have error characteristics that differ from
the characteristics of GNSS measurements. Therefore, it is
necessary to reconfigure the UKF covariance matrices. To
do this, the following steps are performed: First, the pro-
posed system is applied using the offline dataset for sim-
ulated GNSS outages. Then, the standard deviation of the
position and velocity errors with respect to GNSSmeasure-
ments is calculated as follows:

𝝈𝑂𝑈𝑇
𝑃

=

√
1

𝑁𝑝

𝑁𝑝∑
𝑖=1
(𝑷𝐺𝑁𝑆𝑆 − 𝝁𝑃)

2
,

𝝈𝑂𝑈𝑇
𝑉

=

√
1

𝑁𝑝

𝑁𝑝∑
𝑖=1
(𝑽𝐺𝑁𝑆𝑆 − 𝝁𝑉)

2
,

𝝁𝑃 =
1

𝑁𝑝

𝑁𝑝∑
𝑖=1

(
𝑷𝐺𝑁𝑆𝑆 − 𝑷̂

)
, 𝜇𝑉 =

1

𝑁𝑝

𝑁𝑝∑
𝑖=1

(
𝑽𝐺𝑁𝑆𝑆 − 𝑽̂

)
(42)

where 𝑷̂, 𝑽̂ are the position and the velocity obtained
by applying the proposed system, 𝝁𝑃, 𝝁𝑉 are the mean
values of the errors, and𝑁𝑝 is the number of data samples.
When a real GNSS outage occurs, the corresponding com-
ponents of the covariance matrices 𝑷𝐶𝑂𝑉, 𝑹 are updated
with 𝝈𝑂𝑈𝑇

𝑃
, 𝝈𝑂𝑈𝑇

𝑉
.

2.6 NARX neural network

Considering the system model given by Equation (38), a
good choice of AI module is NARX, as it obeys the same

F IGURE 7 The architecture of NARX

system equation. The NARX is a recurrent dynamic neu-
ral network that can be used to model extensive variety
of nonlinear dynamic systems. NARX networks have been
applied in various applications, including black-box sys-
tem identification and time-series modeling (Diaconescu,
2008; Siegelmann et al., 1997). The architecture of the
NARX is shown in Figure 7.
Six NARX networks are utilized to predict systems

errors 𝛿𝑃𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2 = [ 𝛿𝜑 𝛿𝜆 𝛿ℎ ]𝑇, 𝛿𝑉𝐺𝑁𝑆𝑆∕𝐼𝑁𝑆2 =

[ 𝛿𝑣𝑁 𝛿𝑣𝐸 𝛿𝑣𝐷 ]
𝑇 during GNSS outages.

3 RESULTS

3.1 Experimental setup

Raw experimental data were acquired from a Micro-
Electro Mechanical System-Strapdown Inertial Naviga-
tion System (MEMS-SINS) (Ekinox-D Inertial Navigation
System) with sampling frequency 200 Hz. The charac-
teristics of gyroscopes and accelerometers of this SINS
were obtained in (Gonzalez & Dabove, 2019; Gonza-
lez et al., 2017) using Allan variance method. A Global
Navigation Satellite System/Global Positioning System
(GLONASS/GPS) receiver was used with sampling fre-
quency of 5 Hz. The accuracy in position is 0.5 m for lat-
itude and longitude and 1 m for altitude. The accuracy in
velocity for all components is 0.1 m/s. Both systems were
mounted on the roof of the vehicle, as shown in Figure 8a.
The experiment was conducted in the city of Turin in Italy
(Gonzalez et al., 2017). The duration of the dataset used
in this work is 2,300 s. The trajectory of the vehicle is
shown in Figure 8b. The first segment of the trajectory (the
first 600 s) is magnified. The dataset of the first segment
is used for offline stage. The rest of the dataset (1,700 s)
is used for online validation of the proposed system.
Table 1 shows the specifications of the gyroscopes and the
accelerometers of the Ekinox-D INS (Gonzalez & Dabove,
2019).
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F IGURE 8 (a) Experiment hardware;
(b) trajectory [Color figure can be viewed in
the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

TABLE 1 The specifications of the gyroscopes and the accelerometers of the Ekinox-D INS

Randomwalk Dynamic bias
Correlation
Time

Ekinox-D INS

Acc X 1.92×10-4 (𝑚∕𝑠2∕
√
𝐻𝑧) 8.39×10-5 (𝑚∕𝑠2) 50 (𝑠)

Acc Y 1.88×10-4 (𝑚∕𝑠2∕
√
𝐻𝑧) 6.92×10-5 (𝑚∕𝑠2) 200 (𝑠)

Acc Z 1.94×10-4(𝑚∕𝑠2∕
√
𝐻𝑧) 7.61×10-5 (𝑚∕𝑠2) 100 (𝑠)

Gyro X 1.57×10-4 (𝑟𝑎𝑑∕𝑠∕
√
𝐻𝑧) 8.10×10-6 (𝑟𝑎𝑑∕𝑠) 1000 (𝑠)

Gyro Y 1.60×10-4 (𝑟𝑎𝑑∕𝑠∕
√
𝐻𝑧) 7.39×10-6 (𝑟𝑎𝑑∕𝑠) 1000 (𝑠)

Gyro Z 1.80×10-4 (𝑟𝑎𝑑∕𝑠∕
√
𝐻𝑧) 9.29×10-6 (𝑟𝑎𝑑∕𝑠) 1000 (𝑠)

3.2 The results of the offline stage

The dataset of the first segment of the trajectory is used in
offline stage. Figure 9a shows the first segment of the tra-
jectory, and Figure 9b shows the speed of the vehicle ||𝑽||
along this segment. For better readability, the speed of the
vehicle is shown in (km/h). The segment contains many

types of possible maneuvers (accelerating and decelerat-
ing, zero velocity, straight lines, turning, etc.).
Using the dataset of the first segment, six GNSS outages

(six windows) were simulated to form the target signals
{𝛿𝜑, 𝛿𝜆, 𝛿ℎ, 𝛿𝑣𝑁, 𝛿𝑣𝐸, 𝛿𝑣𝐷} as shown in Figure 10.
Figure 11 shows the candidate input signals

{𝜑, 𝜆, ℎ, 𝑣𝑁, 𝑣𝐸, 𝑣𝐷, 𝜙, 𝜃, 𝜓} along the first segment.

F IGURE 9 (a) The first segment of the trajectory of the vehicle; (b) the speed of the vehicle along the first segment of the trajectory
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F IGURE 10 Target signals for offline preprocessing stage

F IGURE 11 The candidate input signals {𝜑, 𝜆, ℎ, 𝑣𝑁, 𝑣𝐸, 𝑣𝐷, 𝜙, 𝜃, 𝜓} along the first segment of the trajectory

TABLE 2 The results of applying MRMR algorithm

Target signalsCandidate
input
signals 𝜹𝝋 𝜹𝝀 𝜹𝒉 𝜹𝒗𝑵 𝜹𝒗𝑬 𝜹𝒗𝑫

𝜑 0.77 0.16 −0.11 0.17 0.64 1.13
𝜆 −0.08 0.57 −0.17 0.89 0.52 0.17
ℎ −0.44 −0.18 1.02 −0.32 −0.20 0.08
𝑣𝑁 0.08 −0.13 −0.06 0.12 −0.15 −0.11
𝑣𝐸 −0.04 0.09 −0.18 −0.20 0.11 −0.14
𝑣𝐷 −0.07 −0.18 −0.07 0.03 −0.16 0.06
𝜙 −0.16 −0.04 −0.12 −0.15 −0.06 −0.14
𝜃 −0.08 −0.03 0.03 −0.03 −0.06 −0.15
𝜓 −0.14 −0.19 −0.11 −0.05 −0.31 −0.32
𝑡 0.90 1.13 0.39 0.49 0.82 0.20
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F IGURE 1 2 Lag-space estimation for the position and velocity errors

The first task is to identify the inputs that influence each
of the targets {𝛿𝜑, 𝛿𝜆, 𝛿ℎ, 𝛿𝑣𝑁, 𝛿𝑣𝐸, 𝛿𝑣𝐷} using the MRMR
criterion explained earlier. The results of applying MRMR
criterion are presented in Table 2. The large negative score
means that the input has a high redundancy, that is, the
information imbedded in this input are found in other
inputs, so there is no need to consider this input. The pos-
itive score (in bold) means high relevance and low redun-
dancy of the input. The scores close to zero (underlined)
reflect an insignificant influence of the inputs on the cor-
responding output and can be neglected. As a result, the
inputs with high positive scores are chosen. It is worth
mentioning that the results given in Table 2 are limited
to land vehicles, and they cannot be generalized for the
case of aerial vehicles because they have different types of
movement.
The second task is to determine the dependency of the

target signals {𝛿𝜑, 𝛿𝜆, 𝛿ℎ, 𝛿𝑣𝑁, 𝛿𝑣𝐸, 𝛿𝑣𝐷} on their past val-
ues and the past values of selected inputs, that is, the inputs
selected using MRMR algorithm and shown in bold in
Table 2, using LSE explained earlier. Figure 12 shows the
results of applying LSE to investigate the dependency of
the target signals {𝛿𝜑, 𝛿𝜆, 𝛿ℎ, 𝛿𝑣𝑁, 𝛿𝑣𝐸, 𝛿𝑣𝐷} on their past
values. To determine the proper lag-space, we look at the
point where increasing the lag-space (𝑚) will not change
the order index 𝑞(𝑚) significantly. As Figure 12 shows, a lag-
space of 𝑛𝑦 = 2 is a good choice for all target signals, as the
order index doesn’t change significantly for values larger
than 2.
Next, the LSE is applied to determine the lag-space for

inputs selected using MRMR algorithm. Figure 13 shows
the results of applying LSE for the case of target signal 𝛿𝜑
and the selected inputs {𝜑, 𝑣𝑁}. As Figure 13 shows, the

F IGURE 13 Lag-space estimation for the case of target signal
𝛿𝜑 and the selected inputs {𝜑, 𝑣𝑁}

TABLE 3 The results of applying LSE method

Inputs
𝒏𝒖

Outputs 𝒏𝒚 𝝋 𝝀 𝒉 𝒗𝑵 𝒗𝑬 𝒗𝑫 𝝓 𝜽 𝝍

𝛿𝜑 2 2 - - 2 - - - - -
𝛿𝜆 2 2 2 - - 2 - - - -
𝛿ℎ 2 - - 2 - - - - - -
𝛿𝑣𝑁 2 2 2 - 2 - - - - -
𝛿𝑣𝐸 2 2 2 - - 2 - - - -
𝛿𝑣𝐷 2 2 2 2 - - 2 - - -

order index doesn’t change significantly for values larger
than 2. This means that the lag-space is 𝑛𝑢 = 2. For the
other cases {𝛿𝜆, 𝛿ℎ, 𝛿𝑣𝑁, 𝛿𝑣𝐸, 𝛿𝑣𝐷} the same lag-space was
found (𝑛𝑢 = 2).
At this stage, all inputs of the six NARX networks are

determined.
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F IGURE 14 Final input/output configurations of the six NARX networks

F IGURE 15 The results of the preliminary training of NARX networks based on offline dataset [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com and www.ion.org]
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Table 3 summarizes the results of applying LSE. The
symbol (-) means that there is no dependency found
between the output and the input.
Figure 14 shows the final input/output configurations of

the six NARX networks according to Tables 2 and 3.
The next task is the design of the internal structure

of the NARX networks, that is, the number of hidden
layers and neurons. It is proved that an artificial neural
network (ANN) with two hidden layers can approximate
any function (Gonzalez & Dabove, 2019; Lippmann, 1987).
Therefore, six ANN with two hidden layers were utilized.
Choosing the right number of neurons is very important.
An ANN with a small number of neurons will not be able
to learn. A large number of neuronswill lead to an increase
in the network training time and can also lead to over-
fitting. In this article, the number of neurons is derived
empirically using rules-of-thumb (Goodfellow et al., 2016;
Huang, 2003). It is shown that an ANN with two hidden
layers and 𝑁 =

√
𝑁𝑆(𝑁𝑦 + 2) + 2

√
𝑁𝑆∕(𝑁𝑦 + 2) neu-

rons can learn 𝑁𝑆 example with any arbitrary precision,
where 𝑁𝑦 = 1 is the number outputs. Here 𝑁𝑆 represents
the number of samples in the window 𝑁𝑆 = 𝑊 samples.
The selection of this value of window size is based on
offline trials. In fact, there is a trade-off in choosing the
window size; large window sizes guarantee that more
motion dynamics are mimicked, thus providing better
accuracy over long GNSS outages. On the other hand,
a small window size guarantees fast learning, but the
system provides high accuracy of estimation only for short
GNSS outages. The window size is chosen as (𝑊 = 300

samples), which represents 60 s record of data, because
the sampling frequency of GNSS is 5 Hz. Therefore, the
number of neurons is 𝑁 = 50. In fact, 𝑁 = 50 is only
a starting value for the number of neurons. The final
values were 30, 36, 20, 32, 36 and 40 for NARX-1, NARX-2,
NARX-3, NARX-4, NARX-5 and NARX-6. These values
were achieved after many offline trials. The hyperbolic
tangent sigmoid (tan-sigmoid) transfer function is applied
as activation function. To train the NARX networks,
Levenberg-Marquardt (LM) (Moré, 1978) training algo-
rithm is used. LM algorithm is the most widely used
optimization algorithm. It outperforms other methods in
a wide variety of problems because of its fast and stable
convergence. The LM algorithm is well suited for training
small and medium-sized problems, which are the case
here. Figure 15 shows the results of preliminary training
of the NARX networks based on the offline dataset.

3.3 Online validation of the proposed
system

In order to test the proposed system, the second part of the
dataset (with duration of 1,700 s) is used. Six GNSS outages

F IGURE 16 The trajectory of vehicle with GNSS outages for
online validation

F IGURE 17 The speed of the vehicle along the trajectory, with
the GNSS outages highlighted

were simulated, as shown inFigure 16. The outages contain
straight lines (outages 1, 2 and 3) and turnings (outages 4,
5 and 6).
Figure 17 shows the speed of the vehicle ||𝑽|| along the

trajectory with the GNSS outages highlighted. It can be
seen that the GNSS outage segments contain accelerating
and decelerating (all outages), zero velocity (outages 1, 2
and 3), high speed ∼ 50-90 km/h (outages 2, 4, 5 and 6),
low speed ∼ 0-20 km/h (outages 1, 2 and 3), and mid speed
∼ 20-50 km/h (outages 1 and 2).
Figure 18 shows the GNSS-outage segments of the vehi-

cle’s trajectory.
The proposed method (NARX-aided UKF) is compared

to UKF and twowidely adoptedmethods that use different
input configurations in order to validate the selection of the
input configurations of NARX networks. The first method
(shortly M1) uses the current information of specific force
and angular rates {𝒇̃𝐵, 𝝎̃𝐵

𝐼𝐵
} for estimating the position and

velocity errors as in (Chen & Fang, 2014; Jingsen et al.,
2016). The second method (shortly M2) uses the four-step
information of specific force, angular rates, velocity and
yaw {𝒇̃𝐵, 𝝎̃𝐵

𝐼𝐵
, 𝑽, 𝜓} as in (Fang et al., 2020). For compar-

ison, the reference GNSS trajectory is also shown in Fig-
ure 18. The superiority of the proposed method over UKF,
M1 and M2 in terms of positioning accuracy is obvious.
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F IGURE 18 Performance of different
methods (UKF, M1, M2 and NARX-aided
UKF) for six GNSS outages [Color figure can
be viewed in the online issue, which is
available at wileyonlinelibrary.com and
www.ion.org]

F IGURE 19 Horizontal error in
position using UKF, M1, M2 and
NARX-aided UKF for six GNSS outages
[Color figure can be viewed in the online
issue, which is available at
wileyonlinelibrary.com and www.ion.org]
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TABLE 4 Numerical values of horizontal errors (in meters)
using UKF, M1, M2 and NARX-aided UKF

Outage
number UKF M1 M2

NARX-aided
UKF

1 23.4 8.7 15.3 6.0
2 51.4 25.9 15.7 8.4
3 48.1 31.1 18.0 10.5
4 44.7 9.5 16.4 4.9
5 37.8 22.9 12.5 5.9
6 12.0 9.5 6.9 1.9
Mean 34.6 17.9 14.1 6.3

Figure 19 shows the horizontal error (with respect to
GNSS) in position using UKF, M1, M2 and NARX-aided
UKF.
Table 4 provides numerical values of horizontal

errors using different methods. The proposed method
(NARX-aided UKF) improved the positioning accuracy

by 82%, 65% and 55% with respect to UKF, M1 and M2
respectively.
To demonstrate the effect of modifying the covariance

matrices of UKF during GNSS outages, Figure 20 shows
the horizontal errors in position in two cases: the first case,
the NARX-aided UKF without modification of covariance
matrices, and the second case with modification of covari-
ance matrices. It can be seen that the updating of covari-
ance matrices slightly enhanced the positioning accuracy.
The improvement of positioning accuracy is 5% to 8%.

4 CONCLUSIONS

The problem of aiding UKF during GNSS outages in
INS/GNSS systems was considered in this paper. A new
method, namely NARX-aided UKF, was suggested and
tested. The proposed method consists of offline and online
stages. The offline stage is essential for selecting the input
signals of NARX networks based on MI and LSE, the

F IGURE 20 Demonstration of the effect of updating covariance matrices of UKF during GNSS outages [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com and www.ion.org]
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design of the internal structure of NARX networks, pre-
liminary training of NARX networks and calculating the
new covariance matrices of UKF that were used during
real GNSS outages. The covariancematrices ofUKFduring
GNSS outages were linked to prediction accuracy of NARX
networks. The performance of the proposed method was
experimentally verified using real datasets. The results
indicated that the proposedmethod improved the accuracy
of navigation systems during GNSS outages. The results
also confirmed the superiority of the proposed method
over widely adopted methods that use different input con-
figurations for neural networks. The future work will con-
sider the case of aerial vehicles.
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