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Abstract
This study introduces and verifies a relative navigation technique for two Cube-
Sats in formation flying as part of the CANYVAL-Cmission. Because themission
requires precision and robustness subject to restricted computational complex-
ity, the technique employs an Extended Kalman Filter (EKF) and rawGNSS data
to achieve relative navigation. The relative navigation technique is composed of
two parts: parameter-tuning using an Adaptive Kalman Filter (AKF) in a ground
station, and the application of the adaptively determined parameters to allow
onboard EKF. Based on Hardware-in-the-Loop Simulations (HILS), the relative
positioning error of the EKFwith adaptively determined parameters ranged from
10 to 20 cm on each axis (3σ) and satisfied the mission requirement of 1 m. The
simulations confirm that the technique yields reliable relative navigation and a
realistic error covariancewithout imposing a computational burden on theCube-
Sat, as well as reduces the time required for parameter tuning.
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1 INTRODUCTION

CubeSat, a standardized satellite with a cube unit of 10 cm,
is cost- and time-efficient because of its small size and stan-
dardization in terms of aspects such as structure and inter-
face. It has been employed in experimental and challeng-
ing flying missions: demonstrating a deployable telescope
with FalconSAT-7 (Andersen et al., 2012); exploring deep
space with Mars Cube One (Klesh et al., 2018); and explor-
ing a galactic halo in the Milky Way galaxy with HaloSat
(Kaaret et al., 2019).
Furthermore, the use of a formation or constellation of

multiple CubeSats has been proposed as an alternative to
huge spacemissions like theDynamic Ionosphere CubeSat
Experiment (DICE), in which two 1.5U CubeSats investi-
gated the ionospheric storm enhanced density (Fish et al.,
2014), as well as the SeaHawk, which observed changes
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in ocean color using two 3U CubeSats (Morrison et al.,
2016). To succeed in a formation-flying mission, a pre-
cise Guidance, Navigation, and Control (GNC) algorithm
including relative navigation is necessary. Several Cube-
Sat missions have employed precise, relative navigation
algorithms.
The CubeSat Proximity Operations Demonstration

(COPD) was a mission composed of two 3U CubeSats
used to verify rendezvous, proximity, and docking opera-
tions. The Rendezvous-Proximity Operations (RPO) GNC
subsystem that was implemented in a separate onboard
processor estimated the absolute inertial state of the host
CubeSat and the relative state of the other CubeSat by
using an Extended Kalman Filter (EKF) as the real-time
estimation algorithm.
It employs a GPS Intersatellite Link (ISL) range, with

optical sensor measurements as observation data, and a
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force model that contains an 8 × 8 spherical harmonic
gravity field (EGM2008model), atmospheric drag (a modi-
fiedHarris Priester atmospheric densitymodel), and third-
body perturbations (lunar and solar). The GNC algorithm
was tested through Software-in-the-Loop and Hardware-
in-the-Loop Simulations (HILS), resulting in the relative
navigation accuracy being several tens of centimeters dur-
ing the mid-range formation reconfiguration maneuver
(Roscoe et al., 2018).
CanX-4 and CanX-5 were a pair of two identical 8U

CubeSats that aimed to demonstrate autonomous forma-
tion control (Bonin et al., 2015). The pair used two navi-
gation algorithms that both employed EKF to implement
coarse and relative navigation. The coarse navigation took
the absolute orbit solution provided by the GPS receiver
and smoothed it using orbital dynamics, including the
6 × 6 gravity field. The relative navigation employed a
Differential GPS (DGPS) method with raw GPS data and
the same dynamics. Both CubeSats controlled the GPS
antenna to ensure that the zenith received as many com-
mon GPS signals as possible, and an additional attitude
control was conducted to minimize the effect of the slew-
ing of GPS satellites (Johnston-Lemke & Zee, 2010). It
achieved a relative accuracy < 10 cm that degraded to sev-
eral meters during maneuvering (Kahr et al., 2018).
The CubeSat Astronomy by NASA and Yonsei using

the Virtual Telescope Alignment (CANYVAL) project was
designed to demonstrate inertial alignment, a key tech-
nique of the virtual telescope. It consisted of two satel-
lites that functioned as a lens and detector, respectively
(Calhoun et al., 2018; Park et al., 2014; Shah et al., 2013).
The first experimental mission, CANYVAL-X (CANYVAL-
eXperiment), was comprised of two CubeSats (1U and 2U)
that were launched in 2018. It was designed to maintain a
relative distance and aligned with respect to the Sun based
on a vision alignment system (Park et al., 2016).
CANYVAL-Coronagraph (CANYVAL-C), the follow-up

mission of CANYVAL-X, was also comprised of 1U and 2U
CubeSats. The 1U CubeSat captured images of the solar
corona during the 2U CubeSat occults of the solar sphere,
and they were aligned with respect to the Sun (Kim et al.,
2019). CANYVAL-C employed EKF using raw GNSS data
for real-time relative navigation between the two CubeSats
necessary to satisfy the mission requirements subject to
imposed constraints.
Although EKF is a simple and efficient estimation algo-

rithm, it is necessary to empirically tune the dynamic and
measurement noise covariances that significantly influ-
ence estimation performance. Parameter tuning is com-
plicated, especially in space missions because the actual
circumstances cannot be known before launch. Therefore,
various adaptive algorithms to be employed in space mis-
sions have been proposed to estimate the covariances.

In Busse et al. (2003), an adaptive method of maximum
likelihood estimation was implemented in a formation-
flying mission to achieve robust and precise relative nav-
igation accuracy by compensating for systematic uncer-
tainty. The research demonstrated a relative position accu-
racy of 2 cm by HILS, while improper parameters led to a
divergence of estimation.
He et al. (2012) improved an adaptive Sage filter by

adopting a weighted average quadratic form into covari-
ance matching. The weight was defined to be larger with a
shorter distance or smaller variance. This allowed the esti-
mation of the covariances based on consideration of the
precision and correlation of the residuals and states. The
algorithm was verified based on two cases: a maneuvering
Geostationary (GEO) satellite and an aircraft. As a result,
the proposed algorithm showed more precise and robust
performance, especially with disturbances.
Another study (Karlgaard & Schaub, 2011) suggested

an adaptive nonlinear filter based on Huber’s maximum
likelihood estimation and modified the Myers–Tapley
covariance matching algorithm. It was applied to the six-
degrees-of-freedom elliptical orbit rendezvous and dock-
ing problem, and it provided superior performance in
non-Gaussian noise cases. The computational time, how-
ever, increased two- or even four-fold, which is improper
for real-time applications with limited processing perfor-
mance.
An adaptive EKF that can be implemented on a pro-

cessor with limited capability was proposed by Xiao et al.
(2018). The adaptive process decreased the positioning
error by 20% even with simple dynamics and only slightly
increased the computational burden. However, although
the process determined the measurement noise covari-
ance based on the carrier-to-noise ratio, the dynamic noise
covariance remained undetermined.
In this study, a method and operational technique using

an EKF and modified AKF for precise and robust relative
navigation subject to the uncertainty and processing lim-
itation of the CANYVAL-C mission was proposed. Con-
sidering the limited onboard processing capabilities and
necessity of real-time navigation for the CANYVAL-Cmis-
sion, the technique consisted of two steps to minimize the
computational burden: a) an adaptive algorithm would
determine the measurement and dynamic noise covari-
ance in the ground station, and b) the adaptively deter-
mined parameters would be uploaded to the CubeSats and
applied to achieve onboard EKF.
Conducting HILS based on the CANYVAL-C mission

scenarios, the proposed technique was verified and
confirmed in improving the reliability of the relative
navigation without increasing the computational bur-
den of the CubeSat’s onboard computer. The adaptive
process reduced the time and effort required to identify
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F IGURE 1 Concept of CANYVAL-C
[Color figure can be viewed in the online
issue, which is available at
wileyonlinelibrary.com and www.ion.org]

proper tuning parameters by robustly determining them,
regardless of the initial guess. In addition, the adaptively
determined parameters emulated the real environment
and compensated for system errors. The estimation accu-
racy can be assessed by the error covariance matrix which
provides a realistic error boundary, as emphasized in Busse
et al. (2003). The technique will be applied to practical
operations after the launch of CANYVAL-C in early 2021.
This paper consists of five sections. Section 2 briefly

introduces the CANYVAL-C mission and addresses the
requirements and constraints for relative navigation. Sec-
tion 3 mathematically describes the modified AKF and
defines the relative navigation problem of CANYVAL-C.
The circumstances and results of HILS used to verify the
proposed technique are presented in Section 4. Section 5
presents the conclusions drawn in the study.

2 CANYVAL-C

2.1 Mission overview

CANYVAL-C is a mission set out to acquire solar corona-
graphs using two CubeSats that are precisely aligned with
respect to the Sun. The 2U CubeSat, Pumbaa, extends an
occulter to block the solar sphere and allow the occurrence
of the corona, while the CubeSat with a size of 1U, Timon,
has a camera and serves as a detector (Figure 1).
CANYVAL-C can prove the possibility of implementing

a virtual telescope and verify key techniques, such as iner-
tial alignment and precise relative orbit maintenance (Kim
et al., 2019). The orbit is a Sun-synchronous orbit with an
altitude of 525 km, whereas the Proba-3, which has a simi-

lar concept, will be launched in a Highly Eccentric Orbit
(HEO) with a 20 h orbital period (Llorente et al., 2013).
Low Earth Orbits (LEO) are more affected by the gravity
gradient disturbances compared toHEO, so a sophisticated
GNC algorithm is required for the CANYVAL-C mission.
The mission consists of three phases: Launch and Early

Orbit Phase (LEOP), Drift Recovery and Station Keeping
Phase (DRSKP), and the Autonomous Formation-Flying
Phase (AFFP). In the LEOP, both CubeSats deploy their
antennas, stabilize spin, and commission each hardware
component. In theDRSKP, Pumbaa conducts orbitmaneu-
vers to prevent divergence and maintain a maximum dis-
tance of 10 km between the CubeSats. In the AFFP, the two
CubeSats are aligned with respect to the Sun based on the
precise relative position obtained by a relative navigation
algorithm using the DGPS method; they acquire the coro-
nagraphs and automatically maintain the formation.
The DRSKP and AFFP include several operationmodes:

commission, normal, communication, emergency, control,
andmissionmode. TheGNSS receiver is turned on and ini-
tialized in the commission mode, the CubeSats stand by in
the normal mode, and communication between the Cube-
Sats and the ground station is conducted in the communi-
cation mode. The CubeSats autonomously enter the emer-
gency mode based on status.
In the control mode, the propulsion system and Dif-

ferential Air Drag Control (DADC) are employed. The
propulsion system is composed of four cold gas thruster
nozzles and provides a 1 mN impulse with a pulse width of
10 ms. In the DRSKP, it performs maneuvers to maintain
a relative distance under 10 km. In the AFFP, it conducts
the maneuvers for the Rendezvous (RDV) and Inertial
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F IGURE 2 Structure of phases and
modes for CANYVAL-C operation (Kim
et al., 2019)

TABLE 1 Navigation mode and required accuracy along mission phases and modes of CANYVAL-C

Navigation requirement
Operation phase Operation mode Navigation mode Absolute (3σ) Relative (3σ)
Launch and Early Orbit Phase (LEOP) - - - -
- Emergency - - -
Drift Recovery and Station Keeping Phase (DRSKP) Commission Orbit prediction - 2 km (3D)

Normal
Communication
Control

Autonomous Formation-Flying Phase (AFFP) Normal Coarse 50 m (3D) 60 m (1D)
Commission
Communication
Control Fine 1 m (1D)
Mission

Alignment Hold (IAH) to maintain the relative distance
between the CubeSats and alignment of the CubeSats with
respect to the Sun (Kim et al., 2019). The DADC, which
induces the relative acceleration of the two CubeSats
using the differential atmospheric drag forces between
them by changing the effective cross section area (Leonard
et al., 1989), is autonomously executed before and after the
IAH to maintain the formation and distance between the
CubeSats within 10 km. In mission mode, the camera on
Timon acquires coronagraphs based on the IAH.
Figure 2 presents the structure of the phases and modes

for operation. The bold arrows indicate autonomous mode
switching by monitoring the system status, and is applied
to basic modes including normal, communication, and
emergency. Note that the CubeSat enters emergencymode
if the status is determined unhealthy. The dashed arrows
indicate mode change via ground commands, executed in
commission, control, andmissionmodes (Kim et al., 2019).
With the use of numerical analysis, the requirements to

obtain a proper coronagraph were determined. The Cube-
Sats shouldmaintain a relative distance of 40±5m (3σ) and
align in a line by an angle under 7.5◦with respect to the Sun
(Kim et al., 2019). Note that Pumbaa controls orbit, keep-
ing the location within a cone that has a radius and angle
corresponding to the requirements, and heads fromTimon
to the Sun.

2.2 Requirements and constraints on
navigation

Relative navigation is comprised of three navigation
modes: orbit prediction, coarse, and fine. Each navigation
mode using separate navigation methods is employed
to achieve the different requirements of each operation
mode. In LEOP and the emergency mode of all phases,
relative navigation is not executed. For drift recovery,
the relative states are computed based on the predicted
orbit by the ground station, that is, the orbit prediction
mode.
Relative position uncertainty is required to be main-

tained under 2 km (3σ) in 3D. When the CubeSats
execute DADC, the relative navigation enters the coarse
mode and employs the subtraction of the orbit solu-
tions, computed by each GNSS receiver as the relative
states, to achieve the relative position accuracy of 60 m
(3σ) on each axis. The fine mode based on the DGPS
technique is started in the RDV and IAH that require
relative uncertainties less than 1 m (3σ) along each
axis.
Table 1 summarizes the navigation mode and required

accuracy for the absolute and relative position with respect
to the operationmodes and phases. Note that strict require-
ments are only for relative states, and the requirement for
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F IGURE 3 GNSS antenna arrangement of two CubeSats in the
Inertial Alignment Hold (IAH) mode [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

the absolute position is set to 50 m in three-dimensions 3D
(3σ) in both coarse and fine modes.
There are several constraints associated with the design

of a navigation system owing to hardware limitations and
mission characteristics. The GNSS antennas of Timon and
Pumbaa are arranged orthogonally to each other during
the IAH (Figure 3), whereas another formation-flyingmis-
sion, CanX-4/5, controlled the attitude to point the zenith
to acquire common signals asmuch as possible (Kahr et al.,
2018). The arrangement derived from a limitation of the
CubeSat design almost halved the number of common
GNSS signals compared to the case facing the same direc-
tion. Figure 4 is an example of the comparison during one
orbit period. To overcome this limitation and ensure that
an adequate signal is received from at least four satellites

for precise, relative navigation, CANYVAL-C will employ
both GPS and GLONASS signals.
CANYVAL-C has a GNSS antenna and receiver for the

reception and processing of the signal in L1 frequency.
The antenna TW1421 (Tallysman) had a gain of 28 dB, and
the receiver OEM719 (NovAtel) received the signal with a
frequency of 1 Hz and provided an orbit solution with a
1.6 m position accuracy. Although this is sufficient for the
coarse mode, a more refined algorithm is required for fine
mode.
The CubeSat, however, was equipped with a single pro-

cessor that operates at a clock speed of 400 MHz (Cortex
A9, Nara Space Tech.) wherein all the tasks including real-
time relative navigation were executed (Kim et al., 2019). A
light estimator is required to minimize the computational
burden of relative navigation, and CANYVAL-C employed
a simple EKF excluding terms with perturbation forces. In
total, the relative navigation process required 0.75 s; 0.6
s are needed for ISL to transmit GNSS data (sizes of 550
bytes) using ultrahigh frequencies at the speed of 9600 bits
per second,while 0.1 s are needed for data parsing, and 0.05
s is needed for EKF.
CANYVAL-C generated electrical power through the

solar panels attached to a small surface. Because the power
was not sufficient, the GNSS receiver was periodically
turned off. The on-off periods were determined based on
the system design and analysis.
In coarse navigation mode, Timon turned on the

receiver for only for 20 min during four orbital periods,
and Pumbaa turned on the receiver for 30 min during an
orbital period. When the ground command for starting the
fine navigationmode occurred, Timon and Pumbaa would

F IGURE 4 Number of common GNSS signals (nGPS: number of GPS; nGLO: number of GLONASS) when the GNSS antennas of two
CubeSats (a) point the same direction compared to (b) being pointed with orthogonal direction



564 LEE et al.

maintain each receiver for 175 min and 180 min. Note that
the GNSS receiver is necessary only for the AFFP, and the
operation phase changes either to the AFFP or DRSKP. In
the case of the ISL, Timon transmitted the received GNSS
data to Pumbaa once every 5 s.

3 RELATIVE NAVIGATION
METHODOLOGY FOR CANYVAL-C

In this study, an AKF is proposed for the precise rela-
tive navigation used by an orbit control system. The term
adaptive implies that the filter-related parameters are auto-
matically determined during the estimation, rather than
by experience-based parameter tuning. This section briefly
describes the AKF algorithm and defines the CANYVAL-C
navigation problem.

3.1 Adaptive Kalman filter

The Kalman filter is composed of two steps: prediction
and update (Tapley et al., 2004). Starting with an initial
guess for the solve-for parameters and covariance matrix,
the measurement is predicted by the system model that
combines dynamics and observation models. When the
measurement data are acquired, the innovation and the
Kalman gain are evaluated, and the solve-for parame-
ters are updated. The AKF updates the dynamic noise
covariance (𝑄𝑖) and the measurement noise covariances
(𝑅𝑖) based on the innovation and residual, while the EKF
considers them constants. Figure 5 shows the flows of
EKF and AKF as well as the corresponding mathematical
details.
In the prediction step, the solve-for parameters and

covariance matrix are propagated by employing the
dynamicsmodel (𝑓) to the observation time, and the obser-
vation model (ℎ) is employed to predict the measurement
(𝑦−𝑖 ):

𝑋−
𝑖 = 𝑓

(
𝑋+
𝑖−1, 𝑡𝑖

)
,

𝑃−𝑖 = Φ𝑖−1,𝑖 𝑃+𝑖−1Φ
𝑇
𝑖−1,𝑖 + 𝑄

(
Φ𝑖−1,𝑖 =

𝜕𝑓𝑖
𝜕𝑋𝑖−1

)
(1)

𝑦−𝑖 = ℎ
(
𝑋−
𝑖

)
(2)

Here, 𝑋𝑖 and 𝑃𝑖 are the solved vector and covariance
matrix at time 𝑡𝑖 , respectively, Φ𝑖−1,𝑖 is the state transition
matrix from 𝑡𝑖−1 to 𝑡𝑖, the superscripts - and + indicate
predicted and updated values, respectively, and 𝑄 is the
dynamic noise covariancematrix. When themeasurement
data (𝑌) are obtained, the measurement innovation (Δ𝑌−

𝑖 )

is evaluated by comparing the predicted and actual mea-
surements. The Kalman gain (𝐾𝑖) is also computed using
the predicted covariance, sensitivity matrix (𝐻𝑖), and mea-
surement noise covariances (𝑅):

Δ 𝑌−
𝑖 = 𝑌𝑖 − 𝑦−𝑖 (3)

𝐾𝑖 = 𝑃−𝑖 𝐻𝑇
𝑖

(
𝐻𝑖𝑃

−
𝑖 𝐻𝑖 + 𝑅

)−1
(4)

Subsequently, the solve-for vector and covariancematrix
are updated. This process is repeated for each observation
data point in the case of the EKF:

𝑋+
𝑖 = 𝑋−

𝑖 + 𝐾𝑖Δ𝑌𝑖, 𝑃+𝑖 = 𝑃−𝑖 − 𝐾𝑖𝐻𝑖𝑃
−
𝑖 (5)

Although EKF is a simple and efficient estimator, it
requires an empirical tuning process for the dynamic and
measurement noise covariances (𝑄, 𝑅) that have a major
impact on the estimation performance. AKF updates them
during the estimation using various methods, such as
covariance matching. In this research, innovation- and
residual-based covariance matching is employed with a
dynamic noise scaling method (Akhlaghi et al., 2018;
Almagbile et al., 2010). A detailed mathematical process
is described.
First, the residual (Δ𝑌+

𝑖 ) is computed:

Δ 𝑌+
𝑖 = 𝑌𝑖 − 𝑦+𝑖 , 𝑦+𝑖 = ℎ

(
𝑋+
𝑖

)
(6)

The measurement noise covariance (𝑅) is estimated
by residual-based matching, and the innovation-based
dynamic noise covariance (𝑄′

𝑖 ) ismatched.A forgetting fac-
tor (𝛼) is adopted to assign theweights to previous and new
estimates by setting 0 ≤ 𝛼 ≤ 1, where a larger value yields a
smaller variation in the estimation and takes a longer time
to converge (Akhlaghi et al., 2018):

𝑅𝑖 = 𝛼𝑅𝑖−1 + (1 − 𝛼)Δ𝑌+
𝑖

(
𝐾Δ𝑌+

𝑖

)𝑇
(7)

𝑄′
𝑖 = 𝛼𝑄𝑖−1 + (1 − 𝛼)𝐾Δ𝑌−

𝑖

(
𝐾Δ𝑌−

𝑖

)𝑇
(8)

In the study by Almagbile et al. (2010), the dynamic
noise covariance was scaled with a scalar factor (𝛽𝑖

′) as fol-
lows:

𝑄𝑖 =

√
𝛽𝑖

′
𝑄𝑖−1,

𝛽𝑖
′
=

𝑡𝑟𝑎𝑐𝑒
(
𝐻𝑖

(
Φ𝑖−1,𝑖𝑃

+
𝑖−1Φ

𝑇
𝑖−1,𝑖 + 𝑄′

𝑖

)
𝐻𝑇

𝑖

)
𝑡𝑟𝑎𝑐𝑒

(
𝐻𝑖

(
Φ𝑖−1,𝑖𝑃

+
𝑖−1Φ

𝑇
𝑖−1,𝑖 + 𝑄𝑖−1

)
𝐻𝑇

𝑖

) (9)
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F IGURE 5 Flowchart of the extended and adaptive Kalman filtering processes

In the current research, the scaling method was modi-
fied to use a vector with the same dimension as the solve-
for vector. It can scale each element of the dynamic noise
covariance that makes the covariance more realistic:

𝑞𝑖,𝑗 =
√

𝛽𝑗 𝑞𝑖−1,𝑗, 𝛽𝑖 = 𝑑𝑖𝑎𝑔

(
Φ𝑖−1,𝑖𝑃

+
𝑖−1Φ

𝑇
𝑖−1,𝑖 + 𝑄′

𝑖

Φ𝑖−1,𝑖𝑃
+
𝑖−1Φ

𝑇
𝑖−1,𝑖 + 𝑄𝑖−1

)
(10)

Here, 𝑞𝑖,𝑗 and 𝛽𝑗 are the j-th components of 𝑄𝑖 and 𝛽𝑖 ,
respectively.

3.2 CANYVAL-C relative navigation
problem

In this section, the CANYVAL-C relative navigation prob-
lem is stated, and the dynamics and GNSS measurement

models are defined. The solve-for vector is established as
follows,with subscripts 1 and 2 indicating Timon andPum-
baa, respectively:

𝑋 =
[
𝑥2, Δ𝑥21, 𝑏2, �̇�2, Δ𝑏21, Δ�̇�21, Δ𝑁

]
(11)

where 𝑥2 denotes the absolute position and velocity of
Pumbaa, Δ𝑥21 denotes the relative position and velocity of
Pumbaawith respect to Timon, 𝑏2 and �̇�2 are the clock bias
and clock bias ratio of Pumbaa, respectively,Δ𝑏21 andΔ�̇�21
are the relative clock bias and clock bias ratio of Pumbaa
with respect to Timon, respectively, and Δ𝑁 is the differ-
ence in the ambiguities of the carrier phase.
Both absolute and relative positions and velocities are

defined in the WGS84 coordinate system, which is an
Earth-Centered Earth-Fixed (ECEF) coordinate system
used by the GNSS. The absolute position and velocity of
Timon is not directly estimated but is indirectly computed
using the estimation of the absolute and the relative states
of Pumbaa.
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The dynamicsmodel𝑓 contains absolute (𝑓𝑎𝑏𝑠) and rela-
tive acceleration affecting the CubeSats, and the clock bias
drift (𝑓𝑐𝑙𝑐), while ambiguity-related terms are maintained
constant:

𝑓 =

⎡⎢⎢⎢⎢⎢⎣

𝑓𝑎𝑏𝑠 (𝑥2)
𝑓𝑎𝑏𝑠 (𝑥2) − 𝑓𝑎𝑏𝑠 (𝑥1)

𝑓𝑐𝑙𝑐
(
𝑏2, �̇�2

)
𝑓𝑐𝑙𝑐

(
𝑏2 − 𝑏1, �̇�2 − �̇�1

)
0𝑛

⎤⎥⎥⎥⎥⎥⎦
(12)

where 𝑛 is the total number of GNSS observations. The rel-
ative acceleration is computed by subtracting each abso-
lute acceleration defined in the ECEF coordinates, and the
clock bias drift is a simple linear model.

𝑓𝑎𝑏𝑠 = 𝜇
𝑟‖𝑟‖3 + 𝑓𝑝 (𝑟) − 2𝑤⊕ × 𝑣 − 𝑤⊕ × 𝑟 + �⃗� (13)

𝑓𝑐𝑙𝑐 = 𝑏 + �̇�𝑡 (14)

where 𝑟 and 𝑣 are the absolute position and velocity
vector in ECEF coordinates, respectively, 𝜇 is the grav-
itational parameter, 𝑓𝑝 represents a perturbation model
simplified to contain J2 perturbations only, 𝑤⊕ is the
Earth’s rotation vector, and �⃗� is the thrust for orbit
maneuvers.
There are two types of GNSS observables (Cai & Gao,

2007): pseudo-range (𝑃𝑠𝑖 ) and carrier phase (Φ
𝑠
𝑖 ):

𝑃𝑠𝑖 = 𝜌𝑠𝑖 + 𝑐 (𝑏𝑖 − 𝑏𝑠) + Δ𝜌𝑡𝑟𝑜𝑝 + Δ𝜌𝑖𝑜𝑛 + Δ𝜌𝑚𝑢𝑙𝑡𝑖 + 𝜀𝑃
(15)

Φ𝑠
𝑖 =𝜌𝑠𝑖 + 𝑐 (𝑏𝑖−𝑏

𝑠) + Δ𝜌𝑡𝑟𝑜𝑝−Δ𝜌𝑖𝑜𝑛 + Δ𝜌𝑚𝑢𝑙𝑡𝑖 + 𝜆𝑁 + 𝜀Φ
(16)

where the subscript 𝑖 and superscript 𝑠 indicate the receiver
and GNSS satellite, respectively, 𝜌 is the geometric range
between the GNSS satellite and receiver, 𝑏 is the clock bias,
𝑐 is the speed of light,Δ𝜌𝑡𝑟𝑜𝑝 andΔ𝜌𝑖𝑜𝑛 are the tropospheric
and ionospheric delays, respectively, Δ𝜌𝑚𝑢𝑙𝑡𝑖 is the multi-
path effect, 𝜆 is the wavelength of the signal,𝑁 is an ambi-
guity, and 𝜀 is the measured noise.
Among the error sources, the clock bias of the GNSS

satellite can be compensated by the navigation message.
The atmosphere-related delays that have considerable
effects on themeasurement, however, require complicated
models or multifrequency measurements for correction.
These are improper to theCANYVAL-Cmissionwhich has
a restricted computational budget and a single-frequency
GNSS receiver. For this reason, CANYVAL-C employs
three types of GNSS measurements with simplified mea-
surement models: pseudo-range of the Pumbaa (2U Cube-
Sat), and differences of pseudo-range and carrier phase
between the two CubeSats.

The measurement model is given by:

ℎ =
⎡⎢⎢⎣

𝑃2𝑖
𝑃2𝑖 − 𝑃1𝑖
Φ1
𝑖 − Φ1

𝑖

⎤⎥⎥⎦
=

⎡⎢⎢⎢⎣
(‖𝑟2 − 𝑟𝑠𝑖 ‖ + 𝑐

(
𝑏2 − 𝑏𝐺𝑁𝑆𝑆

𝑖

))
𝑖=1,…,𝑛(‖𝑟2 − 𝑟𝑠𝑖 ‖ − ‖𝑟1 − 𝑟𝑠𝑖 ‖ + 𝑐Δ𝑏21
)
𝑖=1,…,𝑛(‖𝑟2 − 𝑟𝑠𝑖 ‖ − ‖𝑟1 − 𝑟𝑠𝑖 ‖ + 𝑐Δ𝑏21 + 𝜆𝑖Δ𝑁𝑖

)
𝑖=1,…,𝑛

⎤⎥⎥⎥⎦
(17)

where 𝑟1 and 𝑟2 are the position vectors of Timon (1U
CubeSat) and Pumbaa (2U CubeSat), and 𝑟𝑠𝑖 is a posi-
tion vector of the i-th GNSS satellite. In the case of the
pseudo-range of Pumbaa, the atmospheric-related correc-
tion model and the multipath effects are excluded for sim-
plification. For the other measurements, all error sources
are canceled through the subtraction, and only the differ-
ence between the clock bias and ambiguity terms remain.
Note that the coordinate and time transform algorithms
were embedded onboard for matching the systems of GPS
and GLONASS (Subirana et al., 2013).
The dynamics model (𝑓) and measurement model (ℎ)

defined in this section are identically employed in both
onboardEKF andAKF in the ground station. Initially, real-
time estimation using onboard EKF was conducted with
empirically tuned parameters. The downlink data from the
CubeSats included the received GNSS data, orbit solution
of the receiver, and the relative navigation results.
After each communication between theCubeSat and the

ground station, the relative navigation results were ana-
lyzed by comparingwith two references: First, the onboard
relative navigation results were compared to the down-
loaded orbit solution computed by the onboard receiver.
Second, the results were compared to the subtraction of
the absolute states of the CubeSats determined by the
Flight Dynamics System (FDS) using GNSS data. If anal-
yses of the differences and covariances yield unreason-
able results, e.g., the differences exceed 4σ boundary of the
covariance, the adaptive process would be executed using
the received GNSS data, and the adaptively determined
parameters would be uploaded to the CubeSats to be
employed to onboard navigation.

4 HARDWARE-IN-THE-LOOP
SIMULATIONS

This section details the verification of the relative naviga-
tion algorithm based onHILS. The system forHILS is com-
posed of a signal generator, flight control system, remote
control system, signal monitoring system, and receiver
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F IGURE 6 Data interface and flow of the Hardware-in-the-Loop Simulation (HILS) system [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com and www.ion.org]

(Park et al., 2010). The signal generator is a Spirent Com-
munications’ GSS 6560 simulator that consists of a Radio
Frequency (RF) signal generator and a personal computer
for operation. It simulates the GNSS signal in L1 frequency,
and the transmitted signal can be received through the RF
cable or antenna.
The flight control system contains both navigation algo-

rithms based on the GNSS data and control algorithm,
and the remote control system provides a controlled tra-
jectory of the satellite to the signal generator in real time
that enables closed-loop simulation. In this research, how-
ever, the remote control system transfers a reference tra-
jectory based on the orbit control scenario, and the flight
control system employs only the navigation algorithm.
The receiver was an OEM719 (the same as that of the
cube), and the corresponding signal monitoring system
was employed.
Figure 6 presents the data interface and flow of the

HILS system, where the gray and black colors near the
arrows indicate interface and data, respectively. The gen-
erated pseudo-tracking data and the simulation conditions
are explained in Section 4.1, and the navigation results are
shown in Section 4.2.

4.1 Simulation scenarios

Based on four orbit control scenarios of CANYVAL-C for
three RDV modes (RDV-1, RDV-2, and RDV-3) and one
IAH mode, the reference trajectories were generated for
the two CubeSats in a Sun-synchronous orbit at an altitude
of 500 km. Note that the altitude is different from the real

TABLE 2 Physical properties of the CubeSats and dynamical
circumstances used to generate trajectories for GNSS tracking data

Property 1U 2U
Mass (kg) 0.9618 2.3754
Mean area (m2) 0.0114 0.0321
Drag coefficient 2.2
Solar Radiation Pressure
(SRP) coefficient

1.0

Epoch date (UTC) 1 Jun 2020 00:00:00 (RDV)
1 Sep 2020 00:00:00 (IAH)

Gravity model EGM96 70 × 70
3rd body perturbation Sun, Moon, Jupiter
Atmospheric model Exponential atmosphere
SRP model Sphere
Uncertainty of thrust
direction (◦)

1

Uncertainty of thrust
magnitude (%)

5

Propagator Runge–Kutta 78

one (525 km) because, for practicality, the orbit for the sim-
ulationwas approximately designated before the final orbit
was decided. The trajectories were generated considering
the physical and dynamical conditions (Table 2) to imply
the real dynamical circumstance, whereas the onboard
navigation employs the simplified dynamics model (Sec-
tion 3.2).
Each scenario was generatedwith different orbital states

and control profiles. Figure 7 shows the control profiles of
the scenarios in Earth-centered inertial coordinates. They
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F IGURE 7 Control profiles during (a) RDV-1, (b) RDV-2, (c) RDV-3, and (d) IAH modes

F IGURE 8 Distances between two CubeSats and control profiles during (a) RDV and (b) IAH modes

were computed considering the constraint of maximum
thrust of 1mNand provided for the navigation algorithmas
feedback involving a magnitude error of 5 % (Section 3.2).
Note that the distances between the CubeSats were main-
tained at approximately 40 m for 200 s in the IAH mode
and values< 1 km in the RDVmodes as shown by Figure 8.
The pseudo-GNSS signals of both the GPS and

GLONASS were generated by SimGEN and received by
OEM719. Figure 9 indicates the number of common signals
from the GPS and GLONASS, considering the constraints
of the GNSS antenna direction described in Section 2.2.

Three scenarios were differently employed. The RDV-
1 and IAH mode scenarios were employed for both the
adaptive process and onboard navigation, and RDV-2 and
RDV-3 mode scenarios were applied only to onboard
navigation.

4.2 Results

This section compares and analyzes the estimated results
of the classical EKF and AKF. For the EKF, the dynamic
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F IGURE 9 Number of common signals for the relative navigation during (a) RDV-1, (b) RDV-2, (c) RDV-3, and (d) IAH modes

and measurement noise covariances as well as the tun-
ing parameters should be experimentally designated. The
parameters significantly influence performance, whereas
tuning is not as straightforward. In fact, tuning is compli-
cated, especially for space missions because realistic cir-
cumstances cannot be known before the actual launch
operations.
In this simulation, EKF started with the empirically

tuned parameters based on numerous numerical simula-
tions, while AKF employed arbitrary parameters because
they were adapted to the actual circumstance during the
estimation. The forgetting factor (𝛼) defined in Section 3.1
was set to 0.8, which is a relatively large value used to pre-
vent temporary variation and lead to stable estimation. For
both estimators, the a priori errors for the absolute states
were assumed as random Gaussian errors of 50 m for the
position and 0.05 m/s for the velocity in each axis. Note
that all errors were evaluated by comparing the reference
trajectory, as described in Section 4.1, and analyzed based
on definitions in the ECEF coordinates.
The relative position errors of both estimators for the

IAH mode are presented in Figure 10. The errors of the
EKF converged to approximately a few tens of centimeters
within a timeframe of 50 s, while the error covariance did
not correspond to the error. This implies that the system
characteristics were not reflected in the noise covariances
that were used to compute the error covariance.
Conversely, in the case of the AKF, this error converged

to 1 cm after 2000 s, which is smaller than the error of the
EKF. The converged error level was in accordance with
that of a previous study (Busse et al., 2003) that used the

absolute state from the GNSS receiver and focused on the
estimation of relative parameters only, such as the relative
state and differences in the clock bias.
Unlike the case of the EKF, the uncertainty boundaries

evaluated by the error covariance also described actual
estimation errors. Compared with the empirically tuned
parameters, it was confirmed that the adaptively deter-
mined parameters depicted the actual system and provided
a realistic error covariance. The error covariance provides a
reliable error bound covering the actual errorswhich is sig-
nificant because, in practice, only amatrix is used to assess
the estimation accuracy.
Figure 11 shows the changes in each element of themea-

surement noise covariance R and dynamic noise covari-
ance Q during the adaptive process (with AKF): elements
of measurement noise covariance for pseudo-range (PR),
relative pseudo-range (rPR), and relative carrier phase
(rCP), elements of dynamic noise covariance for absolute
position and velocity (QPos, QVel), and relative position and
velocity (QRelPos, QRelVel).
The measurement noise covariance immediately con-

verged, and the dynamic noise covariance converged at
approximately 2,000 s after its onset. Both the relative posi-
tion errors ofAKF (Figure 9, lower graphs) and the changes
in the dynamic noise covariances (Figure 10) required
approximately 2,000 s. This implies that the dynamic
noise covariance significantly affects the navigation
performance, emphasizing the importance of the exact
determination of the covariance. The adaptive process
(AKF) can robustly determine the exact covariance values
starting with arbitrary initial guesses. This can reduce
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F IGURE 10 Relative position error of (a) the Extended
Kalman Filter (EKF) and (b) Adaptive Kalman Filter (AKF) in IAH
mode

the time and effort required to identify appropriate initial
guesses.
Assuming the practical operation of CANYVAL-C,

wherein the adaptively determined parameters (𝑄, 𝑅) are
uploaded and employed to the CubeSats, relative navi-
gation was conducted onboard using an EKF with the
determined tuning parameters. The adaptively determined
parameters in the IAH mode were applied to the onboard
relative navigation algorithm (EKF) for (1) the same IAH
mode and (2) the three different RDV modes to examine
the applicability and consistency of the parameters. The
mean values of the tuning parameters at the last 1,000
s (after the convergence) were considered as adaptively
determined values.
The parameters determined through the AKF were

employed for the relative navigation in the same IAHmode
scenario. Figure 12 shows the measurement residuals and

F IGURE 11 Changes of (a) measurement noise covariance
and (b) dynamic noise covariance during the adaptive process

relative position errors of the EKF. The residuals and posi-
tional errors converged to a steady levelwithin 50 s, and the
covariance matrix provided the proper uncertainty bound-
ary representing the error.
Table 3 shows the Root-Mean-Square (RMS) values of

the relative position errors using an EKF with empirically
tuned and adaptively determined parameters, wherein the
accuracy improved by 45%–71% for each axis and by 61% in
3D for the adaptive case.
Although both cases satisfied the CANYVAL-C mission

requirement for relative position, the absolute position
errors in the case of the empirically tuned parameters did
not satisfy the requirement by exceeding 50 m in 3D, and
the error covariance did not coincide with the errors. Con-
versely, the adaptively determined parameters provided an
absolute position error of less than 10 m for each axis, and
the error covariance matched the errors (Figure 13).
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F IGURE 1 2 (a) Measurement residuals and (b) relative
position errors of EKF for IAH mode with the adaptively
determined parameters in IAH mode

TABLE 3 RMS values of relative position errors of EKF for the
IAH mode using empirically tuned and adaptively determined
parameters

Tuning
method X (cm) Y (cm) Z (cm) 3D (cm)
Empirical 11.3801 19.0551 14.3376 26.4230
Adaptive 6.2275 7.4983 4.4482 10.7141

In terms of reliability, an estimator must determine all
solve-for parameters, even if strict requirements are set for
only a part of these parameters. It was verified that the
adaptive process can properly determine all the elements
in the dynamic and measurement noise covariances, thus
making a stable estimation. This is especially valuable in
the case of the high dimensionality of the solve-for param-
eters wherein the empirical tuning process ismore compli-
cated.

F IGURE 13 Absolute position errors of EKF for IAH mode
with (a) the empirically tuned and (b) the adaptively determined
parameters in IAH mode

The onboard relative navigation using EKF was con-
ducted for three RDV scenarios with the tuning parame-
ters that were adaptively determined according to the IAH
mode scenario. Figure 14 and Table 4 show the relative
position errors and RMS error values in each case that sat-
isfied the mission requirement.
Compared to the RDV-1 case, the RDV-2 and RDV-3

cases took more time for convergence and had increased
errors at the end time. This was attributed to the decreas-
ing number of common GNSS signals, which reduced the
navigation accuracy. TheRDV-2 andRDV-3had fewer than
10 signals at the start and end, whereas the RDV-1 had
more than 10 signals for almost the entire duration. After
the convergence occurred at 700 s, the RMS errors were
6.8 and 14 cm for RDV-2 and RDV-3 modes, respectively.
This implies that the adaptively determined parameters
represent the system well, regardless of the tracking data
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F IGURE 14 Relative position errors of (a) RDV-1, (b) RDV-2,
and (c) RDV-3 mode scenarios with adaptively determined tuning
parameters in IAH mode

TABLE 4 RMS of relative position errors of EKF for three RDV
modes using adaptively determined parameters in IAH mode

Applied
scenario X (cm) Y (cm) Z (cm) 3D (cm)
RDV-1 3.3993 2.7706 2.2121 4.9117
RDV-2 10.6763 8.3295 21.3251 25.2611
RDV-3 17.1743 9.9453 27.7249 34.0960

F IGURE 15 Relative position errors of (a) EKF and (b) AKF
in RDV-1 mode

and control scenarios. Therefore, this confirms the reliabil-
ity and consistency of the parameters. The proposed tech-
nique was verified to be capable of providing reliable nav-
igation performance without imposing an additional com-
putational burden on the onboard CubeSat computer.
In the RDV-1mode scenario, similar analyses as those in

the IAH mode were conducted. After the adaptive process
for the RDV-1 scenario, the adaptively determined param-
eters were applied for the onboard navigation test using
EKF (1) to the sameRDV-1 scenario and (2) to different sce-
narios. All RDV scenarios had the same epoch time, while
the epoch time of the IAH scenario was three months later
than that of the RDV.
As in the case of the IAH mode, the relative posi-

tion errors of the EKF with empirically tuned parameters
rapidly converged to a steady state, but the error covari-
ance did not depict the errors. The errors of AKF satisfied
the requirement after 1,500 s with the corresponding error
covariance (Figure 15). Using the adaptively determined
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F IGURE 16 Relative position errors of EKF for RDV-1 mode
with the adaptively determined parameters in RDV-1 mode

parameters, EKF converged within 50 s, and the accuracy
was improved to approximately 7 cm (3σ) on each axis for
the same RDV-1 scenario (Figure 16).
Unlike the case with the empirically tuned parame-

ters, the adaptively determined parameters provided the
error covariance that closely matched the actual estima-
tion errors. This achieved a practical analysis of the esti-
mation accuracy. For the IAH, RDV-2, and RDV-3 scenar-
ios, the parameters were applied, and the relative position
errors converged to 10 cm (3σ) for each axis within a period
of 50 s in the IAHmode and within a period of 500 s in the
RDV modes (Figure 17).
Table 5 shows the RMS of the relative errors that sat-

isfied the mission requirement of the relative position in
all cases. Similar to the results using the adaptively deter-
mined parameters in IAH mode, the errors were large at
the end time, and the time required for convergence was
relatively long in the cases of the RDV-2 and RDV-3. The
RMS errors after convergence were 4.3 and 9.6 for each
mode.
Through the analyses of four different scenarios, the dis-

tinct advantages of AKF were proven, and the operation
technique for CANYVAL-Cwas verified. The adaptive pro-
cess robustly identified the tuning parameters regardless
of the a priori states and initial guesses for the parame-
ters. This effectively reduced the time and effort required
to guess the proper initial value or empirically tune the
parameters.
The determined parameters reliably estimated all the

state parameters and described the actual system accu-
rately. The error covariance associated with the use of the
parameters indicates the actual error and led to a realistic
analysis in practical situations. Because the operation tech-
nique was designated to execute the process in the ground

F IGURE 17 Relative position errors of EKF for (a) IAH, (b)
RDV-2, and (c) RDV-3 modes with adaptively determined tuning
parameters in the RDV-1 mode

station, no additional computational burden was induced
to the onboard computer of the CubeSat.
The practical applicability of the technique for a time-

separated environmentwas proven, whereby onboard rela-
tive navigation was conducted with parameters adaptively
determined based on actual GNSS data that were received
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TABLE 5 RMS of relative position errors of EKF for IAH and
the three RDV modes using adaptively determined parameters in
the RDV-1 mode

Applied
scenario X (cm) Y (cm) Z (cm) 3D (cm)
IAH 3.5252 3.6836 2.7501 5.7930
RDV-1 2.5505 1.8583 1.6038 3.5398
RDV-2 18.4737 20.6161 30.7802 41.3971
RDV-3 16.4849 10.2361 28.4614 34.4467

from the CubeSat several hours earlier. In practical opera-
tion after the launch of the CANYVAL-C, the relative navi-
gation results were validated by comparing both the down-
loaded orbit solution computed by the onboard receiver
and the determined orbit states by FDS. If the results seem
not to be reasonable after analyzing the differences and
covariances or if considerable system changes occur, the
adaptive process would be conducted and the adaptively
determined parameters would be uploaded to improve per-
formance.

5 CONCLUSIONS

This study developed a relative navigation algorithm that
employs EKF andAKF for CANYVAL-Cwithmission con-
straints, proposed an operation technique for precise and
reliable relative navigation, and verified its performance
using HILS. The operation technique ensured that the
ground station adaptively determines the tuning parame-
ters by a modified AKF and uploads them onboard, and
the CubeSats conduct relative navigation by applying the
parameters to the EKF.
For the adaptive algorithm, the innovation- and

residual-based covariance matching was employed by
adding a modified scaling method for the dynamic noise.
The method scales each element of the dynamic noise
using a scaling parameter having the same dimension
as the state vector. In the case of HILS, four scenarios of
CANYVAL-C, including the constraints, were employed:
the adaptive process took IAH and RDV mode scenarios,
and the adaptively determined parameters were applied to
all scenarios, including another two RDV mode scenarios,
to examine consistency and reliability.
Adopting the adaptively determined parameters, the rel-

ative navigation accuracies satisfied the mission require-
ments in all cases. The results confirmed the robustness
of the adaptive process and the practicality and reliability
of the estimation with the adaptively determined parame-
ters. The adaptive process provided steady tuning param-
eters, regardless of the initial guess. This reduced the time
and effort required to identify proper initial guesses and

tune parameters. The adaptively determined parameters
led to reliable estimation for all solve-for parameters and
represented the actual system accurately to lead realistic
error analysis using the error covariance. It was verified
that use of the proposed operation concept led to reliable
real-time relative navigation without imposing an addi-
tional computational burden on CubeSat. After the launch
of CANYVAL-C scheduled in early 2021, the techniquewill
be applied to practical operations.

ACKNOWLEDGMENTS
Space Basic Technology Development Program through
the National Research Foundation (NRF) of Korea funded
by theMinistry of Science and ICT of the Republic of Korea
(NRF-2017M1A3A3A06085349).

ORCID
Sang-YoungPark https://orcid.org/0000-0002-1962-
4038

REFERENCES
Akhlaghi, S., Zhou, N. & Huang, Z. (2018). Adaptive adjustment of
noise covariance in Kalman filter for dynamic state estimation.
IEEE Power and Energy Society General Meeting. https://doi.org/
10.1109/PESGM.2017.8273755

Almagbile, A., Wang, J., & Ding, W. (2010). Evaluating the perfor-
mances of adaptiveKalman filtermethods inGPS/INS integration.
Journal of Global Positioning Systems. https://doi.org/10.5081/jgps.
9.1.33

Andersen, G., Asmolov, O., Dearborn,M. E., &McHarg,M. G. (2012).
FalconSAT-7: a membrane photon sieve CubeSat solar telescope.
Space Telescopes and Instrumentation 2012: Optical, Infrared, and
Millimeter Wave. https://doi.org/10.1117/12.924250

Bonin, G., Roth, N., Armitage, S., Newman, J., Risi, B. & Zee, R. E.
(2015). CanX-4 and CanX-5 Precision Formation Flight: Mission
Accomplished! Proceedings of the 29th Annual AIAA/USU Con-
ference on Small Satellites. https://digitalcommons.usu.edu/cgi/
viewcontent.cgi?article=3167&context=smallsat

Busse, F. D., How, J. P., & Simpson, J. (2003). Demonstration of adap-
tive extended Kalman filter for low-earth-orbit formation estima-
tion using CDGPS. NAVIGATION, 50, 79–93. https://doi.org/10.
1002/j.2161-4296.2003.tb00320.x

Cai, C., & Gao, Y. (2007). Precise point positioning using combined
GPS and GLONASS observations. Journal of Global Positioning
Systems, 6, 13–22. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.524.3103&rep=rep1&type=pdf

Calhoun, P. C., Novo-Gradac, A. M., & Shah, N. (2018). Spacecraft
alignment determination and control for dual spacecraft precision
formation flying. Acta Astronautica, 153, 349–356. https://doi.org/
10.1016/j.actaastro.2018.02.021

Fish, C. S., Swenson, C. M., Crowley, G., Barjatya, A., Neilsen, T.,
Gunther, J., Azeem, I., Pilinski, M., Wilder, R., Allen, D., Ander-
son, M., Bingham, B., Bradford, K., Burr, S., Burt, R., Byers, B.,
Cook, J., Davis, K., Frazier, C., . . . Cousins, M. (2014). Design,
development, implementation, and on-orbit performance of the
dynamic ionosphere cubesat experiment mission. Space Science
Reviews, 181, 61–120. https://doi.org/10.1007/s11214-014-0034-x

https://orcid.org/0000-0002-1962-4038
https://orcid.org/0000-0002-1962-4038
https://orcid.org/0000-0002-1962-4038
https://doi.org/10.1109/PESGM.2017.8273755
https://doi.org/10.1109/PESGM.2017.8273755
https://doi.org/10.5081/jgps.9.1.33
https://doi.org/10.5081/jgps.9.1.33
https://doi.org/10.1117/12.924250
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3167&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3167&context=smallsat
https://doi.org/10.1002/j.2161-4296.2003.tb00320.x
https://doi.org/10.1002/j.2161-4296.2003.tb00320.x
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.524.3103&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.524.3103&rep=rep1&type=pdf
https://doi.org/10.1016/j.actaastro.2018.02.021
https://doi.org/10.1016/j.actaastro.2018.02.021
https://doi.org/10.1007/s11214-014-0034-x


LEE et al. 575

He, X. T., Nan, J., & Zhen, S. Z. (2012). An improved adaptive Sage
filter with applications in GEO orbit determination and GPS kine-
matic positioning. Science China: Physics, Mechanics and Astron-
omy, 55, 892–898. https://doi.org/10.1007/s11433-012-4659-z

Johnston-Lemke, B. & Zee, R. E. (2010). Attitudemaneuvering under
dynamic path and time constraints for improved GPS coverage
of formation-flying nanosatellites. 61st International Astronautical
Congress 2010, IAC 2010.

Kaaret, P., Zajczyk, A., Larocca, D. M., Ringuette, R., Bluem, J., Fuel-
berth, W., Gulick, H., Jahoda, K., Johnson, T. E., Kirchner, D. L.,
Koutroumpa, D., Kuntz, K. D., McCurdy, R., Miles, D. M., Robi-
son, W. T. & Silich, E. M. (2019). Halosat: A cubesat to study
the hot galactic halo. In arXiv. https://doi.org/10.3847/1538-4357/
ab4193

Kahr, E., Roth, N., Montenbruck, O., Risi, B., & Zee, R. E. (2018). GPS
relative navigation for the CanX-4 and CanX-5 formation-flying
nanosatellites. Journal of Spacecraft andRockets, 55(6). https://doi.
org/10.2514/1.A34117

Karlgaard, C. D., & Schaub, H. (2011). Adaptive nonlinear huber-
based navigation for rendezvous in elliptical orbit. Journal of Guid-
ance, Control, andDynamics, 34(2). https://doi.org/10.2514/1.51939

Kim,G.-N., Park, S.-Y., Kang,D.-E., Son, J., Lee, T., Jeon, S., Kim,N.,&
Park, Y.-K. (2019). Development of CubeSats for CANYVAL-Cmis-
sion in formation flying. APISAT 2019: Asia Pacific International
Symposium on Aerospace Technology (pp. 813–824). Engineers
Australia.

Klesh, A., Clement, B., Colley, C., Essmiller, J., Forgette, D., Kra-
jewski, J., Marinan, A., Martin-mur, T., Steinkraus, J., Stern-
berg, D., Werne, T. & Young, B. (2018). MarCO : Early Opera-
tions of the First CubeSats to Mars. 32nd Annual AIAA/USU
Conference on Small Satellites. https://digitalcommons.usu.edu/
smallsat/2018/all2018/474

Leonard, C. L., Hollister,W.M., & Bergmann, E. V. (1989). Orbital for-
mationkeeping with differential drag. Journal of Guidance, Con-
trol, and Dynamics, 12(1), 108–113. https://doi.org/10.2514/3.20374

Llorente, J. S., Agenjo, A., Carrascosa, C., De Negueruela, C.,
Mestreau-Garreau, A., Cropp, A., & Santovincenzo, A. (2013).
PROBA-3: Precise formation flying demonstration mission. Acta
Astronautica, 82(1), 38–46. https://doi.org/10.1016/j.actaastro.
2012.05.029

Morrison, J. M., Jeffrey, H., Gorter, H., Anderson, P., Clark, C.,
Holmes, A., Feldman, G. C., & Patt, F. S. (2016). SeaHawk: an
advanced CubeSat mission for sustained ocean colour monitor-
ing. Sensors, Systems, and Next-Generation Satellites XX. https://
doi.org/10.1117/12.2241058

Park, J. I., Park, H. E., Park, S. Y., & Choi, K. H. (2010). Hardware-
in-the-loop simulations of GPS-based navigation and control for
satellite formation flying.Advances in Space Research, 46(11), 1451–
1465. https://doi.org/10.1016/j.asr.2010.08.012

Park, J. P., Park, S. Y., Song, Y. B., Kim, G. N., Lee, K., Oh, H. J., Yim, J.
C., Lee, E., Hwang, S. H., Kim, S., Choi, K. Y., Lee, D. S., Kwon, S.
H., Kim, M. S., Yeo, S. W., Kim, T. H., Lee, S. H., Lee, K. B., Seo, J.
W.& Jin, S. . . . (2016). Cubesat development for canyval-Xmission.
SpaceOps 2016 Conference.

Park, S. Y., Calhoun, P. C., Shah, N. & Williams, T. W. (2014). Orbit
design and control of technology validation mission for refractive
space telescope in formation flying. AIAA Guidance, Navigation,
and Control Conference.

Roscoe, C. W. T., Westphal, J. J., & Mosleh, E. (2018). Overview and
GNC design of the CubeSat Proximity Operations Demonstration
(CPOD) mission. Acta Astronautica, 153, 410–421. https://doi.org/
10.1016/j.actaastro.2018.03.033

Shah, N., Calhoun, P., Dennis, B., Krizmanic, J., Shih, A. & Skinner,
G. (2013). The Virtual Telescope DemonstrationMission (VTDM).
5th International Conference on Spacecraft Formation Flying Mis-
sions and Technologies. https://www.semanticscholar.org/paper/
THE-VIRTUAL-TELESCOPE-DEMONSTRATION-MISSION-
(-VTDM-Shah-Calhoun/8784b636b6e157e9f0ad90c55d489ce7f
4c11400

Subirana, J., Zornoza, J. M. J., & Hernández Pajares, M. (2013).
GNSS Data Processing Volume I: Fundamentals and Algorithms
(ESA TM-23/1; May 2013). Noordwijk, Netherlands: ESA Com-
munications, ESTEC. https://gssc.esa.int/navipedia/GNSS_Book/
ESA_GNSS-Book_TM-23_Vol_I.pdf

Tapley, B. D., Schutz, B. E., & Born, G. H. (2004). Statisti-
cal Orbit Determination. Elsevier Inc. https://doi.org/10.1016/
B978-0-12-683630-1.X5019-X

Xiao, Y., Li, L., Chang, J., Wu, K., Liang, G., & Yu, J. (2018). A novel
GPS based real time orbit determination using adaptive extended
kalman filter. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E101-A(1), 287–292.

How to cite this article: Lee E, Son J, Park S-Y.
Relative navigation technique with constrained
GNSS data for formation-flying CubeSat mission,
CANYVAL-C. NAVIGATION. 2021;68:559–575.
https://doi.org/10.1002/navi.439

https://doi.org/10.1007/s11433-012-4659-z
https://doi.org/10.3847/1538-4357/ab4193
https://doi.org/10.3847/1538-4357/ab4193
https://doi.org/10.2514/1.A34117
https://doi.org/10.2514/1.A34117
https://doi.org/10.2514/1.51939
https://digitalcommons.usu.edu/smallsat/2018/all2018/474
https://digitalcommons.usu.edu/smallsat/2018/all2018/474
https://doi.org/10.2514/3.20374
https://doi.org/10.1016/j.actaastro.2012.05.029
https://doi.org/10.1016/j.actaastro.2012.05.029
https://doi.org/10.1117/12.2241058
https://doi.org/10.1117/12.2241058
https://doi.org/10.1016/j.asr.2010.08.012
https://doi.org/10.1016/j.actaastro.2018.03.033
https://doi.org/10.1016/j.actaastro.2018.03.033
https://www.semanticscholar.org/paper/THE-VIRTUAL-TELESCOPE-DEMONSTRATION-MISSION-(-VTDM-Shah-Calhoun/8784b636b6e157e9f0ad90c55d489ce7f4c11400
https://www.semanticscholar.org/paper/THE-VIRTUAL-TELESCOPE-DEMONSTRATION-MISSION-(-VTDM-Shah-Calhoun/8784b636b6e157e9f0ad90c55d489ce7f4c11400
https://www.semanticscholar.org/paper/THE-VIRTUAL-TELESCOPE-DEMONSTRATION-MISSION-(-VTDM-Shah-Calhoun/8784b636b6e157e9f0ad90c55d489ce7f4c11400
https://www.semanticscholar.org/paper/THE-VIRTUAL-TELESCOPE-DEMONSTRATION-MISSION-(-VTDM-Shah-Calhoun/8784b636b6e157e9f0ad90c55d489ce7f4c11400
https://gssc.esa.int/navipedia/GNSS_Book/ESA_GNSS-Book_TM-23_Vol_I.pdf
https://gssc.esa.int/navipedia/GNSS_Book/ESA_GNSS-Book_TM-23_Vol_I.pdf
https://doi.org/10.1016/B978-0-12-683630-1.X5019-X
https://doi.org/10.1016/B978-0-12-683630-1.X5019-X
https://doi.org/10.1002/navi.439

	Relative navigation technique with constrained GNSS data for formation-flying CubeSat mission, CANYVAL-C
	Abstract
	1 | INTRODUCTION
	2 | CANYVAL-C
	2.1 | Mission overview
	2.2 | Requirements and constraints on navigation

	3 | RELATIVE NAVIGATION METHODOLOGY FOR CANYVAL-C
	3.1 | Adaptive Kalman filter
	3.2 | CANYVAL-C relative navigation problem

	4 | HARDWARE-IN-THE-LOOP SIMULATIONS
	4.1 | Simulation scenarios
	4.2 | Results

	5 | CONCLUSIONS
	ACKNOWLEDGMENTS
	ORCID
	REFERENCES


