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Abstract
A new global navigation concept is studied that relies on carrier Doppler shift
measurements from a large LEO constellation. This system could provide an
alternative to pseudorange-based GNSS. The concept uses a high-fidelity model
of received carrier Doppler shift. This model is used in a point-solution batch
filter that simultaneously estimates eight unknowns: the three position vector
components, receiver clock offset, three velocity vector components, and receiver
clock offset rate. The filter uses eight or more measured Doppler shifts in its
least-squares fit. A generalized Geometric Dilution of Precision (GDOP) analysis
indicates that absolute position accuracies on the order of 1-5 meters and abso-
lute velocity accuracies on the order of 0.01 m/sec to 0.05 m/sec may be achiev-
able if the range-rate precision of the Doppler shift measurements is 0.01 m/sec.
These accuracies are comparable to current pseudorange-based GNSS. Clock off-
set accuracy is on the order of 0.0001 to 0.0010 sec 1-𝜎.
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1 INTRODUCTION

This effort seeks an alternative, or backup, to stan-
dard Global Navigation Satellite Systems (GNSS) that
operate in Medium Earth Orbit (MEO) and above–
systems such as GPS, GLONASS, Galileo, and BeiDou.
These systems have vulnerabilities to spoofing and jam-
ming partly because their signals are weak and partly
because they use low numbers of expensive satellites with
long lifespans, which makes upgrading them slow and
expensive.
The present study seeks to develop a system

that achieves a full 4-Dimensional (4D) Posi-
tion/Navigation/Time (PNT) capability by using passive
reception of downlink signals from large LEO constella-
tions. It seeks to exploit the various plans that exist to field
large constellations of Low Earth Orbit (LEO) satellites
such as OneWeb, Starlink, and Kuiper.

OneWeb has built and launched a number of satel-
lites already and had plans at one time to field a LEO
constellation with 720 satellites in 18 nearly-polar orbital
planes (FCC Report, 2017). Although the company went
bankrupt, it has since been bought, and there are now
renewed plans to field the constellation, perhaps with
a GNSS capability added to the original satellite design.
SpaceX has been launching satellites for its Starlink con-
stellation.One plan calls for an initial constellation of 1,600
LEO satellites that eventually expands to 2,825 satellites
(FCC Report, 2016). Amazon has plans for an 1,156 satel-
lite LEO constellation called Kuiper (FCC Report, 2019).
It is not anticipated that such constellations will sup-

port pseudorange-based navigation for two reasons: First,
they will not carry atomic clocks. Second, they will not
broadcast downlink signals that support pseudorange
measurements through a calibrated connection between
transmission time tags and transmitter clock time.
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Therefore, the present study seeks to performnavigation
using carrier Doppler shift as the only navigation observ-
able. Carrier Doppler shift is generally easy to measure
from a radio signal that carries digital data. This author has
experience measuring carrier Doppler shift from signals
that use BPSK, QPSK, and OFDM modulation schemes,
[e.g., see Psiaki & Slosman (2019)]. They have proven
amenable to precise measurement of carrier Doppler shift.
Similar to pseudorange-based GNSS, a point-solution

methodology is developed for Doppler-shift-based GNSS.
Instead of using four or more pseudorange measurements
to determine 3-Dimensional (3D) position and receiver
clock offset, the new method uses eight or more carrier
Doppler shift measurements to determine 3D position,
receiver clock offset, velocity, and receiver clock offset rate.
The need for measurements from eight or more satellites
arises because all eight of these unknowns appear in any
navigation-grade model of carrier Doppler shift.
The term TRANSIT on steroids in this paper’s title refers

to the TRANSIT Navigation System that was developed in
the 1950s and 1960s (Parkinson, 1996). The TRANSIT sys-
tem consisted of less than a dozen LEO satellites. Typically
a user could receive a signal from one satellite at a time,
perhaps with gaps of an hour or more when no satellites
were visible. The user receiver measured carrier Doppler
shift from the broadcast TRANSIT signal, as is done in the
present work. If the user velocity and altitudewere known,
as for a TRIDENT submarine at periscope depth operating
with a very stable Inertial Navigation System (INS), then a
position fix could be obtained from a single satellite pass.
The accuracy was on the order of 200 meters.
With the advent of large LEO constellations and the

simultaneous visibility of more than eight satellites, it may
be possible to use the principles of TRANSIT to much bet-
ter effect: There would be no availability gaps, no need
to know velocity or altitude a priori, and no need for an
INS. TRANSIT on steroidsmight be able to navigate smart-
phones and drones, not just ballistic missile submarines.
Other researchers have considered the possibility of

using large LEO constellations for navigation, [e.g., (Ben-
zerrouk & Fang et al., 2019; Benzerrouk & Nguyen et al.,
2019; Gutt et al., 2018; Iannucci & Humphreys, 2020; Kas-
sas et al., 2019; Khalife & Kassas, 2019a; Khalife & Kas-
sas, 2019b; Morales et al., 2019; Morales-Ferre et al., 2020;
Racelis et al., 2019; and Reid et al., 2018)]. Some stud-
ies have considered carrier Doppler shift or beat carrier
phase, which is the negative time integral of Doppler shift.
A subset of the relevant research has examined the use of
Doppler shift in conjunction with pseudorange, as in Kas-
sas et al. (2019). INS aiding has been considered in some
papers, such as in (Benzerrouk & Fang et al., 2019) and
(Morales et al., 2019).

The only paper known to this author that considered a
full navigation capability using only carrier Doppler shift
measurements in a point solution is Morales-Ferre et al.
(2020). That paper’s system, however, does not provide a
full navigation capability because it assumes that the user
receiver’s velocity and clock offset are both zero. Thus, the
present paper is the first to consider Doppler-only navi-
gation without any assumptions about velocity or receiver
clock offset and without the need for aiding from an Iner-
tial Navigation System (INS) or for pseudorange data. It
is the first to show that receiver clock offset is observ-
able simultaneously with 3D position, 3D velocity, and
receiver clock offset rate solely from carrier Doppler shift
measurements.
This paper makes three contributions to the subject

of carrier-Doppler-shift-based navigation using signals
from large LEO constellations: First, it develops three
useful carrier Doppler shift measurement models. Second,
it develops a point-solution algorithm for determining
position, receiver clock offset, velocity, and receiver
clock offset rate from eight or more carrier Doppler shift
measurements. This algorithm solves a nonlinear least-
squares estimation problem. This paper examines the
performance of the new point-solution algorithm on sim-
ulated data, including data that contain un-compensated
satellite ephemeris errors and transmitter clock frequency
offsets. Third, this paper develops a generalized Geo-
metric Dilution of Precision (GDOP) analysis for this
concept, presenting GDOP maps for several constella-
tions, and examining constellation characteristics that
are important to achieving good performance with such a
system.
The analyses and results of this paper are presented in

seven main sections followed by a summary and conclu-
sion. The second section presents three models of carrier
Doppler shift. The third section reviews four large LEO
constellations in order to assess their potential suitability
for carrier-Doppler-shift-based navigation. The fourth
section develops a batch least-squares filter for determin-
ing point solutions of position, clock offset, velocity, and
clock offset rate based on eight or more measured carrier
Doppler shifts. The fifth section applies this batch filter to
simulated truth-model data in order to study the naviga-
tion performance of the system. The sixth section develops
a generalized GDOP analysis for Doppler-based naviga-
tion. The seventh section uses this new GDOP metric to
explore the potential performance of several large LEO
constellations. The eighth section discusses other consid-
erations that are important to such a system which have
not been addressed in the present study. The ninth section
gives a summary of this paper’s results and presents its
conclusions.
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2 CARRIER DOPPLER SHIFT
MEASUREMENTMODELS

2.1 Doppler shift from the time
derivative of accumulated delta range

The measured carrier Doppler shift equals the negative
time derivative of the accumulated delta range divided by
the carrier wavelength:

𝐷𝑗 = −
1
𝜆

𝑑Δ𝜌
𝑗
𝐴𝐷𝑅

𝑑𝑡𝑅
(1)

where 𝐷𝑗 is the measured carrier Doppler shift from the
𝑗th GNSS satellite in Hz, 𝜆 is the nominal wavelength in
meters, Δ𝜌𝑗𝐴𝐷𝑅 is the accumulated delta range in meters,
and 𝑡𝑅 is the erroneous receiver clock time. It is related to
the true signal reception time𝑇𝑅 and the receiver clock off-
set 𝛿𝑅 as follows:

𝑇𝑅 = 𝑡𝑅 − 𝛿𝑅 (2)

The accumulated delta range can be modeled as
follows:

Δ𝜌
𝑗
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[
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𝑗
𝑡𝑟𝑜𝑝 − 𝛿𝑡

𝑗
𝑖𝑜𝑛

]
+ 𝜆𝛽 (3)

where 𝑟 is the unknown user receiver position vec-
tor in Earth-Centered/Earth-Fixed (ECEF) Cartesian
coordinates–typically WGS-84 coordinates, 𝑟𝑗(𝑡) is the
known orbital position time history of the 𝑗th GNSS satel-
lite in ECEF coordinates, 𝜔𝐸 is the Earth’s rotation rate,
𝛿𝑡

𝑗
𝑝 is the propagation time of the signal from the satellite

to the receiver, 𝛿𝑗 is the satellite clock offset, 𝛿𝑡𝑗𝑡𝑟𝑜𝑝 is the
signal delay due to the neutral atmosphere (mostly due
to the troposphere), −𝛿𝑡𝑗𝑖𝑜𝑛 is the time-equivalent carrier
phase advance that is caused by dispersive refraction in
the ionosphere, and 𝛽 is the bias on the measured beat
carrier phase.
Although not explicitly noted in Equation (3), the sig-

nal propagation delay implicitly depends on 𝑟, 𝛿𝑅, and 𝑡𝑅
because itmust be computed by solving the following delay

equation:
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𝑗
𝑖𝑜𝑛 (4)

Note that the ionosphere term acts as a delay in this equa-
tion.
The troposphere delay term 𝛿𝑡

𝑗
𝑡𝑟𝑜𝑝 and the ionosphere

advance/delay term 𝛿𝑡
𝑗
𝑖𝑜𝑛 also depend on 𝑟, 𝛿𝑅, and 𝑡𝑅. This

dependence comes partly through the Line-of-Sight (LOS)
unit direction vector from the satellite to the receiver:
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(5)

This unit vector affects the elevation angle through the
troposphere and the ionosphere pierce-point location and
zenith angle. The receiver location 𝑟 also affects the iono-
sphere pierce-point location directly.
The 3 × 3 direction cosines matrix:
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(6)

appears in Equations (3) through (5). It compensates for
the rotation of the ECEF coordinate frame while the signal
travels from the satellite to the receiver.

2.2 Analytic carrier Doppler shift model

Equations (1) through (6) can be used to derive an analytic
carrier Doppler shift model. If one ignores the time deriva-
tives of the troposphere and ionosphere terms, then this
model takes the form:

−𝜆𝐷𝑗

=

(𝜌̂𝑗)T(𝑣 − 𝑣𝑗)

{
1+

𝑑𝛿𝑗

𝑑𝑇𝑗

1+
1

𝑐

[
𝑎
𝑗
𝛿𝑡𝑝

−(𝜌̂𝑗)T𝑣𝑗
]} + 𝑐

𝑑𝛿𝑅

𝑑𝑇𝑅
− 𝑐

𝑑𝛿𝑗

𝑑𝑇𝑗

1 +
𝑑𝛿𝑅

𝑑𝑇𝑅

(7)
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after multiplication of Equation (1) on both sides by −𝜆,
which transforms to the range-rate equivalent of the car-
rier Doppler shift. A derivation of this equation is given in
the appendix.
The new quantities introduced in this model are the

unknown receiver velocity 𝑣, the unknown receiver clock
offset rate 𝑑𝛿𝑅∕𝑑𝑇𝑅, the known ECEF satellite velocity at
the time of transmission (but transformed to the ECEF
frame of the time of reception) 𝑣𝑗 , 𝑇𝑗 = 𝑡𝑅 − 𝛿𝑅 − 𝛿𝑡

𝑗
𝑝,

which is the time of signal transmission, the satellite clock
offset rate 𝑑𝛿𝑗∕𝑑𝑇𝑗 , and 𝑎

𝑗
𝛿𝑡𝑝
, which is a term that arises

due to the time rate of change of the propagation delay 𝛿𝑡𝑗𝑝.
The formula for the satellite velocity is:

𝑣𝑗 = 𝐴
(
𝜔𝐸𝛿𝑡

𝑗
𝑝

) 𝑑𝑟𝑗
𝑑𝑡

|||||(𝑡𝑅−𝛿𝑅−𝛿𝑡𝑗𝑝) (8)

The 𝑎𝑗
𝛿𝑡𝑝

term takes the form:

𝑎
𝑗
𝛿𝑡𝑝

= −𝜌̂𝑗 ⋅
{
𝜔⃗𝐸 ×

[
𝐴
(
𝜔𝐸𝛿𝑡

𝑗
𝑝

)
𝑟𝑗
(
𝑡𝑅 − 𝛿𝑅 − 𝛿𝑡

𝑗
𝑝

)]}
(9)

where 𝜔⃗𝐸 = [0; 0; 𝜔𝐸] is the Earth’s rotation rate vector
given in ECEF coordinates.
The carrier Doppler shift model in Equation (7) has

some terms in commonwith the model given in (Aumayer
& Petovello, 2015). The present model, however, is more
complete and explicit in its characterizations of the effects
of clock offset rates, satellite velocity, and the time rate of
change of 𝛿𝑡𝑗𝑝.
The Doppler shift model in Equation (7) has been used

extensively by the author to solve for velocity 𝑣 and range-
rate-equivalent receiver clock offset rate 𝑐(𝑑𝛿𝑅∕𝑑𝑇𝑅) by
using the carrier Doppler shift measurements from four
or more GPS satellites. This velocity solution assumes that
the receiver position 𝑟 and the receiver clock offset 𝛿𝑅 have
already beendetermined fromapseudorange solution. The
values of 𝑟 and 𝛿𝑅 are needed in order to compute the terms
𝜌̂𝑗 , 𝑣𝑗 , 𝑎𝑗

𝛿𝑡𝑝
, and 𝑑𝛿𝑗∕𝑑𝑇𝑗 that appear in Equation (7). Per-

axis accuracies on the order of 0.01 m/sec RMS have been
demonstrated. Velocity biases are negligible.
The accuracy is good enough to enable mapping of a

vehicle’s relative route via simple quadrature integration
of the velocity solution time history that results from using
this model. Relative position accuracies on the order of
1 meter or better have been observed after 5 to 10 min-
utes of velocity integration. These levels of accuracy were
obtained by the author in preparation of a university
course and by students who completed the data-processing
lab portion of that course using recorded carrier Doppler
shift and pseudorange data from a survey-grade Magel-
lan receiver mounted on an automobile. The foregoing

statements represent the first public release of these accu-
racy results.
The dependence of the terms 𝜌̂𝑗, 𝑣𝑗 , and 𝑎

𝑗
𝛿𝑡𝑝

on posi-
tion and receiver clock offset is a liability when using car-
rier Doppler shift measurements for velocity estimation. A
pseudorange-based navigation solution is needed to over-
come this liability.
In the present context, however, this dependence is

an asset. It makes position and receiver clock offset
simultaneously observable with velocity and clock off-
set rate. The minimum number of needed signals grows
from four to eight in this situation because of the
increased number of unknowns that must be estimated.
As will be shown in the section on generalized GDOP
analysis, this method’s accuracy depends on the rapidity
with which the GNSS satellites pass over the receiver. That
is why this technique will not work well with MEO GNSS
satellites evenwhen carrier Doppler shift data are available
from eight or more of them.

2.3 Carrier Doppler shift model based
on finite differencing of accumulated delta
range

Although the Doppler shift model in Equation (7) works
well for velocity and clock offset rate estimationwhen posi-
tion and clock offset are known, it is not clear that it will
workwell for the present application. It’s performancemay
be lacking due to its neglect of the time derivatives of the
troposphere and ionosphere terms.
Therefore, an alternate carrier Doppler shift model has

been developed for use in the joint estimation of position,
receiver clock offset, velocity shift, and receiver clock offset
rate. One could develop an analytic model that included
the effects of the non-zero time derivatives of the tro-
posphere and ionosphere terms. The complexity of such
a derivation, however, would be considerable. Instead, a
suitablemodel has been developed based on a 5-point finite
difference calculation that numerically computes the time
derivative of the accumulated delta range.
Thismodel starts with the assumption that there already

exists a function which computes the model of the accu-
mulated delta range given in Equation (3). The accu-
mulated delta range model’s calculations are assumed to
include solution of propagation delay Equation (4) for
𝛿𝑡

𝑗
𝑝 and model-based calculation of the troposphere and

ionosphere terms 𝛿𝑡
𝑗
𝑡𝑟𝑜𝑝 and 𝛿𝑡

𝑗
𝑖𝑜𝑛. Thus, it captures all

of the ways in which Δ𝜌
𝑗
𝐴𝐷𝑅(𝑟, 𝛿𝑅; 𝑡𝑅) depends on 𝑟, 𝛿𝑅,

and 𝑡𝑅.
The 5-point finite difference formula for the accumu-

lated delta range rate uses the accumulated delta range
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model to perform the following calculation:

𝑑Δ𝜌𝑗𝐴𝐷𝑅
𝑑𝑡𝑅

||||||(𝑟,𝛿𝑅,𝑣,𝛿̇𝑅) ≅
{

Δ𝜌𝑗𝐴𝐷𝑅

[(
𝑟 −

2𝑣Δ𝑡𝑅

1 + 𝛿̇𝑅

)
,

(
𝛿𝑅 −

2𝛿̇𝑅Δ𝑡𝑅

1 + 𝛿̇𝑅

)
; (𝑡𝑅 − 2Δ𝑡𝑅)

]

− 8Δ𝜌𝑗𝐴𝐷𝑅

[(
𝑟 −

𝑣Δ𝑡𝑅

1 + 𝛿̇𝑅

)
,

(
𝛿𝑅 −

𝛿̇𝑅Δ𝑡𝑅

1 + 𝛿̇𝑅

)
;

(𝑡𝑅 − Δ𝑡𝑅)

]

+ 8Δ𝜌𝑗𝐴𝐷𝑅

[(
𝑟 +

𝑣Δ𝑡𝑅

1 + 𝛿̇𝑅

)
,

(
𝛿𝑅 +

𝛿̇𝑅Δ𝑡𝑅

1 + 𝛿̇𝑅

)
;

(𝑡𝑅 + Δ𝑡𝑅)

]

− Δ𝜌𝑗𝐴𝐷𝑅

[(
𝑟 +

2𝑣Δ𝑡𝑅

1 + 𝛿̇𝑅

)
,

(
𝛿𝑅 +

2𝛿̇𝑅Δ𝑡𝑅

1 + 𝛿̇𝑅

)
;

(𝑡𝑅 + 2Δ𝑡𝑅)

]}
1

12Δ𝑡𝑅
(10)

where Δ𝑡𝑅 is the nominal finite difference interval of the
erroneous receiver clock time 𝑡𝑅 and:

𝛿̇𝑅 =
𝑑𝛿𝑅
𝑑𝑇𝑅

(11)

is shorthand for the unknown receiver clock offset rate.
The true reception time’s corresponding finite difference
interval is Δ𝑇𝑅 = Δ𝑡𝑅∕(1 + 𝛿̇𝑅), which accounts for the
presence of the factor 1∕(1 + 𝛿̇𝑅) in several parts of this for-
mula. Note that this 5-point finite-difference formula only
contains four weighted terms because it uses a weighting
of zero for the middle term, (i.e., the term with zero time
offset).
The accumulated delta range rate model in Equation

(10) is substituted into Equation (1) to yield the carrier
Doppler shift model that forms the basis of point solutions
for position, clock offset, velocity, and clock offset rate. This
finite-difference model has been employed successfully by
the author in a navigation system that uses carrier Doppler
shift data from the Iridium constellation in addition to data
from other sensors. A finite difference interval in the range
0.1 sec ≤ Δ𝑡𝑅 ≤ 0.25 sec works well.

2.4 Simplified analytic carrier Doppler
shift model for use in GDOP analysis

The preceding Doppler shift models are too complicated
for use in a Geometric Dilution of Precision (GDOP)
analysis. A GDOP analysis only needs to consider the
dominant ways in which the unknowns affect the mea-
surements. Its model must characterize how errors in
the measurements are related to errors in the estimates
of the unknown quantities. Second-order effects, while
important in the calculation of an actual navigation
solution, typically have a negligible impact on a GDOP
calculation.
Several small effects have been neglected in order to sim-

plify the carrier Doppler shift model for use in the GDOP
analysis. First, the effects of the troposphere and the iono-
sphere have been omitted. They do not have a large impact
on the sensitivity of the measurements to small perturba-
tions of the unknowns. Omission of the atmospheric terms
allows Equation (7) to be the starting point for developing
a simplified model.
Three additional simplifications substitute the value 1 in

place of three terms in Equation (7) that nearly equal 1. The
three substitutions are:

1 ≅ 1 +
𝑑𝛿𝑗

𝑑𝑇𝑗

1 ≅ 1 +
𝑑𝛿𝑅
𝑑𝑇𝑅

1 ≅ 1 +
1
𝑐

[
𝑎
𝑗
𝛿𝑡𝑝

− (𝜌̂𝑗)
T
𝑣𝑗
]

(12)

The first two of these approximations are typically accurate
to seven ormore significant digits due to the stability of the
transmitter and receiver clocks. The last of these approx-
imations is accurate to more than four significant digits
due to the low speed of the satellite relative to the speed of
light.
Given the foregoing approximations, the simplified car-

rier Doppler shift model takes the form:

−𝜆𝐷𝑗 = (𝜌̂𝑗)T(𝑣 − 𝑣𝑗) + 𝑐
𝑑𝛿𝑅
𝑑𝑇𝑅

− 𝑐
𝑑𝛿𝑗

𝑑𝑇𝑗
(13)

This is the model that will be used to develop a general-
ized GDOP analysis. It is suitable only for that purpose. It
should not be employed to compute point solutions using
this paper’s new navigation method. It should not even
be used for determining velocity and receiver clock off-
set rate when position and clock offset are known from a
pseudorange-based navigation solution.
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TABLE 1 Characteristics of large LEO constellations

Name
No. of
Planes

Sats./
Plane

Total No.
of Sats.

Inclinations(s)
(deg)

Altitude(s)
(km)

Min. No. Visible
Above 7.5o Elev.
Mask

Iridium 6 11 66 86.4 780 1
OneWeb (Initial) 18 40 720 87.9 1200 19
Starlink (Initial) 32 50 1600 53.0 1150 56*

Kuiper 34 34 1156 51.9 630 17#

Starlink (Final) 51 50-75 2825 53.8-81.0 1110-1325 81
*In ± 65o latitude range. #In ± 60o latitude range.

3 REVIEWOF LARGE LEO
CONSTELLATIONS AND THEIR
SUITABILITY FOR DOPPLER-ONLY PNT

Several large LEO constellations exist, are being fielded,
or are planned. These include the Iridium constellation,
which is currently operational, OneWeb and Starlink,
which each have satellites in orbit, and Kuiper, which has
not yet progressed to the point of launching satellites.
Table 1 lists parameters of these constellations that

are relevant to their suitability for Doppler-based naviga-
tion. The numbers for Iridium are common knowledge
because the constellation has been operational for decades.
The numbers for the other three constellations have been
gleaned from (FCC Reports, 2016, 2017, 2019).
Newer information than that given in the cited docu-

ments is available from recent FCC filings for the OneWeb,
Starlink, and Kuiper constellations. Some of the newer
numbers differ from those in the table. A decision has been
made to use the particular numbers cited below because
there is no certainty that even the latest plans will be the
final ones which get implemented. Rather than constantly
chase the latest numbers, it seems reasonable for this ini-
tial study to lock in some representative constellation con-
figurations and analyze them.
The final column of Table 1 provides an important met-

ric of constellation suitability for Doppler-based naviga-
tion: the minimum number of visible satellites. Except
for the Iridium constellation, each of these numbers has
been deduced from four constellation visibility simulation
snapshots on a 1o latitude by 1o longitude grid over the
entire surface of the Earth–-except that the Starlink (ini-
tial) and Kuiper grids are restricted in latitude, as noted in
the table’s footnotes.
Each simulation randomizes the constellation’s first

orbital plane’s right ascension and that plane’s initial
satellite’s argument of longitude. All other orbital plane
right ascensions and satellite arguments of longitude
are linked to these two datums. Therefore, the num-
bers in the last column represent good approximations of
minimum guaranteed values 100% of the time for a clear

sky view. A given constellation’s number needs to be eight
or larger in order for the proposed system to be viable.
Therefore, the Iridium constellation alone cannot sup-

port the present concept. Typically a user receiver sees only
a single satellite. It sees two satellites for a short period
about once every 10 minutes. On rare occasions, a user
receiver may see three or four satellites, but it will never
see eight simultaneously except around the North and
South poles.
The OneWeb, Starlink, and Kuiper constellations all

appear to be viable because theirminimumnumbers of vis-
ible satellites are above eight. Note, however, that the ini-
tial Starlink deployment plan and the Kuiper plan do not
include any high-inclination orbits. Therefore, these two
configurations cannot guarantee the simultaneous visibil-
ity of eight or more satellites at locations within 25o or 30o
of the North and South poles.
It might be best to use a combination of constellations

if it is practical to design receivers for each constellations’
different signals. Perhaps a good design would use a com-
bination of OneWeb to cover the polar regions and Kuiper
to enhance performance in the mid-latitude and equato-
rial regions.
The numbers in the last column of Table 1 do not provide

the final word on constellation suitability for Doppler-only
navigation. Having a minimum of eight visible satellites is
a necessary condition for the viability of this concept, but it
is not a sufficient condition. A generalized GDOP analysis
must be used in order to assess the likely performance of a
particular constellation or combination of constellations.

4 POINT SOLUTIONS USING A BATCH
LEAST-SQUARES FILTER

A point-solution algorithm has been developed to calcu-
late a navigation fix from eight or more measured carrier
Doppler shifts. This algorithm is the carrier-Doppler-shift
analog of the algorithm that solves four or more pseudor-
ange equations for the receiver position and clock offset in
standard GNSS signal processing. The algorithm computes
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estimates of the position 𝑟, the receiver clock offset 𝛿𝑅, the
velocity 𝑣, and the receiver clock offset rate 𝛿̇𝑅 by solving
the following nonlinear least-squares problem:

f ind ∶ 𝑟, 𝛿𝑅, 𝑣, and 𝛿̇𝑅

to minimize: 𝐽(𝑟, 𝛿𝑅, 𝑣, 𝛿̇𝑅)

=
1
2

𝑁∑
𝑗=1

⎡⎢⎢⎢⎢⎢⎣
𝜆𝐷𝑗 +

𝑑Δ𝜌
𝑗
𝐴𝐷𝑅

𝑑𝑡𝑅

|||||(𝑟,𝛿𝑅,𝑣,𝛿̇𝑅)
𝜆𝜎

𝑗
𝐷𝑜𝑝𝑝

⎤⎥⎥⎥⎥⎥⎦

2

(14)

The accumulated delta range time derivative model used
in the numerator on the the right-hand side of the least-
squares cost function is the finite-difference-based approx-
imation given in Equation (10). The quantity 𝜎𝑗𝐷𝑜𝑝𝑝 is the
carrier Doppler shift measurement error standard devia-
tion for the signal from the 𝑗th satellite given in Hz units.
This cost function is a weighted sum of the squared errors
in the carrier Doppler shift measurement model of Equa-
tion (1) after both sides of the model have been multi-
plied by 𝜆 to give the model in range-rate-equivalent form.
The denominator term 𝜆𝜎

𝑗
𝐷𝑜𝑝𝑝 is the range-rate-equivalent

measurement error standard deviation in units of m/sec
for the 𝑗th satellite. It normalizes the corresponding resid-
ual error in the cost function. This normalized cost func-
tion is a negative log-likelihood function. Therefore, mini-
mization of 𝐽(𝑟, 𝛿𝑅, 𝑣, 𝛿̇𝑅) amounts tomaximum-likelihood
estimation.
The cost function in Equation (14) can be re-cast into the

following standardweighted nonlinear least-squares form:

𝐽(𝒙) =
1
2
[𝒚 − 𝒉(𝒙)]T𝑅−1[𝒚 − 𝒉(𝒙)] (15)

where:

𝒙 =

⎡⎢⎢⎢⎢⎢⎣

𝑟

𝛿𝑅

𝑣

𝛿̇𝑅

⎤⎥⎥⎥⎥⎥⎦
(16)

is the 8 × 1 vector of unknown quantities that are to be esti-
mated:

𝒚 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜆𝐷1

𝜆𝐷2

𝜆𝐷3

⋮

𝜆𝐷𝑁

⎤⎥⎥⎥⎥⎥⎥⎦
(17)

is the 𝑁 × 1measurement vector:

𝒉(𝒙) = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑Δ𝜌1𝐴𝐷𝑅
𝑑𝑡𝑅

||||(𝑟,𝛿𝑅,𝑣,𝛿̇𝑅)
𝑑Δ𝜌2𝐴𝐷𝑅
𝑑𝑡𝑅

||||(𝑟,𝛿𝑅,𝑣,𝛿̇𝑅)
𝑑Δ𝜌3𝐴𝐷𝑅
𝑑𝑡𝑅

||||(𝑟,𝛿𝑅,𝑣,𝛿̇𝑅)
⋮

𝑑Δ𝜌𝑁𝐴𝐷𝑅
𝑑𝑡𝑅

||||(𝑟,𝛿𝑅,𝑣,𝛿̇𝑅)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

is the 𝑁 × 1 nonlinear measurement model function, and:

𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
𝜆𝜎1𝐷𝑜𝑝𝑝

)2
0 0 … 0

0
(
𝜆𝜎2𝐷𝑜𝑝𝑝

)2
0 … 0

0 0
(
𝜆𝜎3𝐷𝑜𝑝𝑝

)2
… 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 …
(
𝜆𝜎𝑁𝐷𝑜𝑝𝑝

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

is the 𝑁 ×𝑁 measurement error covariance matrix.
This standard nonlinear least-squares problem is solved

using the Gauss-Newton method (Gill et al., 1981). The
Gauss-Newton method starts with a guess 𝒙𝑔. It lin-
earizes the measurement model function 𝒉(𝒙) around
each guess and solves the corresponding linearized least-
squares problem using matrix methods in order to com-
pute an increment to the current guess, Δ𝒙.
It next performs a line search along this direction to

find a step length 𝛼 such that 𝐽(𝒙𝑔 + 𝛼Δ𝒙) < 𝐽(𝒙𝑔). The
line search uses simple bisection. It starts by trying 𝛼 =
1. It then scales 𝛼 down by successive factors of 1∕2, as
needed, until it finds a value that reduces the cost func-
tion. Finally, the old guess 𝒙𝑔 is replaced by the new guess
𝒙𝑔 + 𝛼Δ𝒙, and the algorithm iterates until it converges.
The line search for 𝛼 ensures robust convergence to a min-
imum.
A Gauss-Newton algorithm can have very slow conver-

gence if its first guess starts too far away from the optimal
solution. Another issue that can cause slow convergence
is the possibility that the residual differences between 𝒚
and 𝒉(𝒙) at the optimal solution will be large enough to
cause the linearized approximation of 𝒉(𝒙) to yield a poor
prediction of how the cost function will change due to
the solution increment Δ𝒙. Therefore, an important ques-
tion about this batch least-squares algorithm concerns the
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speed with which it converges when starting far from the
solution and in the vicinity of the solution.
The batch least-squares negative log-likelihood cost

function can be used to compute an approximation of the
estimation error covariance for this system. Suppose that:

𝐻 =
𝜕𝒉
𝜕𝒙

||||𝒙𝑜𝑝𝑡 (20)

where 𝒙𝑜𝑝𝑡 is the optimal estimate that minimizes 𝐽(𝒙).
This 𝑁 × 8 measurement model Jacobian matrix can be
used to compute the following approximation of the
Cramer-Rao lower bound for the estimation error covari-
ance matrix:

𝑃𝑥𝑥 = (𝐻T𝑅−1𝐻)−1 (21)

This matrix characterizes the precision of the point solu-
tion. The GDOP analysis of a later section will develop an
approximation of a non-dimensionalized version of this
covariance matrix. The fidelity of the GDOP approxima-
tion can be tested by comparing it to the matrix that comes
from this calculation that uses the exact partial derivative
of 𝒉(𝒙).
The 𝐻 matrix is used to define the linearized mea-

surement model for each iteration of the Gauss-Newton
method in addition to its use in computing this estimation
error covariance matrix approximation. The need to com-
pute the𝐻matrix brings up an additional reason for using
the finite-difference approximation of𝑑(Δ𝜌𝑗𝐴𝐷𝑅)∕𝑑𝑡𝑅 given
in Equation (10). The calculation of𝐻 involves taking par-
tial derivatives of 𝑑(Δ𝜌𝑗𝐴𝐷𝑅)∕𝑑𝑡𝑅 with respect to 𝑟, 𝛿𝑅, 𝑣,
and 𝛿̇𝑅. It would be hard enough to develop a fully analytic
model of 𝑑(Δ𝜌𝑗𝐴𝐷𝑅)∕𝑑𝑡𝑅 that included the troposphere and
ionosphere terms’ time derivatives, and it would be harder
still to develop analytic expressions for the partial deriva-
tives of that model with respect to 𝑟, 𝛿𝑅, 𝑣, and 𝛿̇𝑅. It is
less difficult, however, to develop analytic expressions for
the partial derivatives of Δ𝜌𝑗𝐴𝐷𝑅 with respect to 𝑟, 𝛿𝑅, and
𝑡𝑅. Given these partial derivatives, it is straightforward to
determine the needed partial derivatives of Equation (10)’s
finite-difference approximation of 𝑑(Δ𝜌𝑗𝐴𝐷𝑅)∕𝑑𝑡𝑅.

5 POINT-SOLUTION BATCH FILTER
PERFORMANCE ON EXAMPLE
SIMULATED DATA

5.1 Truth-model simulation parameters
and cases

The nonlinear least-squares batch filter has been tested
using truth-model simulation data from two sets of cases.

The cases all assume the 2825-satellite final Starlink
constellation that is listed in the final line of Table 1. The
satellites are assumed to yield a valid carrier Doppler shift
measurement if they lie above a 7.5o elevation mask at the
truth receiver location. This mask angle yields between 89
and 189 visible satellites for the set of cases that have been
considered. The batch filter’s models for the troposphere
and ionosphere terms have been assumed to match the
truth troposphere and ionosphere terms.
The range-rate-equivalent measurement error standard

deviation is assumed to be 𝜆𝜎
𝑗
𝐷𝑜𝑝𝑝 = 0.01 m/sec for all

visible satellites. This level of range-rate error is com-
monly achieved for GPS signals. Whether it will be
achievable for any given LEO constellation depends on
the received signal’s carrier-to-noise ratio, form of the
frequency discriminator, length of the interval used to
compute accumulations for input to the carrier fre-
quency discriminator, and PLL or FLL bandwidth (if a
PLL or FLL is applied to a sequence of discriminator
outputs).
Truth locations have been selected randomly over the

surface of the Earth with equal probability density over the
entire globe. The truth altitudes have been selected ran-
domly from a flat distribution in the range 0 to 9,144meters
above sea level (30,000 ft). The truth receiver clock off-
sets have been sampled from a flat distribution between
−0.25 sec and +0.25 sec. The truth velocities’ individ-
ual ECEF component have been sampled randomly from
a Gaussian distribution with a mean of 0 and a stan-
dard deviation of 137 m/sec. This yields a 10% probabil-
ity that the truth velocity magnitude is above the speed of
sound. The truth receiver clock offset rates have been sam-
pled from a Gaussian distribution with a mean value of 0
and a standard deviation of 3.336 × 10−9 seconds/second,
which yields a standard deviation of 1 m/sec for the
truth range-rate-equivalent receiver clock offset rates
𝑐𝛿̇𝑅.
Two sets of 100 cases have been considered. For one

set of cases, the satellite ephemerides 𝑟𝑗(𝑡) and transmit-
ter clock frequency offsets 𝑑𝛿𝑗∕𝑑𝑇𝑗 are assumed to be per-
fectly known by the batch filter. The other set of cases
assumes that there are knowledge errors in these quanti-
ties on the part of the batch filter.
The filter’s satellite position vectors 𝑟𝑗(𝑇𝑗) for 𝑗 =

1,… ,𝑁 are assumed to have per-axis knowledge errors
that are sampled from a Gaussian distribution with a
mean of 0 and a standard deviation of 2 meters. The fil-
ter’s satellite velocity vectors 𝑑𝑟𝑗∕𝑑𝑡|𝑇𝑗 for 𝑗 = 1,… ,𝑁 are
assumed to have per-axis knowledge errors that are sam-
pled from a zero-mean Gaussian with standard deviation
equal to 0.002 meters/sec. The filter’s satellite clock fre-
quency offsets 𝑑𝛿𝑗∕𝑑𝑇𝑗 for 𝑗 = 1,… ,𝑁 are assumed to
have knowledge errors that are sampled from a zero-mean
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Gaussian distribution with a standard of 3.3 × 10−11 sec-
onds/second.
These levels of orbit and clock accuracy can be achieved

if the satellites use an onboard GNSS receiver for real-
time navigation (Montenbruck et al., 2009). If the system
must operate independently of otherGNSS, then achieving
these levels of orbit and clock frequency accuracy could be
a challenge.

5.2 Batch filter initialization

The 200 considered cases have been initialized with errors
that are sized to provide significant tests of the filter’s
ability to converge during normal operation. The initial
position errors range from 143 to 151 km in the hori-
zontal direction. The filter has been initialized with an
altitude of 0 meters, a receiver clock offset of 0 seconds,
and a receiver clock offset rate of 0 seconds/second in all
200 cases.
Thus, the initial altitude errors form a flat distribution

in the range−9,144 m to 0 m. The initial clock offset errors
form a flat distribution in the range ±0.25 sec. The initial
per-axis velocity errors form a zero-mean Gaussian distri-
bution with a standard deviation of 137 m/sec. The initial
clock offset rate errors form a zero-mean Gaussian distri-
bution with a standard deviation of 3.336 × 10−9 seconds/
second.
In a true cold start, the initial horizontal position error

could be much larger than 143 to 151 km. It might be
as large as 20,000 km. Future work should examine the
batch filter’s ability to converge from such large errors.
If it has trouble, then there likely exist strategies that
could be used to augment the filter in order to ensure
convergence.

5.3 Batch filter performance results

The performance of the batch filter on the two sets of sim-
ulated cases is summarized in Table 2. The upper line of
results applies to the 100 cases which assume that the fil-
ter has perfect knowledge of the satellites’ ephemerides
and clock offset rates. The second line of results applies to
the 100 cases that consider the effects of realistic knowl-
edge errors between the truth and filter knowledge of
the ephemerides and the transmitter clock offset rates.
Note that the quantities 𝑟𝑜𝑝𝑡, 𝑣𝑜𝑝𝑡, and 𝛿𝑅𝑜𝑝𝑡 in some of
the table’s column headers indicate the batch filter’s opti-
mal estimates of 𝑟, 𝑣, and 𝛿𝑅. The quantities 𝑟𝑡𝑟𝑢𝑡ℎ, 𝑣𝑡𝑟𝑢𝑡ℎ,
and 𝛿𝑅𝑡𝑟𝑢𝑡ℎ indicate their corresponding truth values from
the simulations.
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The first, second, and third results columns of Table 2
document the batch filter’s convergence performance.
The filter successfully converged within 17 Gauss-
Newton iterations for all of the perfect-ephemerides
cases and within 14 iterations for all of the erroneous-
ephemerides cases, as indicated by the first and third
columns.
The average number of iterations to converge was

between 8 and 9, as indicated by the second column.
Actual convergence usually occurred in 4-5 iterations. The
inflated iteration count statistics in Table 2 are the result
of having used overly stringent termination criteria for
purposes of deciding when to stop the Gauss-Newton
iterations and declare that they have converged to a
solution.
The fourth and fifth results columns of Table 2 indicate

good position estimation performance. The RMS and peak
position estimation error magnitudes are 1.35 and 4.16 m
respectively in the perfect-ephemerides case. These error
statistics increasemodestly to 2.27 mRMS and 5.43m peak
when using the erroneous ephemerides. This level of abso-
lute positioning accuracy is comparablewith pseudorange-
based MEO GNSS.
The sixth and seventh columns of Table 2 indicate good

velocity estimation performance. The RMS accuracy is on
the order of 0.01 m/sec, the peak error is only 0.0435 m/sec
for the 100 cases with erroneous ephemerides, and the
100 cases with perfect ephemerides have better accuracy.
This performance is similar to that of pseudorange-based
MEO GNSS when using carrier Doppler shift only for pur-
poses of determining velocity and receiver clock offset
rate.
The eighth and ninth columns of Table 2 show that

the receiver clock offset is the weak part of this system.
The RMS and peak errors are on the order of a fraction
of a msec, (i.e., in the range 0.0002 to 0.0009 sec). These
error statistics are orders of magnitude worse than for
pseudorange-based GNSS. As will be shown in the anal-
ysis of GDOP, the reason for this poorer timing accuracy
is that the system’s ability to estimate time is tied directly
to the maximum value of the acceleration of the distance
between the receiver and the satellite. This maximum is
not nearly large enough to support pseudorange-like tim-
ing accuracy.
Table 2 does not report the accuracy of the estimated

receiver clock offset rate. The RMS and peak errors in
the range-rate-equivalent receiver clock offset rate 𝑐𝛿̇𝑅,
are both smaller than 0.01 m/sec for both sets of 100
cases. This accuracy is better than that of the velocity
estimates. This level of performance is comparable to
that of pseudorange-based MEO GNSS when using car-
rier Doppler shift to estimate only this quantity and the
velocity.

6 A GENERALIZED GDOP ANALYSIS
FOR DOPPLER-ONLY PNT

6.1 Linearized relationship between
measurement errors and point-solution
errors

The generalized GDOP analysis for this system uses a
similar approach to the standard GDOP analysis of the
pseudorange navigation solution. It starts by developing a
linearized relationship between the errors in the carrier
Doppler shift measurements and the errors in the point
solution’s estimated quantities. This relationship is devel-
oped using the approximate carrier Doppler shift model in
Equation (13). It is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝜆Δ𝐷1

−𝜆Δ𝐷2

−𝜆Δ𝐷3

⋮

−𝜆Δ𝐷𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

( ̇̂𝜌1)T [(𝜌̂1)T ̇⃗𝑣1 + ( ̇̂𝜌1)T𝑣1] (𝜌̂1)T 𝑐

( ̇̂𝜌2)T [(𝜌̂2)T ̇⃗𝑣2 + ( ̇̂𝜌2)T𝑣2] (𝜌̂2)T 𝑐

( ̇̂𝜌3)T [(𝜌̂3)T ̇⃗𝑣3 + ( ̇̂𝜌3)T𝑣3] (𝜌̂3)T 𝑐

⋮ ⋮ ⋮ ⋮

( ̇̂𝜌𝑁)T [(𝜌̂𝑁)T ̇⃗𝑣𝑁 + ( ̇̂𝜌𝑁)T𝑣𝑁] (𝜌̂𝑁)T 𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Δ𝑟

Δ𝛿𝑅

Δ𝑣

Δ𝛿̇𝑅

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(22)

where Δ𝐷𝑗 for 𝑗 = 1,… ,𝑁 are the carrier Doppler shift
measurement errors,Δ𝑟 is the error in the estimated ECEF
position vector, Δ𝛿𝑅 is the error in the estimated receiver
clock offset,Δ𝑣 is the error in the estimated ECEF velocity,
and Δ𝛿̇𝑅 is the error in the estimated receiver clock offset
rate. The ECEF acceleration of the 𝑗th satellite that is used
in this formula is:

̇⃗𝑣𝑗 = 𝐴
(
𝜔𝐸𝛿𝑡

𝑗
𝑝

) 𝑑2𝑟𝑗
𝑑𝑡2

|||||(𝑡𝑅−𝛿𝑅−𝛿𝑡𝑗𝑝) (23)

Two related challenges must be addressed before the
model in Equation (22) can be used in a generalized GDOP
analysis. The first challenge concerns the𝑁 × 8 coefficient
matrix on the right-hand side of this equation. Its first
three columns have units of 1/sec, its fourth column has
units of m/sec2, its fifth through seventh columns are non-
dimensional, and its eighth column has units of m/sec. A
GDOPanalysis needs toworkwith a coefficientmatrix that
is non-dimensional.
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F IGURE 1 Geometry of a satellite pass over a receiver that is relevant to computing maximum LOS sweep rate and maximum range
acceleration [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

The second challenge is that the estimation errors in Δ𝑟,
Δ𝛿𝑅, Δ𝑣, and Δ𝛿̇𝑅 all have different units. The units of Δ𝑟
are meters, the units of Δ𝛿𝑅 are seconds, the units of Δ𝑣
are m/sec, and Δ𝛿̇𝑅 is non-dimensional. A GDOP analysis
needs all of the estimation errors to have the same units. It
also needs their common units and the units of the mea-
surement errors to be identical.
Suppose one defines the range-rate-equivalentmeasure-

ment error for the 𝑗th satellite to be −𝜆Δ𝐷𝑗 . Then all 𝑁 of
the range-rate-equivalent measurement errors have units
of m/sec. The estimation error Δ𝑣 also has units of m/sec.
It can be left in its current form. The estimation errors in
Δ𝑟, Δ𝛿𝑅, and Δ𝛿̇𝑅, on the other hand, need to be rescaled
in order to have m/sec units.
The needed rescaling is straightforward in the case of

Δ𝛿̇𝑅. This receiver clock offset rate error can be rescaled
through multiplication by 𝑐 in order to define the range-
rate-equivalent receiver clock offset rate error 𝑐Δ𝛿̇𝑅. The
selection of appropriate rescaling factors for Δ𝑟 and Δ𝛿𝑅,
on the other hand, requires careful thought.

6.2 Maximum Line-of-Sight (LOS)
sweep rate and maximum range
acceleration

A reasonable approach to rescaling the errors Δ𝑟 and Δ𝛿𝑅
is to multiply them by upper bounds on the magnitudes
of their corresponding columns in the 𝑁 × 8 coefficient
matrix of Equation (22). The first three columns, the Δ𝑟
columns, contain the time rates of change of the unit direc-
tion vectors that point from the satellites to the receiver.
The fourth column, the Δ𝛿𝑅 column, contains the nega-
tives of the accelerations of the scalar ranges from the satel-
lites to the receiver that are caused by satellite motion. One
can compute simple upper bounds on the magnitudes of

these quantities. These bounds provide the needed scal-
ing factors.
Consider the relative geometry between a satellite, its

circular orbit, and a receiver, as depicted in Figure 1.
The quantity 𝑎𝑜𝑟𝑏 is the semi-major axis of the satellite’s
orbit. The quantity 𝑅𝐸 is the radius of the Earth. It is also
the nominal distance from the center of the Earth to the
receiver. The figure depicts the unit direction vector that
points from the satellite to the receiver 𝜌̂, and the scalar
range from the satellite to the receiver 𝜌. The needed scal-
ing parameters are an upper bound on || ̇̂𝜌|| and an upper
bound on |𝜌̈|under the assumption of a stationary receiver.
Upper bounds can be computed under the simplifying

assumptions of a non-rotating Earth, a circular Keplerian
satellite orbit, and a stationary receiver. In this case, the
maxima of the two quantities occur if the orbit passes
directly overhead of the receiver, and they both occur
exactly at the time when the satellite is directly overhead.
A straightforward analysis of this case can be used to show
that:

𝛾 = || ̇̂𝜌||𝑚𝑎𝑥 =

[
1

1 − (𝑅𝐸∕𝑎𝑜𝑟𝑏)

]√
𝜇

𝑎3
𝑜𝑟𝑏

(24)

𝜂 = |𝜌̈|𝑚𝑎𝑥 =

[
(𝑅𝐸∕𝑎𝑜𝑟𝑏)

1 − (𝑅𝐸∕𝑎𝑜𝑟𝑏)

][
𝜇

𝑎2
𝑜𝑟𝑏

]
(25)

The scaling factor 𝛾 has units of 1/sec (or, equivalently,
radians/sec). The initial nondimensional factor in its for-
mula is a function of the distance ratio 𝑅𝐸∕𝑎𝑜𝑟𝑏. This factor
increases as 𝑎𝑜𝑟𝑏 approaches 𝑅𝐸 because its denominator
gets to be significantly smaller than 1.
The second term in the 𝛾 formula is the mean motion of

the satellite orbit. It also increases as 𝑎𝑜𝑟𝑏 decreases. The
proposed system’s position accuracy tends to improve as 𝛾



632 PSIAKI

increases, which will be discussed in the next subsection.
Therefore, if all else is equal, then better performance can
be achieved by making 𝑎𝑜𝑟𝑏 smaller, (i.e., by using a LEO
constellation for such a system).
The scaling factor 𝜂 has units of m/sec2. The initial

nondimensional factor in its formula is also a function of
the distance ratio 𝑅𝐸∕𝑎𝑜𝑟𝑏, and it also increases as 𝑎𝑜𝑟𝑏
approaches 𝑅𝐸 , both because its denominator becomes
much smaller than 1 and because its numerator increases.
The second term in the 𝜂 formula is the 1∕𝑟2 gravita-
tional acceleration at the satellite altitude. This factor also
increases as 𝑎𝑜𝑟𝑏 decreases.
The next subsection will discuss how the proposed sys-

tem’s receiver clock offset accuracy tends to improve as
𝜂 increases. Again, if all else is equal, then better per-
formance can be achieved by this system by making
𝑎𝑜𝑟𝑏 smaller.

6.3 GDOP analysis using dimensional
rescaling parameters

The rescaling parameters 𝛾 and 𝜂 can be used to redefine
the position and receiver clock offset estimation errors so
that they have units of m/sec. The position error Δ𝑟 in
Equation (22) is replaced by 𝛾Δ𝑟. The units of 𝛾 are 1/sec.
Therefore, the units of 𝛾Δ𝑟 are m/sec. The receiver clock
offset error Δ𝛿𝑅 in Equation (22) is replaced by 𝜂Δ𝛿𝑅. The
units of 𝜂 are m/sec2. Therefore, the units of 𝜂Δ𝛿𝑅 are also
m/sec.
These rescalings allow the linearized error relationship

in Equation (22) to be rewritten in the following equivalent
form:

⎡⎢⎢⎢⎢⎢⎣

−𝜆Δ𝐷1

−𝜆Δ𝐷2

−𝜆Δ𝐷3

⋮

−𝜆Δ𝐷𝑁

⎤⎥⎥⎥⎥⎥⎦
= 𝐴𝐺𝐷𝑂𝑃

⎡⎢⎢⎢⎢⎣
𝛾Δ𝑟
𝜂Δ𝛿𝑅
Δ𝑣
𝑐Δ𝛿̇𝑅

⎤⎥⎥⎥⎥⎦
(26)

which uses the following 𝑁 × 8 nondimensional coeffi-
cient matrix:

𝐴𝐺𝐷𝑂𝑃

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

( ̇̂𝜌1)T∕𝛾 [(𝜌̂1)T ̇⃗𝑣1 + ( ̇̂𝜌1)T𝑣1]∕𝜂 (𝜌̂1)T 1

( ̇̂𝜌2)T∕𝛾 [(𝜌̂2)T ̇⃗𝑣2 + ( ̇̂𝜌2)T𝑣2]∕𝜂 (𝜌̂2)T 1

( ̇̂𝜌3)T∕𝛾 [(𝜌̂3)T ̇⃗𝑣3 + ( ̇̂𝜌3)T𝑣3]∕𝜂 (𝜌̂3)T 1

⋮ ⋮ ⋮ ⋮

( ̇̂𝜌𝑁)T∕𝛾 [(𝜌̂𝑁)T ̇⃗𝑣𝑁 + ( ̇̂𝜌𝑁)T𝑣𝑁]∕𝜂 (𝜌̂𝑁)T 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

TABLE 3 Navigation precision from GDOP

Estimated
Quantity

Dimensional
PrecisionMetric

𝑟 GDOP (𝜆𝜎Dopp∕𝛾)
𝛿𝑅 GDOP (𝜆𝜎Dopp∕𝜂)
𝑣 GDOP (𝜆𝜎Dopp)
𝛿̇𝑅 GDOP (𝜆𝜎Dopp∕𝑐)

All of the elements of this matrix will have magnitudes
on the order of 1. Its last four columns equal the entire
corresponding matrix in the GDOP analysis of a pseudo-
range solution for position and clock offset. In the present
analysis, they apply the velocity/clock-offset-rate part of
the solution.
If the𝑁 satellites have a multiplicity of semi-major axes,

𝑎
𝑗
𝑜𝑟𝑏

for 𝑗 = 1,… ,𝑁, then a single value must be used to
compute a single 𝛾 and a single 𝜂 for use in thisGDOPanal-
ysis. One could use the average 𝑎𝑗

𝑜𝑟𝑏
value or theminimum

value in Equations (24) and (25).
This analysis concludes by computing its generalized

nondimensional scalar GDOP value in much the same
way as the standard GDOP analysis of a pseudorange
navigation solution:

𝐺𝐷𝑂𝑃 =

√
𝑇𝑟𝑎𝑐𝑒

[(
𝐴T
𝐺𝐷𝑂𝑃𝐴𝐺𝐷𝑂𝑃

)−1]
(28)

The scaling factors employed in this analysis can be used
to develop rules for inferring the precision of the esti-
mated quantities 𝑟, 𝛿𝑅, 𝑣, and 𝛿̇𝑅. These rules are listed in
Table 3.
An examination of the scaling rules in the right-hand

column shows that each precision has the correct units:
meters for the precision of 𝑟, seconds for the precision of
𝛿𝑅, meters/sec for the precision of 𝑣, and seconds/second
for the precision of 𝛿̇𝑅. Each quantity’s precision scales lin-
early with GDOP. Thus, it is always better to have a smaller
GDOP, all else being equal. Each quantity’s precision also
scales linearlywith 𝜆𝜎𝐷𝑜𝑝𝑝. Thus, it is always better to have
a smaller range-rate-equivalent measurement error stan-
dard deviation. The precision of 𝑟 scales inversely with 𝛾,
and the precision of 𝛿𝑅 scales inverselywith 𝜂. Therefore, it
is better to have a large 𝛾 in order to get good position pre-
cision and a large 𝜂 in order to get good timing precision,
all else being equal.
This analysis indicates that LEO orbits are better

than higher orbits because they yield larger values of
𝛾 and 𝜂. Note, however, that the use of LEO orbits
becomes practical only if a sufficient number of satellites
are visible to each receiver so that GDOP will also be
low.
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Using MEO orbits would make 𝛾 and 𝜂 very small, and
such a system would have very poor position and timing
precision. The values of GDOP might be reasonably low
for a MEO constellation, but the scaling parameters would
be on the order of 𝛾 = 2×10−4 rad/sec and 𝜂 = 0.2m/sec2.
A GDOP equal to 1 and a measurement error standard
deviation of 𝜆𝜎𝐷𝑜𝑝𝑝 = 0.01 m/sec would yield a position
precision of 1×0.01×(1∕0.0002) = 50m and a clock offset
precision of 1×0.01×(1∕0.2) = 0.05 sec.
Another significant result of this analysis is the impor-

tance of the geometric diversity and magnitudes of the
normalized Line-of-Sight (LOS) rate vectors ̇̂𝜌𝑗∕𝛾 for 𝑗 =
1,… ,𝑁. In addition to geometric diversity for the LOS
direction vectors themselves, 𝜌̂𝑗 for 𝑗 = 1,… ,𝑁, their time
rates of change also must point in a variety of directions,
and they must have sufficient magnitudes relative to the
maximum possible sweep rates in order to achieve a low
GDOP in this generalized analysis.

6.4 Validation of GDOP analysis using
batch filter covariance

The foregoing GDOP analysis is valid if the two nondimen-
sional matrices in the following formula are nearly equal:

(
𝐴T
𝐺𝐷𝑂𝑃𝐴𝐺𝐷𝑂𝑃

)−1 ?
=

1(
𝜆𝜎𝐷𝑜𝑝𝑝

)2 𝑆𝑃𝑥𝑥𝑆T (29)

where the 8 × 8 diagonal scaling matrix used in this for-
mula is:

𝑆 =

⎡⎢⎢⎢⎢⎣
𝛾𝐼3×3 0 0 0

0 𝜂 0 0

0 0 𝐼3×3 0

0 0 0 𝑐

⎤⎥⎥⎥⎥⎦
(30)

Recall that 𝑃𝑥𝑥 is the batch filter’s approximate estimation
error covariance matrix from Equation (21). In order for
the GDOP derivation to be valid, near equality between the
two matrices in Equation (29) must hold true if 𝜎𝑗𝐷𝑜𝑝𝑝 =
𝜎𝐷𝑜𝑝𝑝, a constant that does not depend on 𝑗, i.e., if all 𝑁
satellites have identical carrier Doppler shift measurement
error standard deviations.
These two matrices have been compared for a represen-

tative example case. Their elements differ by, at most, a
value equal to the largest element multiplied by 10−4. Fur-
thermore, all eight of their eigenvalues agree to four sig-
nificant digits or better as do all eight of their eigenvector
directions. Therefore, the simplified carrier Doppler shift
model of Equation (13) has yielded a GDOP analysis with
good fidelity.

7 GDOP-BASED CONSTELLATION
ANALYSES

GDOP analysis has been used to study the global perfor-
mance of several of the constellations that are listed in
Table 1. For each constellation, a map of GDOP vs. latitude
and longitude has been generated. Two such maps and
three latitude-dependent summaries of maps are shown in
Figures 2 through 6.
The two maps are plotted on a grid with 1o latitude

spacing and 1o longitude spacing for a snapshot of a
particular constellation configuration. The three latitude-
dependent summaries give the minima and maxima of
GDOP over all 360 longitude grid points for a given lati-
tude grid point, again with 1o latitude and longitude grid
spacings. In addition, the latitude-dependent summaries
compute their maxima and minima over four distinct
maps that have been differentiated from each other by
randomly varying the given constellation’s ganged right-
ascension and argument-of-latitude relationships to the
latitude/longitude grid.
The captions of these figures list the average values of 𝛾

and 𝜂 for the given constellation. The need to report aver-
ages rather than exact constellation-wide values arises due
to small variations in the values used for 𝑅𝐸 in Equations
(24) and (25) as themapped point varies over the surface of
the WGS-84 sea-level ellipsoid.
Additional variations occur for the final Starlink con-

stellation due to its multiplicity of orbital semi-major
axes. The multiplicity of semi-major axes within an
individual GDOP calculation for the final Starlink con-
stellation forces the use average 𝛾 and 𝜂 values in
Equation (27) for the particular latitude/longitude point.
The values of 𝛾 and 𝜂 used in any given GDOP cal-
culation do not vary by much from the average val-
ues reported in the figure caption for each particular
constellation.
The GDOP results for the final Starlink constellation

map in Figure 2 and the latitude-dependent summary in
Figure 3 are encouraging. GDOP stays below 2 over the
entire globe. Given 𝛾𝑎𝑣𝑔 = 0.006 rad/sec, this translates
into a position precision better than 2(0.01/0.006) = 3.33
meters if the range-rate-equivalentmeasurement precision
is 𝜆𝜎𝐷𝑜𝑝𝑝 = 0.01 m/sec, as in the batch filter examples.
The value 𝜂𝑎𝑣𝑔 = 37m/sec2 implies a clock offset preci-

sion of better than 2(0.01/37)= 0.00054 sec. These numbers
are consistent with the batch filter results when operating
on truth-model simulation data. This goodGDOPmap and
relatively large values of 𝛾𝑎𝑣𝑔 and 𝜂𝑎𝑣𝑔 are the reasons why
the final Starlink constellation has been chosen for pur-
poses of evaluating the performance of the batch filter’s
point solutions.
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F IGURE 2 GDOP latitude/longitude map for 2825-satellite final Starlink constellation (𝛾𝑎𝑣𝑔 = 0.006 rad/sec, 𝜂𝑎𝑣𝑔 = 37m/sec2) [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]
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F IGURE 3 Minimum and maximum GDOP vs. latitude for 2825-satellite final Starlink constellation (𝛾𝑎𝑣𝑔 = 0.006 rad/sec, 𝜂𝑎𝑣𝑔 = 37

m/sec2) [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

Note that the value of 𝛾𝑎𝑣𝑔 for this case is roughly
six times larger than the average mean orbital motion√

𝜇∕𝑎3
𝑜𝑟𝑏
, which equals approximately 0.001 rad/sec. Sim-

ilarly, the value of 𝜂𝑎𝑣𝑔 is more than five times larger
than the acceleration of gravity at the satellites 𝜇∕𝑎2

𝑜𝑟𝑏
,

which equals approximately 7 m/sec2. These amplifica-
tion factors of six and five arise from the leading geo-
metric terms in Equations (24) and (25), the ones that
depend on the ratio 𝑅𝐸∕𝑎𝑜𝑟𝑏. These high amplification
factors are the result of using a LEO constellation. They
are needed in order to obtain good performance from this
system.

The GDOP minima and maxima vs. latitude for the ini-
tial Starlink constellation are shown in Figure 4. They are
significantly different from those of the final constellation.
The lack of high inclination orbits causes a sudden rise in
GDOP above +50 degree latitude and below −50 degree
latitude. This degradation happens even though there
are 56 or more visible satellites at all longitudes around
the globe for any latitude in the plotted range from
−65 degree to +65 degree. This result illustrates the
importance of proper geometric diversity of the directions
of the ̇̂𝜌𝑗 direction rate vectors. At high latitudes, all of
the visible satellites have ̇̂𝜌𝑗 vectors that point nearly East
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F IGURE 4 GDOP minima and maxima vs. latitude for 1600-satellite initial Starlink constellation (𝛾𝑎𝑣𝑔 = 0.006 rad/sec, 𝜂𝑎𝑣𝑔 = 39

m/sec2) [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]
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F IGURE 5 GDOP latitude/longitude map for 720-satellite initial OneWeb constellation with ascending nodes grouped together
(𝛾𝑎𝑣𝑔 = 0.006 rad/sec, 𝜂𝑎𝑣𝑔 = 37m/sec2) [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

for this constellation. The Kuiper constellation listed in
Table 1 has similarly high GDOP values above +50 degree
latitude and below −50 degree latitude.
The importance of the geometric diversity of the direc-

tions of the ̇̂𝜌𝑗 vectors is further illustrated by Figure 5’s
GDOP map for the initial OneWeb constellation. This
particular case assumes that all 18 ascending nodes of
OneWeb’s nearly polar orbits are grouped together on one
side of the Earth with 10 degree right ascension spac-
ings between them. All 18 descending nodes are grouped

together on the other side of the Earth. This configuration
results in very high GDOP values near the equator and at
mid latitudes whenever a given point on the Earth is vis-
ible only to North-going satellites or only to South-going
satellites.
Note the longitude regions of high GDOP between−180

degrees and −70 degrees, between −35 degrees and +110
degrees, and between+145 degrees and+180 degrees. This
map shows low GDOP values near the equator and at mid
latitudes along the two seams between the North-going



636 PSIAKI

-80 -60 -40 -20 0 20 40 60 80

Latitude (deg)

0

1

2

3

4

5

G
D

O
P

Maximum over Longitude & over 4 Monte-Carlo Simulations
Minimum over Longitude & over 4 Monte-Carlo Simulations

F IGURE 6 GDOP minima and maxima vs. latitude for 720-satellite initial OneWeb constellation with alternating ascending and
descending nodes (𝛾𝑎𝑣𝑔 = 0.006 rad/sec, 𝜂𝑎𝑣𝑔 = 37m/sec2) [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

and South-going clusters, i.e., in the longitude regions from
−70 degrees to −35 degrees and from +110 degrees to +145
degrees. These are regions that have good geometric diver-
sity of the ̇̂𝜌𝑗 vectors’ directions.
The foregoing analysis of the poor OneWeb GDOP map

of Figure 5 suggests a solution: Alternate the ascending
and descending nodes of the orbital planes every other 10
degrees of right ascension. This alternate OneWeb constel-
lation design has been analyzed to produce theGDOPmin-
ima and maxima vs. latitude shown in Figure 6.
This revised constellation’s maximum GDOP value is

below 4.3, which is smaller than the maximum GDOP of
Figure 5 by a factor of 23. This result confirms the impor-
tance of having a diversity of directions of the ̇̂𝜌𝑗 direction
rate vectors.
Two important points have been illustrated by these

GDOP studies: First, some of the planned large LEO con-
stellations have a sufficient number of satellites with a suf-
ficient diversity of orbits to enable accurate operation of the
proposed system over the entire globe. Second, the ability
to achieve good performance can be sensitive to constella-
tion design parameters, (e.g., the distribution of the right
ascensions of the ascending nodes and the upper limits of
the orbital inclinations). Therefore, these types of GDOP
mapping analyses should be performed for any constel-
lation that is in serious contention for implementing this
proposed system.

8 ADDITIONAL CONSIDERATIONS

A number of additional important issues must be
addressed in order to make the proposed concept

work in practice. This section introduces several of
them.

8.1 Limited downlink signal footprint
of each satellite

A significant concern about the constellations as presently
configured has to do with downlink antenna gain patterns.
These constellations are communication systems. It does
not make sense for neighboring satellites to have large
overlaps in their downlink coverage areas. Large over-
laps would waste transmission power and would cause
unneeded challenges to the problem of servicing multi-
ple independent data transmission requests within the sys-
tem’s limited spectrum.
The specific beam patterns and overlap possibilities vary

for different constellations. One constant among all the
constellations is the following: It is unlikely that any one
user will see strong main-lobe downlink signals simulta-
neously from eight or more satellites of a given constella-
tion.
Therefore, the system envisioned will be impossible

to implement without some additional strategies to see
enough satellites. One strategy might be to receive signals
from downlink antenna side lobes. Given the high data
rates envisioned by these systems, themain lobes will have
a lot of power. Therefore, the side lobesmay have sufficient
power to enable signal acquisition and determination of
carrier Doppler shift.
In this case, however, it will likely be necessary to know

a given signal’s modulated bit pattern, at least for short
bursts of data. The modulated pattern would be used as a



PSIAKI 637

pseudo PRN code and would allow a long enough coher-
ent accumulation interval to enable signal acquisition and
determination of carrier Doppler shift.
A second strategy could be to accept the limitation of

seeing few satellites simultaneously and try to see enough
different satellites over a short time window to get a good
navigation fix. The use of an INS might help to navigate
using a time series of carrier Doppler shift data. This con-
cept has been studied in (McLemore & Psiaki, 2020) and
shows promise.
A third strategy could be to modify a constellation’s

satellites to carry special navigation beacon antennas with
wide gain patterns. It would be allowable to put the beacon
signals in a different frequency band than the given satel-
lite’s communication signals. Each satellite could broad-
cast a narrowband beacon signal because there would be
no need for awideband ranging code. Itmight be allowable
to broadcast a beacon signal intermittently with a short
duty cycle, perhaps one 0.1 sec burst every second.

8.2 High frequencies of downlink
signals

Current plans for these large constellations call for down-
link signal frequencies in the range 11 GHz–40 GHz. Sig-
nals at these frequencies can experience significant attenu-
ation by foliage and significant scattering by rain. It would
be better to have signals in a lower frequency range. If a
constellation owner decided to add a beacon signal with a
wide-gain-pattern antenna, it would be best if that signal
were at a significantly lower frequency than the currently
planned downlink communication signals.

8.3 Additional error sources

The present study has not considered the degradation of
accuracy that might be caused by multipath errors. A
thorough analysis of the impact of multipath on carrier-
Doppler-shift-based navigation should be carried out for
this concept. Given the good performance that the author
has experiencedwith velocity estimation based onGPS car-
rier Doppler shift measurements, there is reason to believe
that the impacts of multipath will not be too deleterious,
but the issue needs study.
A great amount of research has been carried out on

the subject of multipath-induced errors, but almost all of
it considers the effects on pseudorange and beat carrier
phase. Xu and Rife (2019) is the only work known to this
author that specifically considers multipath effects on car-
rier Doppler shift. Its methods and results are not directly
applicable to the question of how multipath would affect

the present system. Therefore, a new type of multipath
study will be needed to address this issue.
Another potential source of accuracy degradation is

the mismatch between the true troposphere and iono-
sphere effects on carrier Doppler shift and the models for
these effects that will be used by the batch filter. There
is reason to hope that the impact of atmospheric mis-
modeling will be small. Again, this hope comes from the
good results for velocity estimation from carrier Doppler
shift that have been achieved when completely ignoring
atmospheric effects. Nevertheless, this issue must be care-
fully studied.
Most studies of troposphere and ionosphere effects con-

sider only pseudorange and beat carrier phase. Graziani
et al. (2009) examines amethod for estimating and correct-
ing troposphere effects of carrier Doppler shift measure-
ments from deep space probes. (Klobuchar, 1996) briefly
discusses ionosphere effects on carrier Doppler shift. How-
ever, neither of these works analyze the effects of tropo-
sphere or ionosphere modeling errors in a way that is
directly relevant to the present system. To this author’s
knowledge, no other published works address these ques-
tions in ways that would be relevant to this study. There-
fore, research on these topics must develop new methods
to address these concerns.

8.4 Signal design and signal processing
for multiple access operation

The necessity to distinguish signals from 2,000 or more
satellites, perhaps with 100 or more of them arriving
simultaneously, raises issues of multiple access. If the
satellites are to carry special beacons, then a way must
be found to design signals so that they can all fit into a
relatively narrow bandwidth and yet all be distinguish-
able. Therefore, effective multiple access strategies will
be needed. The possibilities of code-division, frequency
division, and time-division multiple access could be
considered. Signal processing strategies for such multiple
access signals would have to be developed in tandem with
their signal structures.
If the existing signals are to be used, including side-lobe

signals, then ways will have to be devised to distinguish
among the many side-lobe signals that will be present in
weak form. It is not clear whether this will be feasible. This
problem is worth considering for the following reason: If it
can be solved, then this navigation concept might be able
to use a constellation such as OneWeb without requiring
hardware modifications.
A solution to the side-lobe problem might involve send-

ing special short data messages on the constellation’s
downlinks that serve as PRN codes to enable multiple



638 PSIAKI

access and long coherent integration of weak side-lobe sig-
nals. If the constellation did not cooperate by broadcast-
ing the needed data messages, then it might be possible to
listen to main-lobe signals from a network of ground sta-
tions and provide after-the-fact information about modu-
lated data. Such a system, however, would require ameans
to disseminate information about modulated data, which
would involve high-bandwidth data broadcasts to user
receivers. It would also introduce latency to their naviga-
tion solutions.

8.5 Batch filter convergence from large
initial errors

The point-solution batch filter has been tested for its con-
vergence capability from initial horizontal errors on the
order of 150 km. A cold start capability would require
assured convergence to the optimal solution from a first
guess that is much farther away from the true position
than 150 km. There likely exist good ways to ensure a large
region of convergence of the batch filter, but additional
work may need to be done to devise and implement a suit-
able strategy for ensured convergence.

8.6 Use of signals frommultiple
constellations

This study has considered signals that all come from one
or the other of the several constellations that are being
planned or fielded. It mightmake sense to use signals from
multiple constellations. Such an approach could alleviate
some of the GDOP problems that have been noted in the
previous section.
McLemore and Psiaki (2020) have already considered

this issue to a limited extent. Their proceeding paper
examines possible use of the Iridium constellation in con-
junction with either OneWeb, Starlink, or Kuiper. In a
multi-constellation approach, it is not necessary that any
one of the constituent constellations be able to provide
full 4D navigation. Thus, the use of the existing Iridium
constellation is reasonable within a multi-constellation
system.
The usefulness of multiple constellations hinges on var-

ious factors such as signal ground footprints, the result-
ing impact on GDOP, and the practicality of designing and
building receivers to cover the various frequency bands
used by the constellations. These issues should all be stud-
ied in hopes of finding a multi-constellation solution that
is practical.

8.7 Determining accurate satellite
ephemerides and clock frequency offsets
independent of existing GNSS

The present study has considered the impact of satellite
ephemeris and clock frequency errors on navigation solu-
tion accuracy. The levels of errors considered, 2 m RMS
per-axis position error, 0.002 m/sec RMS per-axis veloc-
ity error, and 3.3× 10−11 seconds/sec clock frequency error,
may be challenging to achieve for a stand-alone system that
uses neither onboard GNSS receivers nor onboard atomic
clocks.
Some sort of ground-control segment would have to

be set up. It would operate a global network of receivers
at accurately surveyed locations that have very stable
clocks. They could estimate orbits and satellite transmit-
ter clock frequency offsets based on the same carrier
Doppler shift signals that support user equipment navi-
gation. Such a system may be able to achieve the stated
levels of accuracy if designed properly. The nearest exist-
ing equivalent based on on-way carrier Doppler shift is
the DORIS orbit determination system (Jayles & Costes,
2004).
This study provides hope that the accuracies stated

above might be achievable within a period when data
are available. Whether they could be achieved over a
needed forward prediction interval is an open ques-
tion. The largest challenge might be clock frequency
prediction.
It might be possible to address this challenge using con-

stellation cross-links, if available, to distribute a frequency
standard to the entire constellation that originates from
radio-frequency links between a few satellites and a small
number of ground stations. An alternative approachmight
be to link each satellite to a ground station often. Such an
approach would reduce the needed prediction interval for
clock frequency, but it would require a large network of
ground stations.
It may be possible to achieve good user navigation accu-

racy with less accuracy of the ephemerides and trans-
mitter clock frequencies than has been assumed in this
paper. Perhaps the user equipment filter could consider
states to allow for ephemeris and transmitter clock fre-
quency errors.
The achievable accuracies of the ephemerides and the

transmitter clock frequency offsets for an independent sys-
tem and their impact on navigation error are worthy sub-
jects for future research. These will be very important top-
ics if independence from MEO GNSS is a requirement of
such a system.
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9 SUMMARY AND CONCLUSIONS

A new Global Navigation Satellite System (GNSS) has
been proposed. It uses carrier Doppler shift as its only
observable. It exploits the simultaneous visibility of
eight or more satellites that will be a hallmark of the
large Low Earth Orbit (LEO) constellations that are
being planned and fielded. The availability of carrier
Doppler shift measurements from eight or more satellites
makes 3D position, receiver clock offset, 3D velocity,
and receiver clock offset rate simultaneously observ-
able. These quantities can be estimated by using a new
type of point solution that replaces the pseudorange
equations of traditional GNSS with carrier Doppler shift
equations.
A new Geometric Dilution of Precision (GDOP) anal-

ysis has been developed for this concept. It reaffirms
the importance of the geometric diversity of the Line-of-
Sight (LOS) unit direction vectors from the visible satel-
lites to the receiver, as in pseudorange-based GNSS, but
it brings to light additional important factors: The magni-
tudes and the geometric diversity of the rates of change
of the LOS direction vectors are important to achieving
low GDOP. The magnitudes of the range accelerations
between the satellites and the receiver are also impor-
tant to achieving low GDOP. These factors dictate that
the satellites be in LEO and that the visible satellites at
any given point on the Earth have a diversity of veloc-
ities relative to the receiver. Proper constellation design
can ensure that all of the requirements for low GDOP are
met.
Batch filter results for truth-model simulation data and

GDOP studies both indicate that absolute position accura-
cies on the order of 1 meter to 5 meters and absolute veloc-
ity accuracies on the order of 0.01 m/sec to 0.05 m/sec may
be achievable for a system with carrier Doppler shifts that
can bemeasuredwith an equivalent range-rate accuracy of
0.01 m/sec 1-𝜎.
The only weak part of this system is its timing accu-

racy. Errors on the order of 0.0002 to 0.0004 sec 1-
𝜎 are likely. Nevertheless, time is absolutely observable
with this system, and it does not require that the LEO
constellation carry atomic clocks or transmit ranging
codes.
Additional work will be required in order to real-

ize such a system using planned constellations and
signals. The encouraging possibilities analyzed in
this study provide a motivation for doing the needed
work.
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APPENDIX A: DERIVATION OF ANALYTIC
CARRIER DOPPLER SHIFTMODEL
This appendix derives the analytic carrier Doppler shift
model in Equation (7) starting from Equations (1)-(6). The
derivation starts by substitutingEquation (3) into Equation
(1)while applying the chain rule in order to transform from
differentiationwith respect to true reception time𝑇𝑅 to dif-
ferentiation with respect to erroneous receiver clock time
𝑡𝑅. The time derivatives of the neutral atmosphere term
𝛿𝑡

𝑗
𝑡𝑟𝑜𝑝 and the ionosphere term 𝛿𝑡

𝑗
𝑖𝑜𝑛 are neglected, in keep-

ing with the stated assumptions of Equation (7). The result
for the 𝑗th satellite’s signal is:

𝐷𝑗 = −
1
𝜆

[
𝑑𝜌𝑗

𝑑𝑇𝑅
+ 𝑐

(
𝑑𝛿𝑅
𝑑𝑇𝑅

−
𝑑𝛿𝑗

𝑑𝑇𝑗

{
1 −

𝑑𝛿𝑡
𝑗
𝑝

𝑑𝑇𝑅

})]
𝑑𝑇𝑅
𝑑𝑡𝑅

(A1)

where:

𝜌𝑗 =

√√√√√√
[
𝑟 − 𝐴

(
𝜔𝐸𝛿𝑡

𝑗
𝑝

)
𝑟𝑗
(
𝑡𝑅 − 𝛿𝑅 − 𝛿𝑡

𝑗
𝑝

)]T
×
[
𝑟 − 𝐴

(
𝜔𝐸𝛿𝑡

𝑗
𝑝

)
𝑟𝑗
(
𝑡𝑅 − 𝛿𝑅 − 𝛿𝑡

𝑗
𝑝

)]
(A2)

is the range from the satellite to the receiver. Time differ-
entiation of this range expression with respect to 𝑇𝑅 yields:

𝑑𝜌𝑗

𝑑𝑇𝑅
= (𝜌̂𝑗)T(𝑣 − 𝑣𝑗) +

[
(𝜌̂𝑗)T𝑣𝑗 − 𝑎

𝑗
𝛿𝑡𝑝

] 𝑑𝛿𝑡𝑗𝑝
𝑑𝑇𝑅

(A3)

The first term on the right-hand side of this equation
accounts for the direct dependence of 𝑟 and 𝑟𝑗(𝑡𝑅 − 𝛿𝑅 −
𝛿𝑡

𝑗
𝑝) on 𝑇𝑅 = 𝑡𝑅 − 𝛿𝑅. The second term accounts for the

dependence of 𝑟𝑗(𝑡𝑅 − 𝛿𝑅 − 𝛿𝑡
𝑗
𝑝) and 𝐴(𝜔𝐸𝛿𝑡

𝑗
𝑝) on 𝛿𝑡

𝑗
𝑝,

which depends on 𝑇𝑅. Time differentiation of Equation (4)
with respect to 𝑇𝑅 and neglect of the time derivatives of the
neutral atmosphere and ionosphere terms yields a second
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equation involving 𝑑𝜌𝑗∕𝑑𝑇𝑅 and 𝑑𝛿𝑡
𝑗
𝑝∕𝑑𝑇𝑅:

𝑑𝛿𝑡
𝑗
𝑝

𝑑𝑇𝑅
=

1
𝑐

𝑑𝜌𝑗

𝑑𝑇𝑅
(A4)

Simultaneous solution of Equations (A3) and (A4) for their
two unknowns yields:

𝑑𝜌𝑗

𝑑𝑇𝑅
=

(𝜌̂𝑗)T(𝑣 − 𝑣𝑗)

1 +
𝑎
𝑗
𝛿𝑡𝑝

−(𝜌̂𝑗)T𝑣𝑗

𝑐

𝑑𝛿𝑡
𝑗
𝑝

𝑑𝑇𝑅
=

(𝜌̂𝑗)T(𝑣 − 𝑣𝑗)

𝑐 + 𝑎
𝑗
𝛿𝑡𝑝

− (𝜌̂𝑗)T𝑣𝑗
(A5)

The only remaining unknown in Equation (A1) is
𝑑𝑇𝑅∕𝑑𝑡𝑅. It can be determined by differentiating the

known relationship 𝑇𝑅 = 𝑡𝑅 − 𝛿𝑅 with respect to 𝑇𝑅, solv-
ing for 𝑑𝑡𝑅∕𝑑𝑇𝑅, and taking the reciprocal of the result.
This process yields:

𝑑𝑇𝑅
𝑑𝑡𝑅

=

(
𝑑𝑡𝑅
𝑑𝑇𝑅

)−1
=

1

1 +
𝑑𝛿𝑅

𝑑𝑇𝑅

(A6)

Equations (A1), (A5), and (A6) can be combined to yield
the formula in Equation (7). This procedure substitutes the
𝑑𝜌𝑗∕𝑑𝑇𝑅 and 𝑑𝛿𝑡

𝑗
𝑝∕𝑑𝑇𝑅 formulas from Equation (A5) and

the 𝑑𝑇𝑅∕𝑑𝑡𝑅 formula from Equation (A6) into the right-
hand side of Equation (A1). Afterward, both sides of the
resulting equation are multiplied by −𝜆, and several alge-
braic rearrangements are performed to yield the formula
in Equation (7).
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