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Abstract
Reliably assessing the error in an estimated vehicle position is integral for
ensuring the vehicle’s safety in urban environments. Many existing approaches
use GNSS measurements to characterize protection levels (PLs) as probabilistic
upper bounds on position error. However, GNSS signals might be reflected or
blocked in urban environments, and thus additional sensor modalities need to
be considered to determine PLs. In this paper, we propose an approach for com-
puting PLs by matching camera image measurements to a LiDAR-based 3Dmap
of the environment. We specify a Gaussian mixture model probability distribu-
tion of position error using deep neural-network-based data-driven models and
statistical outlier weighting techniques. From the probability distribution, we
compute PL by evaluating the position error bound using numerical line-search
methods. Through experimental validationwith real-world data,we demonstrate
that the PLs computed from ourmethod are reliable bounds on the position error
in urban environments.
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1 INTRODUCTION

In recent years, research on autonomous navigation for
urban environments has been garnering increasing atten-
tion. Many publications have targeted different aspects of
navigation such as route planning (Delling et al., 2017),
perception (Jensen et al., 2016), and localization (Caselitz
et al., 2016; Wolcott & Eustice, 2017). For trustworthy oper-
ation in each of these aspects, assessing the level of safety of
the vehicle from potential system failures is critical. How-
ever, fewworks have examined the problem of safety quan-
tification for autonomous vehicles.
In the context of satellite-based localization, safety is

typically addressed via integrity monitoring (IM) (Spilker
Jr. et al., 1996). Within IM, protection levels (PLs) spec-
ify a statistical upper bound on the error in an estimated

position of the vehicle, which can be trusted to enclose
the position errors with a required probabilistic guarantee.
To detect an unsafe estimated vehicle position, these pro-
tection levels are compared with the maximum allowable
position error value, known as the alarm limit.
Various methods (Cezón et al., 2013; Jiang & Wang,

2016; Tran & Lo Presti, 2019) have been proposed over
the years for computing protection levels, however,
most of these approaches focus on GNSS-only nav-
igation. These approaches do not directly apply to
GNSS-denied urban environments, where visual sensors
are becoming increasingly preferred (Badue et al., 2021).
Although various options in visual sensors exist in the
market, camera sensors are inexpensive, lightweight,
and have been widely employed in industry. For
quantifying localization safety in GNSS-denied urban
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environments, there is thus a need to develop new ways
of computing protection levels using camera image mea-
surements.
Since protection levels are bounds over position error,

computing them from camera image measurements
requires a model that relates the measurements to posi-
tion error in the estimate of the vehicle location. Further-
more, since the lateral, longitudinal, and vertical direc-
tions are well-defined with respect to a vehicle’s location
on the road, the model must estimate the maximum posi-
tion error in each of these directions for computing pro-
tection levels (Reid et al., 2019). However, characterizing
such a model is not so straightforward. This is because the
relation between a vehicle location in an environment and
the corresponding camera imagemeasurement is complex,
depending on identifying andmatching structural patterns
in the measurements with prior known information about
the environment (Caselitz et al., 2016;Kimet al., 2018; Taira
et al., 2021; Wolcott & Eustice, 2017).
Recently, data-driven techniques based on deep neural

networks (DNN) have demonstrated state-of-the-art per-
formance in determining the state of the camera sensor,
comprised of its position and orientation, by identifying
and matching patterns in images with a known map of
the environment (Cattaneo et al., 2019; Lyrio et al., 2015;
Oliveira et al., 2020) or an existing database of images (Sar-
lin et al., 2019; Taira et al., 2021).
By leveraging data sets consisting of multiple images

with known camera states in an environment, these
approaches can train a DNN to model the relationship
between an image and the corresponding state. However,
the model characterized by the DNN can often be erro-
neous or brittle. For instance, recent research has shown
that the output of a DNN can change significantly with
minimal changes to the inputs (Recht et al., 2019). Thus,
for using DNNs to determine position error, uncertainty in
the output of the DNN must also be addressed.
DNN-based algorithms consider two types of uncer-

tainty (Kendall & Gal, 2017; Loquercio et al., 2020).
Aleatoric or statistical uncertainty results from the noise
present in the inputs to the DNN, because of which a
precise output cannot be produced. For camera image
inputs, sources of noise include illumination changes,
occlusion, or the presence of visually ambiguous struc-
tures, such as windows tessellated along a wall (Kendall
& Gal, 2017). On the other hand, epistemic or systematic
uncertainty exists within the model itself. Sources of
epistemic uncertainty include poorly determined DNN
model parameters as well as external factors that are not
considered in the model (Kiureghian & Ditlevsen, 2009),
such as environmental features which might be ignored
by the algorithm while matching the camera images to
the environment map.

While aleatoric uncertainty is typically modeled
as the input-dependent variance in the output of the
DNN (Kendall & Gal, 2017; McAllister et al., 2017; Yang
et al., 2020), epistemic uncertainty relates to the DNN
model and, therefore, requires further deliberation.
Existing approaches approximate epistemic uncertainty
by assuming a probability distribution over the weight
parameters of the DNN to represent ignorance about
the correct parameters (Blundell et al., 2015; Gal &
Ghahramani, 2016; Kendall & Cipolla, 2016).
However, these approaches assume that a correct value

of the parameters exists and that the probability distribu-
tion over the weight parameters captures the uncertainty
in the model, both of which do not necessarily hold up
in practice (Smith & Gal, 2018). This inability of existing
DNN-based methods to properly characterize uncertainty
limits their applicability to safety-critical applications,
such as the localization of autonomous vehicles.
In this paper, we propose a novel method for computing

protection levels associated with a given vehicular state
estimate (position and orientation) from camera image
measurements and a 3D map of the environment. This
work is based on our recent ION GNSS+ 2020 confer-
ence paper (Gupta & Gao, 2020) and includes additional
experiments and improvements to the DNN training
process.
Recently, high-definition 3D environment maps in

the form of LiDAR point clouds have become increas-
ingly available through industry players such as HERE,
TomTom, Waymo, and NVIDIA, as well as through
projects such as USGS 3DEP (Lukas & Stoker, 2016) and
OpenTopography (Krishnan et al., 2011). Furthermore,
LiDAR-based 3Dmaps are more robust to noise from envi-
ronmental factors, such as illumination and weather, than
image-based maps (Wang et al., 2020). Hence, we use
LiDAR-based 3D point cloud maps in our approach.
Previously, CMRNet (Cattaneo et al., 2019) has been pro-

posed as aDNN-based approach for determining the vehic-
ular state from camera images and a LiDAR-based 3Dmap.
In our approach, we extend the DNN architecture pro-
posed in Cattaneo et al. (2019) to model the position error
and the covariance matrix (aleatoric uncertainty) in the
vehicular state estimate.
To assess the epistemic uncertainty in position error,

we evaluate the DNN position error outputs at multiple
candidate states in the vicinity of the state estimate, and
combine the outputs into samples of the state estimate
position error. Figure 1 shows the architecture of our pro-
posed approach.
Given a state estimate, we first select multiple candi-

date states from its neighborhood. Using theDNN,we then
evaluate the position error and covariance for each candi-
date state by comparing the camera image measurement
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F IGURE 1 Architecture of our proposed approach for computing protection levels. Given a state estimate, multiple candidate states are
selected from its neighborhood and the corresponding position error and the covariance matrix for each candidate state are evaluated using
the DNN. The position errors and covariance are then linearly transformed to obtain samples of the state estimate position error and variance,
which are then weighted to determine outliers. Finally, the position error samples, outlier weights, and variance are combined to construct a
Gaussian mixture model probability distribution, from which the lateral, longitudinal, and vertical protection levels are computed through
numerical evaluation of its probability intervals [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com
and www.ion.org]

with a local map constructed from the candidate state and
3D environmentmap. Next, we linearly transform the posi-
tion error and covariance outputs from the DNN with rel-
ative positions of candidate states into samples of the state
estimate position error and variance. We then separate
these samples into the lateral, longitudinal, and vertical
directions and weight the samples to mitigate the impact
of outliers in each direction. Subsequently, we combine
the position error samples, outlier weights, and variance
samples to construct a Gaussian mixture model proba-
bility distribution of the position error in each direction,
and numerically evaluate its intervals to compute protec-
tion levels.
Our main contributions are as follows:

1. We extend the CMRNet (Cattaneo et al., 2019) archi-
tecture to model both the position error in the vehicu-
lar state estimate and the associated covariance matrix.
Using the 3D LiDAR-basedmap of the environment, we
first construct a local map representation with respect
to the vehicular state estimate. Then, we use the DNN
to analyze correspondence between the camera image
measurement and the local map for determining the
position error and the covariance matrix

2. We develop a novel method for capturing epistemic
uncertainty in the DNN position error output. Unlike
existing approaches which assume a probability distri-
bution over DNN weight parameters, we directly ana-
lyze different position errors that are determined by the
DNN for multiple candidate states selected fromwithin
a neighborhood of the state estimate. The position error
outputs from the DNN corresponding to the candidate
states are then linearly combined with the candidate
states’ relative position from the state estimate to obtain
an empirical distribution of the state estimate position
error

3. We design an outlier weighting scheme to account for
possible errors in the DNN output at inputs that differ
from the training data. Our approach weighs the posi-
tion error samples from the empirical distribution using
a robust outlier detection metric known as a robust Z-
score (Iglewicz & Hoaglin, 1993), along the lateral, lon-
gitudinal, and vertical directions individually

4. We construct the lateral, longitudinal, and vertical pro-
tection levels as intervals over the probability distribu-
tion of the position error. Wemodel this probability dis-
tribution as a Gaussian mixture model (Lindsay, 1995)
from the position error samples, DNN covariance, and
outlier weights

5. We demonstrate the applicability of our approach in
urban environments by experimentally validating the
protection levels computed fromourmethod using real-
world data with multiple camera images and different
state estimates

The remainder of this paper is structured as follows:
Section 2 discusses related work; Section 3 formulates the
problemof estimating protection levels; Section 4 describes
the two types of uncertainties considered in our approach;
Section 5 details our algorithm; Section 6 presents the
results from experimentation with real-world data; and we
conclude the paper in Section 7.

2 RELATEDWORK

Severalmethods have been developed over the yearswhich
characterize protection levels in the context of GNSS-based
urban navigation. Jiang and Wang (2016) computed hor-
izontal protection levels using an iterative search-based
method and test statistic based on the bivariate normal
distribution. Cezón et al. (2013) analyzed methods which
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utilize the isotropy of residual vectors from the least-
squares position estimation to compute the protection lev-
els. Tran and Lo Presti (2019) combined advanced receiver
autonomous integrity monitoring (ARAIM) with Kalman
filtering, and computed the protection levels by consider-
ing the set of position solutions which arise after excluding
faulty measurements.
These approaches compute the protection levels by

deriving the mathematical relation between measurement
and position domain errors.However, such a relation is dif-
ficult to formulate with camera image measurements and
a LiDAR-based 3Dmap, since the position error in this case
depends on various factors such as the structure of build-
ings in the environment, available visual features, and illu-
mination levels.
Previous works have proposed IM approaches for

LiDAR- and camera-based navigation where the vehicle is
localized by associating identified landmarks with a stored
map or a database. Joerger and Pervan (2019) developed a
method to quantify integrity risk for LiDAR-based naviga-
tion algorithms by analyzing failures of feature extraction
and data association subroutines. Zhu et al. (2020) derived
a bound on the integrity risk in camera-based navigation
using EKF caused by incorrect feature associations.
However, these IM approaches have been developed for

localization algorithms based on data association and can-
not be directly applied to many recent camera and LiDAR-
based localization techniques which use deep learning to
model the complex relation between measurements and
the stored map or database. Furthermore, these IM tech-
niques do not estimate protection levels, which are the
focus of our work.
Deep learning has been widely applied to determine

position information from camera images. Kendall et al.
(2015) trained a DNN using images from a single envi-
ronment to learn the relationship between image and
the camera 6-DOF pose. Taira et al. (2021) learned image
features using a DNN to apply feature extraction and
matching techniques to estimate the 6-DOF camera pose
relative to a known3Dmapof the environment. Sarlin et al.
(2019) developed a deep learning-based 2D-3D matching
technique to obtain a 6-DOF camera pose from images and
a 3D environment model. However, these approaches do
not model the corresponding uncertainty associated with
the estimated camera pose, or account for failures in DNN
approximation (Smith & Gal, 2018), which is necessary for
characterizing safety measures such as protection levels.
Some recent works have proposed to estimate the uncer-

tainty associated with deep learning algorithms. Kendall
and Cipolla (2016) estimate the uncertainty in DNN-based
camera pose estimation from images by evaluating the
network multiple times through dropout (Gal & Ghahra-
mani, 2016). Loquercio et al. (2020) propose a general

framework for estimating uncertainty in deep learning
as variance computed from both aleatoric and epistemic
sources. McAllister et al. (2017) suggest using Bayesian
deep learning to determine uncertainty and quantify safety
in autonomous vehicles by placing probability distribu-
tions over DNNweights to represent the uncertainty in the
DNN model. Yang et al. (2020) jointly estimate the vehi-
cle odometry, scene depth, and uncertainty from sequen-
tial camera images.
However, the uncertainty estimates from these algo-

rithms do not take into account the inaccuracy of the
trained DNN model, or the influence of the underly-
ing environment structure on the DNN outputs. In our
approach, we evaluate the DNN position error outputs
at inputs corresponding to multiple states in the envi-
ronment, and utilize these position errors for characteriz-
ing uncertainty both from inaccuracy in the DNN model
as well as from the environment structure around the
state estimate.
To the best of our knowledge, our approach is the

first that applies data-driven algorithms for computing
protection levels by characterizing the uncertainty from
different error sources. The proposed method seeks to
leverage the high-fidelity function modeling capability
of DNNs and combine it with techniques from robust
statistics and integrity monitoring to compute robust
protection levels using camera image measurements and
3D maps of the environment.

3 PROBLEM FORMULATION

Consider the scenario of a vehicle navigating in an urban
environment usingmeasurements acquired by an onboard
camera. The 3D LiDAR map of the environment  that
consists of points 𝐩 ∈ ℝ3 is assumed to be pre-known from
either openly available repositories (Krishnan et al., 2011;
Lukas & Stoker, 2016) or simultaneous localization and
mapping algorithms (Cadena et al., 2016).
The vehicular state 𝐬𝑡 = [𝐱𝑡, 𝐨𝑡] at time 𝑡 is a

seven-element vector comprising of its 3D posi-
tion 𝐱𝑡 = [𝑥𝑡, 𝑦𝑡, 𝑧𝑡]

⊤
∈ ℝ3 along x, y, and 𝑧 dimen-

sions as well as 3D orientation unit quaternion
𝐨𝑡 = [𝑜1,𝑡, 𝑜2,𝑡, 𝑜3,𝑡, 𝑜4,𝑡] ∈ SU(2). The vehicle state esti-
mates over time are denoted as {𝐬𝑡}

𝑇max
𝑡=1 where𝑇max denotes

the total time in a navigation sequence. At each time 𝑡, the
vehicle captures an RGB camera image 𝐼𝑡 ∈ ℝ𝑙×𝑤×3 from
the onboard camera where 𝑙 and 𝑤 denote pixels along
length and width dimensions, respectively.
Given an integrity risk specification 𝐼𝑅, our objective

is to compute the lateral protection level 𝑃𝐿𝑙𝑎𝑡,𝑡, longitu-
dinal protection level 𝑃𝐿𝑙𝑜𝑛,𝑡, and vertical protection level
𝑃𝐿𝑣𝑒𝑟𝑡,𝑡 at time 𝑡, which denote themaximal bounds on the
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position error magnitude with a probabilistic guarantee of
at least 1 − 𝐼𝑅. Considering 𝑥, 𝑦, and 𝑧 dimensions in the
rotational frame of the vehicle:

𝑃𝐿lat,𝑡 = sup
{
𝜌 ∣ ℙ

(|𝑥𝑡 − 𝑥∗𝑡 | ≤ 𝜌
)
≤ 1 − IR

}
𝑃𝐿lon,𝑡 = sup

{
𝜌 ∣ ℙ

(|𝑦𝑡 − 𝑦∗𝑡 | ≤ 𝜌
)
≤ 1 − IR

}
𝑃𝐿vert,𝑡 = sup

{
𝜌 ∣ ℙ

(|𝑧𝑡 − 𝑧∗𝑡 | ≤ 𝜌
)
≤ 1 − IR

}
(1)

where 𝐱∗𝑡 = [𝑥∗𝑡 , 𝑦
∗
𝑡 , 𝑧

∗
𝑡 ] denotes the unknown true vehicle

position at time 𝑡.

4 TYPES OF UNCERTAINTY IN
POSITION ERROR

Protection levels for a state estimate 𝐬𝑡 at time 𝑡 depend
on the uncertainty in determining the associated posi-
tion error Δ𝐱𝑡 = [Δ𝑥𝑡, Δ𝑦𝑡, Δ𝑧𝑡] between the state estimate
position 𝐱𝑡 and the true position 𝐱∗𝑡 from the camera image
𝐼𝑡 and the environment map. We consider two different
kinds of uncertainty,which are categorized by the source of
inaccuracy in determining the position errorΔ𝐱𝑡: aleatoric
uncertainty and epistemic uncertainty.

4.1 Aleatoric uncertainty

Aleatoric uncertainty refers to the uncertainty from noise
present in the camera imagemeasurements 𝐼𝑡 and the envi-
ronment map, due to which a precise value of the posi-
tion error Δ𝐱𝑡 cannot be determined. Existing DNN-based
localization approaches model the aleatoric uncertainty as
a covariance matrix with only diagonal entries (Kendall &
Gal, 2017; McAllister et al., 2017; Yang et al., 2020) or with
both diagonal and off-diagonal terms (Liu et al., 2018; Rus-
sell & Reale, 2019).
Similar to the existing approaches, we characterize the

aleatoric uncertainty by using a DNN to model the covari-
ance matrix Σ𝑡 associated with the position error Δ𝐱𝑡. We
consider both nonzero diagonal and off-diagonal terms in
Σ𝑡 tomodel the correlation between x-, y-, and 𝑧-dimension
uncertainties, such as along the ground plane.
Aleatoric uncertainty by itself does not accurately rep-

resent the uncertainty in determining position error. This
is because aleatoric uncertainty assumes that the noise
present in training data also represents the noise in all
future inputs and the DNN approximation is error-free.
These assumptions fail in scenarios when the input at
evaluation time is different from the training data or
when the input contains features that occur rarely in the
real world (Smith & Gal, 2018). Thus, relying purely on
aleatoric uncertainty can lead to overconfident estimates
of the position error uncertainty (Kendall & Gal, 2017).

F IGURE 2 Position error Δ𝐱𝑡 in the state estimate position 𝐱𝑡
is a linear combination of the position error Δ𝐱𝑖𝑡 in position 𝐱

𝑖
𝑡 of any

candidate state 𝑠𝑖𝑡 and the relative position vector between 𝐱
𝑖
𝑡 and 𝐱𝑡

[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

4.2 Epistemic uncertainty

Epistemic uncertainty relates to the inaccuracies in the
model for determining the position error Δ𝐱𝑡. In our
approach, we characterize the epistemic uncertainty by
leveraging a geometrical property of the position error
Δ𝐱𝑡, where for the same camera image 𝐼𝑡, Δ𝐱𝑡 can be
obtained by linearly combining the position errorΔ𝐱′𝑡 com-
puted for any candidate state 𝐬′𝑡 and the relative position
of 𝐬′𝑡 from the state estimate 𝐬𝑡 (Figure 2). Hence, using
known relative positions and orientations of 𝑁𝐶 candi-
date states {𝐬1𝑡 , … , 𝐬

𝑁𝐶
𝑡 } from 𝐬𝑡, we transform the different

position errors {Δ𝐱1𝑡 , … , Δ𝐱
𝑁𝐶
𝑡 } determined for the candi-

date states into samples of the state estimate position error
Δ𝐱𝑡. The empirical distribution comprised of these posi-
tion error samples characterizes the epistemic uncertainty
in the position error estimated using the DNN.

5 DATA-DRIVEN PROTECTION
LEVELS

This section details our algorithm for computing data-
driven protection levels for the state estimate 𝐬𝑡 at time
𝑡, using the camera image 𝐼𝑡 and environment map .
First, we describe the method for generating local repre-
sentations of the 3D environment map with respect to
the state estimate 𝐬𝑡. Then, we illustrate the architecture of
the DNN. Next, we discuss the loss functions used in DNN
training. We then detail the method for selecting multiple
candidate states from the neighborhood of the state esti-
mate 𝐬𝑡.
Using the position errors and covariance matrix evalu-

ated from the DNN for each of these candidate states, we
then illustrate the process for transforming the candidate
state position errors into multiple samples of the state
estimate position error. To mitigate the impact of outliers
on the computed position error samples in each of the
lateral, longitudinal, and vertical directions, we then detail
the procedure for computing outlier weights. Next, we
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characterize the probability distribution over position
error in lateral, longitudinal, and vertical directions.
Finally, we detail the approach for determining protection
levels from the probability distribution by numerical
methods.

5.1 Local map construction

A local representation of the 3DLiDARmapof the environ-
ment captures the environment information in the vicinity
of the state estimate 𝐬𝑡 at time 𝑡. By comparing the environ-
ment information captured in the local map with the cam-
era image 𝐼𝑡 ∈ ℝ𝑙×𝑤×3 using a DNN, we estimate the posi-
tion error Δ𝐱𝑡 and covariance Σ𝑡 in the state estimate 𝐬𝑡.
For computing local maps, we utilize the LiDAR-image

generation procedure described in Cattaneo et al. (2019).
Similar to their approach, we generate the local map
𝐿(𝐬,) ∈ ℝ𝑙×𝑤 associated with vehicle state 𝐬 and LiDAR
environment map in two steps.

1. First, we determine the rigid-body transformation
matrix 𝐻𝐬 in the special Euclidean group SE(3) corre-
sponding to the vehicle state 𝐬:

𝐻𝐬 =

[
𝑅𝐬 𝑇𝐬
𝟎1×3 1

]
∈ SE(3) (2)

where
– 𝑅𝐬 denotes the rotation matrix corresponding to the
orientation quaternion elements𝐨 = [𝑜1, 𝑜2, 𝑜3, 𝑜4] in
the state 𝐬

– 𝑇𝐬 denotes the translation vector corresponding to
the position elements 𝐱 = [𝑥, 𝑦, 𝑧] in the state 𝐬

Using the matrix 𝐻𝐬, we rotate and translate the points
in the map to the map𝐬 in the reference frame of
the state 𝐬:

𝐬 = {
[
𝐼3×3 𝟎3×1

]
⋅ 𝐻𝐬 ⋅

[
𝐩⊤ 1

]⊤
∣ 𝐩 ∈ } (3)

where 𝐼 denotes the identity matrix. For maintaining
computational efficiency in the case of large maps, we
use the points in the LiDARmap𝐬 that lie in a subre-
gion around the state 𝐬 and in the direction of the vehi-
cle orientation.

2. In the second step, we apply the occlusion estimation
filter presented in Pintus et al. (2011) to identify and
remove occluded points along rays from the camera
center. For each pair of points (𝐩(𝑖), 𝐩(𝑗)) where 𝐩(𝑖) is
closer to the state 𝐬, 𝐩(𝑗) is marked occluded if the angle
between the ray from 𝐩(𝑗) to the camera center and the
line from 𝐩(𝑗) to 𝐩(𝑖) is less than the threshold. Then,
the remaining points are projected to the camera image
frame using the camera projection matrix𝐾 to generate

the local depth map 𝐿(𝐬,). The 𝑖-th point 𝐩(𝑖) in𝐬

is projected as:

[𝑝𝑥 𝑝𝑦 𝑐]
⊤ = 𝐾 ⋅ 𝐩(𝑖)

[𝐿(𝐬,)](⌈𝑝𝑥∕𝑐⌉,⌈𝑝𝑦∕𝑐⌉) = [0 0 1] ⋅ 𝐩(𝑖) (4)

where
– 𝑝𝑥, 𝑝𝑦 denote the projected 2D coordinates with scal-
ing term 𝑐

– [𝐿(𝐬,)](𝑝𝑥,𝑝𝑦) denotes the (𝑝𝑥, 𝑝𝑦) pixel position in
the local map 𝐿(𝐬,)

The local depth map 𝐿(𝐬,) for state 𝐬 visualizes the
environment features that are expected to be captured in
a camera image obtained from the state 𝐬. However, the
obtained camera image 𝐼𝑡 is associated with the true state
𝐬∗𝑡 that might be different from the state estimate 𝐬𝑡. Never-
theless, for reasonably small position and orientation dif-
ferences between the state estimate 𝐬𝑡 and true state 𝐬∗𝑡 , the
local map 𝐿(𝐬,) contains features that correspond with
some of the features in the camera image 𝐼𝑡 that we use to
estimate the position error.

5.2 DNN architecture

We use a DNN to estimate the position error Δ𝐱𝑡 and asso-
ciated covariance matrix Σ𝑡 by implicitly identifying and
comparing the positions of corresponding features in cam-
era image 𝐼𝑡 and the local depth map 𝐿(𝐬𝑡,) associated
with the state estimate 𝐬𝑡.
The architecture of our DNN is given in Figure 3. Our

DNN is comprised of two separate modules: one for esti-
mating the position error Δ𝐱𝑡 and other for the parameters
of the covariance matrix Σ𝑡. The first module for estimat-
ing the position error Δ𝐱𝑡 is based on CMRNet (Cattaneo
et al., 2019).
CMRNet was originally proposed as an algorithm to iter-

atively determine the position and orientation of a vehicle
using a camera image and 3D LiDAR map, starting from
a provided initial state. For determining position error Δ𝐱𝑡
using CMRNet, we use the state estimate 𝐬𝑡 as the provided
initial state and the corresponding DNN translation Δ𝐱̃𝑡
and rotation Δ𝐫̃ error output for transforming the state 𝐬𝑡
towards the true state 𝐬∗𝑡 . Formally, given any state 𝐬 and
camera image 𝐼𝑡 at time 𝑡, the translation errorΔ𝐱̃ and rota-
tion error Δ𝐫̃ are expressed as:

Δ𝐱̃, Δ𝐫̃ = CMRNet(𝐼𝑡, 𝐿(𝐬,)) (5)

CMRNet estimates the rotation error Δ𝐫̃ as a unit quater-
nion. Furthermore, the architecture determines both the
translation error Δ𝐱̃ and rotation error Δ𝐫̃ in the reference
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F IGURE 3 Architecture of our deep neural network (DNN) for estimating translation and rotation errors as well as parameters of the
covariance matrix. The translation and rotation errors are determined using CMRNet (Cattaneo et al., 2019), and employs correlation
layers (Dosovitskiy et al., 2015) for comparing feature representations of the camera image and the local depth map. Using a similar
architecture, we design CovarianceNet which produces parameters of the covariance matrix associated with the translation error output
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

frame of the state 𝐬. Since the protection levels depend on
the position errorΔ𝐱 in the reference frame fromwhich the
camera image 𝐼𝑡 is captured (the vehicle reference frame),
we transform the translation error Δ𝐱̃ to the vehicle refer-
ence frame by rotating it with the inverse of Δ𝐫̃:

Δ𝐱 = −𝑅̃⊤ ⋅ Δ𝐱̃ (6)

where 𝑅̃ is the 3 × 3 rotation matrix corresponding to the
rotation error quaternion Δ𝐫̃.
In the second module, we determine the covariance

matrix Σ associated with Δ𝐱 by first estimating the covari-
ance matrix Σ̃ associated with the translation error Δ𝐱̃
obtained from CMRNet and then transforming it to the
vehicle reference frame using Δ𝐫̃.
We model the covariance matrix Σ̃ by following a sim-

ilar approach to Russell & Reale (2019). Since the covari-
ance matrix is both symmetric and positive-definite, we
consider the decomposition of Σ̃ into diagonal standard
deviations 𝝈 = [𝜎1, 𝜎2, 𝜎3] and correlation coefficients 𝜼 =
[𝜂21, 𝜂31, 𝜂32]:

[Σ̃]𝑖𝑖 = 𝜎2
𝑖

[Σ̃]𝑖𝑗 = [Σ]𝑗𝑖 = 𝜂𝑖𝑗𝜎𝑖𝜎𝑗 (7)

where 𝑖, 𝑗 ∈ {1, 2, 3} and 𝑗 < 𝑖. We estimate these terms
using our second DNN module (referred to as Covari-
anceNet) which has a similar network structure as CMR-
Net, but with 256 and 6 artificial neurons in the last two
fully connected layers to prevent overfitting.
For stable training, CovarianceNet produces a logarithm

of the standard deviation output, which is converted to the

standard deviation by then taking the exponent. Addition-
ally, we use tanh function to scale the correlation coeffi-
cient outputs 𝜼 in CovarianceNet between ±1. Formally,
given a vehicle state 𝐬 and camera image 𝐼𝑡 at time 𝑡, while
the standard deviation 𝝈 and correlation coefficients 𝜼 is
approximated as:

𝝈, 𝜼 = CovarianceNet(𝐼𝑡, 𝐿(𝐬,)) (8)

Using the constructed Σ̃ from the obtained 𝝈, 𝜼, we obtain
the covariance matrix Σ associated with Δ𝐱 as:

Σ = 𝑅̃⊤ ⋅ Σ̃ ⋅ 𝑅̃ (9)

We keep the aleatoric uncertainty restricted to position
domain errors in this work for simplicity, and thus treat
Δ𝐫̃ as a point estimate. The impact of errors in estimat-
ing Δ𝐫̃ on protection levels is taken into consideration as
epistemic uncertainty and discussed in more detail in Sec-
tions 5.5 and 5.7.
The feature extraction modules in CovarianceNet and

CMRNet are separate since the two tasks are complemen-
tary; for estimating position error, the DNN must learn
features that are robust to noise in the inputs while the
variance in the estimated position error depends on the
noise itself.

5.3 Loss functions

The loss function for training the DNN must penalize
position error outputs that differ from the corresponding
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ground truth present in the dataset, as well as penalize
any covariance that overestimates or underestimates the
uncertainty in the position error predictions. Furthermore,
the lossmust incentivize theDNN to extract useful features
from the camera image and local map inputs for predicting
the position error. Hence, we consider three additive com-
ponents in our loss function (⋅):

 = 𝛼HuberHuber(Δ𝐱̃
∗, Δ𝐱̃) + 𝛼MLEMLE(Δ𝐱̃

∗, Δ𝐱̃, Σ̃)

+ 𝛼AngAng(Δ𝐫̃
∗, Δ𝐫̃) (10)

where:

– Δ𝐱̃∗, Δ𝐫̃∗ denotes the vector-valued translation and rota-
tion error in the reference frame of the state estimate 𝐬
to the unknown true state 𝐬∗

– Huber(⋅) denotes the Huber loss function (Huber, 1992)
– MLE(⋅) denotes the loss function for themaximum like-
lihood estimation of position error Δ𝐱 and covariance Σ̃

– Ang(⋅) denotes the quaternion angular distance
from Cattaneo et al. (2019)

– 𝛼Huber, 𝛼MLE, 𝛼Ang are coefficients for weighting each
loss term

We employ the Huber loss Huber(⋅) and quaternion angu-
lar distance Ang(⋅) terms from Cattaneo et al. (2019). The
Huber loss term Huber(⋅) penalizes the translation error
output Δ𝐱̃ of the DNN:

Huber(Δ𝐱̃
∗, Δ𝐱̃) =

∑
𝑋=𝑥,𝑦,𝑧

𝐷Huber(Δ𝑋̃
∗, Δ𝑋̃)

𝐷Huber(𝑎
∗,𝑎) =

⎧⎪⎨⎪⎩
1

2
(𝑎−𝑎∗)

2 for |𝑎−𝑎∗|≤ 𝛿

𝛿 ⋅
(|𝑎 − 𝑎∗| − 1

2
𝛿
)

otherwise

(11)

where 𝛿 is a hyperparameter for adjusting the penalty
assignment to small error values. In this paper, we set
𝛿 = 1. Unlike the more common mean squared error,
the penalty assigned to higher error values is linear in
Huber loss instead of quadratic. Thus, Huber loss is
more robust to outliers and leads to more stable training
as compared to squared error. The quaternion angular
distance term Ang(⋅) penalizes the rotation error output
Δ𝐫̃ from CMRNet:

Ang(Δ𝐫̃
∗, Δ𝐫̃) = 𝐷Ang(Δ𝐫̃

∗ × Δ𝐫̃−1)

𝐷Ang(𝐪) = atan2

(√
𝑞2
2
+ 𝑞2

3
+ 𝑞2

4
, |𝑞1|)

(12)

where:

– 𝑞𝑖 denotes the 𝑖-th element in quaternion 𝐪
– Δ𝐫−1 denotes the inverse of the quaternion Δ𝐫
– 𝐪 × 𝐫 here denotes element-wise multiplication of the
quaternions 𝐪 and 𝐫

– atan2(⋅) is the two-argument version of the arctangent
function.

Including the quaternion angular distance term Ang(⋅)

in the loss function incentivizes the DNN to learn features
that are relevant to the geometry between the camera
image and the local depth map. Hence, it provides addi-
tional supervision to the DNN training as a multi-task
objective (Zeng & Ji, 2015), and is important for the
stability and speed of the training process.
The maximum likelihood loss term MLE(⋅) depends on

both the translation error Δ𝐱̃ and covariance matrix Σ̃ esti-
mated from the DNN. The loss function is analogous to the
negative log-likelihood of the Gaussian distribution:

MLE(Δ𝐱̃
∗, Δ𝐱̃, Σ̃) =

1

2
log |Σ̃| + 1

2
(Δ𝐱̃∗ − Δ𝐱̃)

⊤
⋅ Σ̃−1

⋅ (Δ𝐱̃∗ − Δ𝐱̃) (13)

If the covariance output from the DNN has small values,
the corresponding translation error is penalized much
more than the translation error corresponding to a large
valued covariance. Hence, the maximum likelihood
loss term MLE(⋅) incentivizes the DNN to output small
covariance only when the corresponding translation error
output has high confidence, and otherwise output large
covariance.

5.4 Multiple candidate state selection

To assess the uncertainty in the DNN-based position
error estimation process as well as uncertainty from
environmental factors, we evaluate the DNN output at𝑁𝐶

candidate states {𝐬1𝑡 … , 𝐬
𝑁𝐶
𝑡 } in the neighborhood of the

state estimate 𝐬𝑡.
For selecting the candidate states {𝐬1𝑡 … , 𝐬

𝑁𝐶
𝑡 }, we ran-

domly generate multiple values of translation offset
{𝐭1, … , 𝐭𝑁𝐶 } and rotation offset {𝐫1, … , 𝐫𝑁𝐶 } about the state
estimate 𝐬𝑡, where 𝑁𝐶 is the total number of selected can-
didate states. The 𝑖-th translation offset 𝐭𝑖 ∈ ℝ3 denotes
translation in 𝑥, 𝑦, and 𝑧 dimensions and is sampled from a
uniform probability distribution between a specified range
±𝑡𝑚𝑎𝑥 in each dimension.
Similarly, the 𝑖-th rotation offset 𝐫𝑖 ∈ SU(2) is obtained

by uniformly sampling between ±𝑟𝑚𝑎𝑥 angular deviations
about each axis and converting the resulting rotation to
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a quaternion. The 𝑖-th candidate state 𝐬𝑖𝑡 is generated by
rotating and translating the state estimate 𝐬𝑡 by 𝐫𝑖 and 𝐭𝑖 ,
respectively. Corresponding to each candidate state 𝐬𝑖𝑡, we
generate a local depth map 𝐿(𝐬𝑖𝑡,) using the procedure
laid out in Section 5.1.

5.5 Linear transformation of position
errors

Using each local depth map 𝐿(𝐬𝑖𝑡,) and camera image
𝐼𝑡 for the 𝑖-th candidate state 𝐬𝑖𝑡 as inputs to the DNN in
Section 5.2, we evaluate the candidate state position error
Δ𝐱𝑖𝑡 and covariance matrix Σ𝑖𝑡. From the known trans-
lation offset 𝐭𝑖 between the candidate state 𝐬𝑖𝑡 and the
state estimate 𝐬𝑡 and the DNN-based rotation error Δ𝐫̃𝑡
in 𝐬𝑡, we compute the transformation matrix 𝐻𝐬𝑖𝑡→𝐬𝑡

for
converting the candidate state position error Δ𝐱𝑖𝑡 to the
state estimate position error Δ𝐱𝑡 in the vehicle reference
frame:

𝐻𝐬𝑖𝑡→𝐬𝑡
=
[
𝐼3×3 −𝑅̃⊤𝑡 𝐭

𝑖
]

(14)

where 𝐼3×3 denotes the identity matrix and 𝑅̃𝑡 is the 3 × 3
rotation matrix computed from the DNN-based rotation
error Δ𝐫̃𝑡 between the state estimate 𝐬𝑡 and the unknown
true state 𝐬∗𝑡 . Note that the rotation offset 𝐫𝑖 is not used
in the transformation, since we are only concerned with
the position errors from the true state 𝐬∗𝑡 to the state esti-
mate 𝐬𝑡, which are invariant to the orientation of the can-
didate state 𝐬𝑖𝑡. Using the transformation matrix 𝐻𝐬𝑖𝑡→𝐬𝑡

,
we obtain the 𝑖-th sample of the state estimate position
error Δ𝐱(𝑖)𝑡 :

Δ𝐱
(𝑖)
𝑡 = 𝐻𝐬𝑖𝑡→𝐬𝑡

⋅
[
Δ𝐱𝑖𝑡 1

]⊤
= Δ𝐱𝑖𝑡 − 𝑅̃⊤𝑡 𝐭

𝑖 (15)

We use parentheses in the notation Δ𝐱
(𝑖)
𝑡 for the trans-

formed samples of the position error between the true
state 𝐬∗𝑡 and the state estimate 𝐬𝑡 to differentiate from the
position error Δ𝐱𝑖𝑡 between 𝐬

∗
𝑡 and the candidate state 𝐬

𝑖
𝑡.

Next,wemodify the candidate state covariancematrixΣ𝑖𝑡 to
account for uncertainty in DNN-based rotation error Δ𝐫̃𝑡.
The resulting covariance matrix Σ(𝑖)𝑡 in terms of the covari-
ance matrix Σ𝑖𝑡 for Δ𝐱

𝑖
𝑡, 𝑅̃𝑡 and 𝐭

𝑖 is:

Σ
(𝑖)
𝑡 = Σ𝑖𝑡 + Var

[
𝑅̃⊤𝑡 𝐭

𝑖
]

(16)

Assuming small errors in determining the true rota-
tion offsets between state estimate 𝐬𝑡 and the true state 𝐬∗𝑡 ,
we consider the random variable 𝑅′𝑅̃⊤𝑡 𝐭

𝑖 where 𝑅′ repre-
sents the random rotation matrix corresponding to small

angular deviations (Barfoot et al., 2011). Using 𝑅′𝑅̃⊤𝑡 𝐭
𝑖 , we

approximate the covariance matrix Σ(𝑖)𝑡 as:

Σ
(𝑖)
𝑡 ≈ Σ𝑖𝑡 + 𝔼

[
(𝑅′ − 𝐼)

(
𝑅̃⊤𝑡 𝐭

𝑖
)(
𝑅̃⊤𝑡 𝐭

𝑖
)⊤
(𝑅′ − 𝐼)

⊤]
[
Σ
(𝑖)
𝑡

]
𝑖′𝑗′

≈
[
Σ𝑖𝑡
]
𝑖′𝑗′

+ 𝔼
[(
𝐫′
𝑖′

)⊤(
𝑅̃⊤𝑡 𝐭

𝑖
)(
𝑅̃⊤𝑡 𝐭

𝑖
)⊤(

𝐫′
𝑗′

)]
=

[
Σ𝑖𝑡
]
𝑖′𝑗′

+ Tr
((
𝑅̃⊤𝑡 𝐭

𝑖
)(
𝑅̃⊤𝑡 𝐭

𝑖
)⊤
𝔼
[(
𝐫′
𝑖′

)(
𝐫′
𝑗′

)⊤])
=

[
Σ𝑖𝑡
]
𝑖′𝑗′

+ Tr
((
𝑅̃⊤𝑡 𝐭

𝑖
)(
𝑅̃⊤𝑡 𝐭

𝑖
)⊤
𝑄𝑖′𝑗′

)
(17)

where (𝐫′
𝑖
)
⊤ represents the 𝑖-th row vector in 𝑅′ − 𝐼. Since

errors in 𝑅̃ depend on the DNN output, we specify 𝑅′

through the empirical distribution of the angular devia-
tions in 𝑅̃ as observed for the trained DNN on the training
and validation data, and precompute the expectation 𝑄𝑖′𝑗′
for each (𝑖′, 𝑗′) pair.
The samples of state estimate position error

{Δ𝐱
(1)
𝑡 , … , Δ𝐱

(𝑁𝐶)
𝑡 } represent both inaccuracy in the

DNN estimation as well as uncertainties due to environ-
mental factors.
If the DNN approximation fails at the input correspond-

ing to the state estimate 𝐬𝑡, the estimated position errors
at candidate states would lead to a wide range of differ-
ent values for the state estimate position errors. Similarly,
if the environment map near the state estimate 𝐬𝑡 con-
tains repetitive features, the position errors computed from
candidate states would be different and hence indicate
high uncertainty.

5.6 Outlier weights

Since the candidate states {𝐬1𝑡 … , 𝐬
𝑁𝐶
𝑡 } are selected ran-

domly, some position error samples may correspond to
the local depth map and camera image pairs for which
the DNN performs poorly. Thus, we compute outlier
weights {𝐰

(1)
𝑡 , … ,𝐰

(𝑁𝐶)
𝑡 } corresponding to the position

error samples {Δ𝐱(1)𝑡 , … , Δ𝐱
(𝑁𝐶)
𝑡 } to mitigate the effect of

these erroneous position error values in determining the
protection levels.
We compute outlier weights in each of the 𝑥, 𝑦, and

𝑧 dimensions separately, since the DNN approximation
might not necessarily fail in all of its outputs. An exam-
ple of this scenario would be when the input camera image
and local map contain features such as building edges that
can be used to robustly determine errors along certain
directions but not others.
For computing the outlier weights 𝐰

(𝑖)
𝑡 =

[𝑤
(𝑖)
𝑥,𝑡, 𝑤

(𝑖)
𝑦,𝑡, 𝑤

(𝑖)
𝑧,𝑡] associated with the 𝑖-th position error
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value Δ𝐱
(𝑖)
𝑡 = [Δ𝑥

(𝑖)
𝑡 , Δ𝑦

(𝑖)
𝑡 , Δ𝑧

(𝑖)
𝑡 ], we employ the robust

Z-score-based outlier detection technique (Iglewicz &
Hoaglin, 1993). The robust Z-score is used in a variety
of anomaly detection approaches due to its resilience
to outliers (Rousseeuw & Hubert, 2018). We apply the
following operations in each dimension𝑋 = 𝑥, 𝑦, and 𝑧:

1. We compute the median absolute deviation statis-
tic (Iglewicz & Hoaglin, 1993)𝑀𝐴𝐷𝑋 using all position
error values {Δ𝑋(1)

𝑡 , … , Δ𝑋
(𝑁𝐶)
𝑡 }:

MA𝐷𝑋 = median
(|Δ𝑋(𝑖)

𝑡 − median
(
Δ𝑋

(𝑖)
𝑡

) |) (18)

2. Using the statistic 𝑀𝐴𝐷𝑋 , we compute the robust Z-
score (𝑖)

𝑋
for each position error value Δ𝑋(𝑖)

𝑡 :


(𝑖)
𝑋
=

||Δ𝑋(𝑖)
𝑡 − median

(
Δ𝑋

(𝑖)
𝑡

)||
𝑀𝐴𝐷𝑋

(19)

The robust Z-score(𝑖)
𝑋
is high if the position errorΔ𝐱(𝑖)

deviates from the median error with a large value when
compared with the median deviation value.

3. We compute the outlier weights {𝑤(1)
𝑋
, … ,𝑤

(𝑁𝐶)

𝑋
} from

the robust Z-scores {(1)
𝑋
, … ,

(𝑁𝐶)

𝑋
} by applying the soft-

max operation (Goodfellow et al., 2016) such that the
sum of weights is unity:

𝑤
(𝑖)
𝑋,𝑡

=
𝑒−𝛾⋅

(𝑖)
𝑋∑𝑁𝐶

𝑗=1
𝑒−𝛾⋅

(𝑗)
𝑋

(20)

where 𝛾 denotes the scaling coefficient in the softmax
function. We set 𝛾 = 0.6745 as the approximate inverse
of the standard normal distribution evaluated at 3∕4
to make the scaling in the statistic consistent with the
standard deviation of a normal distribution (Iglewicz &
Hoaglin, 1993). A small value of outlierweight𝑤(𝑖)

𝑋,𝑡
indi-

cates that the position error Δ𝑋(𝑖)
𝑡 is an outlier.

For brevity, we extract the diagonal variances associated
with each dimension for all position error samples:

(
𝜎2𝑥,𝑡

)(𝑖)
=

[
Σ
(𝑖)
𝑡

]
11(

𝜎2𝑦,𝑡
)(𝑖)

=
[
Σ
(𝑖)
𝑡

]
22(

𝜎2𝑧,𝑡
)(𝑖)

=
[
Σ
(𝑖)
𝑡

]
33

(21)

5.7 Probability distribution of position
error

We construct a probability distribution in each of the 𝑋 =

𝑥, 𝑦, and 𝑧 dimensions from the previously obtained sam-
ples of position errors Δ𝑋(𝑖)

𝑡 , variances (𝜎
2
𝑋,𝑡
)
(𝑖)
, and out-

lier weights 𝑤(𝑖)
𝑋,𝑡
. We model the probability distribution

using the Gaussian mixture model (GMM) distribution
(Lindsay, 1995):

ℙ(𝜌𝑋,𝑡) =

𝑁𝐶∑
𝑖=1

𝑤
(𝑖)
𝑋,𝑡


(
Δ𝑋

(𝑖)
𝑡 , (𝜎

2
𝑋,𝑡
)
(𝑖)
)

(22)

where:

– 𝜌𝑋,𝑡 denotes the position error random variable
–  (𝜇, 𝜎2) is the Gaussian distribution with mean 𝜇 and
variance 𝜎2

The probability distributions ℙ(𝜌𝑥,𝑡), ℙ(𝜌𝑦,𝑡) and ℙ(𝜌𝑧,𝑡)
incorporate both aleatoric uncertainty from the DNN-
based covariance and epistemic uncertainty from the mul-
tiple DNN evaluations associated with different candi-
date states. Both the position error and covariance matrix
depend on the rotation error point estimate from CMR-
Net for transforming the error values to the vehicle refer-
ence frame.
Since each DNN evaluation for a candidate state esti-

mates the rotation error independently, the epistemic
uncertainty incorporates the effects of errors in DNN-
based estimation of both rotation and translation. The epis-
temic uncertainty is reflected in the multiple GMM com-
ponents and their weight coefficients, which represent the
different possible position error values that may arise from
the same camera image measurement and the environ-
ment map. The aleatoric uncertainty is present as the vari-
ance in each possible value of the position error is repre-
sented by the individual components.

5.8 Protection levels

We compute the protection levels along the lateral, longi-
tudinal, and vertical directions using the probability distri-
butions obtained in the previous section. Since the posi-
tion errors are in the vehicle reference frame, the 𝑥, 𝑦,
and 𝑧 dimensions coincide with the lateral, longitudinal,
and the vertical directions, respectively. First, we obtain
the cumulative distribution function CDF(⋅) for each
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probability distribution:

CDF(𝜌𝑋,𝑡) =
𝑁𝐶∑
𝑖=1

𝑤
(𝑖)
𝑋,𝑡
Φ

(
𝜌𝑋,𝑡 − Δ𝑋

(𝑖)
𝑡

(𝜎𝑋,𝑡)
(𝑖)

)
(23)

where Φ(⋅) is the cumulative distribution function of the
standard normal distribution.
Then, for a specified value of the integrity risk 𝐼𝑅,

we compute the protection level 𝑃𝐿 in lateral, longi-
tudinal, and vertical directions from Equation 1 using
the CDF as the probability distribution. For numerical
optimization, we employ a simple interval halving method
for line search or the bisection method (Burden & Faires,
2011). To account for both positive and negative errors,
we perform the optimization both using CDF (supremum)
and 1 − CDF (infemum)with 𝐼𝑅∕2 as the integrity risk and
use the maximum absolute value as the protection level.
The computed protection levels consider heavy-tails in

the GMM probability distribution of the position error
that arise because of the different possible values of
the position error that can be computed from the avail-
able camera measurements and environment map. Our
method computes large protection levels when many dif-
ferent values of position error may be equally probable
from the measurements, resulting in larger tail probabil-
ities in the GMM, and small protection levels only if the
uncertainty from both aleatoric and epistemic sources is
small.

6 EXPERIMENTAL RESULTS

6.1 Real-world driving dataset

We use the KITTI visual odometry dataset (Geiger
et al., 2012) to evaluate the performance of the protec-
tion levels computed by our approach. The dataset was
recorded around Karlsruhe, Germany, over multiple driv-
ing sequences and contains images recorded by multi-
ple onboard cameras, along with ground truth positions
and orientations.
Additionally, the dataset contains LiDAR point cloud

measurements which we use to generate the environment
map corresponding to each sequence. Since our approach
for computing protection levels just requires a monocular
camera sensor, we use the images recorded by the left RGB
camera in our experiments. We use the sequences 00, 03,
05, 06, 07, 08, and 09 from the dataset based on the avail-
ability of a LiDAR environment map. We use sequence 00
for validation of our approach and the rest of the sequences
are utilized in training our DNN. The experimental param-
eters are provided in Table 1.

TABLE 1 Experimental parameters

Parameter Value
Integrity risk 𝐼𝑅 0.01
Candidate state maximum translation offset 𝑡𝑚𝑎𝑥 1.0 m
Candidate state maximum rotation offset 𝑟𝑚𝑎𝑥 5◦

Number of candidate states 𝑁𝐶 24
Lateral alarm limit 𝐴𝐿𝑙𝑎𝑡 0.85 m
Longitudinal alarm limit 𝐴𝐿𝑙𝑜𝑛 1.50 m
Vertical alarm limit 𝐴𝐿𝑣𝑒𝑟𝑡 1.47 m

6.2 LiDAR environment map

To construct a precise LiDAR point cloud map  of the
environment, we exploit the openly available position and
orientation values for the dataset computed via simultane-
ous localization and mapping (Caselitz et al., 2016). Sim-
ilar to Cattaneo et al. (2019), we aggregate the LiDAR
point clouds across all time instances. Then, we detect and
remove sparse outliers within the aggregated point cloud
by computing the Z-score (Iglewicz & Hoaglin, 1993) of
each point in a 0.1 m local neighborhood. We discarded
the points which had a higher Z-score than 3. Finally, the
remaining points are down sampled into a voxelmap of the
environmentwith resolution of 0.1 m. The correspond-
ing map for sequence 00 in the KITTI dataset is shown
in Figure 4. For storing large maps, we divide the LiDAR
point cloud sequences into multiple overlapping parts and
construct separate maps of roughly 500 megabytes each.

F IGURE 4 3D LiDAR environment map from KITTI dataset
sequence 00 (Geiger et al., 2012)

6.3 DNN training and testing datasets

We generate the training dataset for our DNN in two steps.
First, we randomly select a state estimate 𝑠𝑡 at time 𝑡 from
within a 2 m translation and a 10◦ rotation of the ground
truth positions and orientations in each driving sequence.
The translation and rotation used for generating the state
estimate is utilized as the ground truth position error Δ𝐱∗𝑡
and orientation error Δ𝐫∗𝑡 .
Then, using the LiDAR map , we generate the local

depth map 𝐿(𝐬𝑡,) corresponding to the state estimate 𝐬𝑡
and use it as the DNN input along with the camera image
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𝐼𝑡 from the driving sequence data. The training dataset
is comprised of camera images from 11,455 different time
instances, with the state estimate selected at runtime so
as to have different state estimates for the same camera
images in different epochs.
Similar to the data augmentation techniques described

in Cattaneo et al. (2019), we:

1. Randomly changed contrast, saturation, and brightness
of images

2. Applied random rotations in the range of ±5◦ to both
the camera images and local depth maps

3. Horizontally mirrored the camera image and computed
the local depthmap using amodified camera projection
matrix

All three of these data augmentation techniques are used
in training CMRNet in the first half of the optimization
process. However, for training CovarianceNet, we skip the
contrast, saturation, and brightness changes during the
second half of the optimization so that the DNN can learn
real-world noise features from camera images.
We generate the validation and test datasets from

sequence 00 in the KITTI odometry dataset, which is not
used for training. We follow a similar procedure as the
one for generating the training dataset, except we do not
augment the data. The validation dataset comprised of
randomly selected 100 time instances from sequence 00,
while the test dataset contains the remaining 4,441 time
instances in sequence 00.

6.4 Training procedure

We train the DNN using stochastic gradient descent.
Directly optimizing via the maximum likelihood loss
term MLE(⋅) might suffer from instability caused by the
interdependence between the translation error Δ𝐱̃ and
covariance Σ̃ outputs (Skafte et al., 2019). Therefore, we
employ the mean-variance split training strategy proposed
in Skafte et al. (2019): First, we set (𝛼Huber = 1, 𝛼MLE =

1, 𝛼Ang = 1) and only optimize the parameters of CMR-
Net until validation error stops decreasing. Next, we set
(𝛼Huber = 0, 𝛼MLE = 1, 𝛼Ang = 0) and optimize the param-
eters of CovarianceNet. We alternate between these two
steps until validation loss stops decreasing.
Our DNN is implemented using the PyTorch

library (Paszke et al., 2019) and takes advantage of the
open-source implementation available for CMRNet (Cat-
taneo et al., 2019) as well as the available pre-trained
weights for initialization. Similar to CMRNet, all the
layers in our DNN use the leaky RELU activation function
with a negative slope of 0.1. We train the DNN on using a
single NVIDIA Tesla P40 GPU with a batch size of 24 and
learning rate of 10−5 selected via grid search.

6.5 Metrics

We evaluated the lateral, longitudinal, and vertical protec-
tion levels computed with our approach using the follow-
ing three metrics (with subscript 𝑡 dropped for brevity):

1. Bound gapmeasures the difference between the com-
puted protection levels 𝑃𝐿𝑙𝑎𝑡, 𝑃𝐿𝑙𝑜𝑛, 𝑃𝐿𝑣𝑒𝑟𝑡, and the true
position error magnitude during nominal operations
(protection level is less than the alarm limit and greater
than the position error):

𝐵𝐺lat = avg(𝑃𝐿lat − |Δ𝑥∗|) (24)

𝐵𝐺lon = avg(𝑃𝐿lon − |Δ𝑦∗|)
𝐵𝐺vert = avg(𝑃𝐿vert − |Δ𝑧∗|)

where:
– 𝐵𝐺𝑙𝑎𝑡, 𝐵𝐺𝑙𝑜𝑛, and 𝐵𝐺𝑣𝑒𝑟𝑡 denote bound gaps in lat-
eral, longitudinal, and vertical dimensions respec-
tively

– avg(⋅) denotes the average computed over the test
dataset for which the value of protection level is
greater than the position error and less than the
alarm limit

A small bound gap value 𝐵𝐺lat, 𝐵𝐺lon, and 𝐵𝐺vert is
desirable because it implies that the algorithm both
estimates the position error magnitude during nominal
operations accurately and has low uncertainty in the
prediction. We only consider the bound gap for nomi-
nal operations since the estimated position is declared
unsafe when the protection level exceeds the alarm
limit.

2. Failure rate measures the total fraction of time
instances in the test data sequence for which the
computed protection levels 𝑃𝐿lat, 𝑃𝐿lon, and 𝑃𝐿vert are
smaller than the true position error magnitude:

𝐹𝑅𝑙𝑎𝑡 =
1

𝑇max

𝑇max∑
𝑡=1

𝕞1𝑡(𝑃𝐿𝑙𝑎𝑡 < |Δ𝑥∗|)
𝐹𝑅𝑙𝑜𝑛 =

1

𝑇max

𝑇max∑
𝑡=1

𝕞1𝑡(𝑃𝐿𝑙𝑜𝑛 < |Δ𝑦∗|)
𝐹𝑅𝑣𝑒𝑟𝑡 =

1

𝑇max

𝑇max∑
𝑡=1

𝕞1𝑡(𝑃𝐿𝑣𝑒𝑟𝑡 < |Δ𝑧∗|) (25)

where:
– 𝐹𝑅𝑙𝑎𝑡, 𝐹𝑅𝑙𝑜𝑛, and 𝐹𝑅𝑣𝑒𝑟𝑡 denote failure rates for
lateral, longitudinal, and vertical protection levels,
respectively
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– 𝕞1𝑡(⋅) denotes the indicator function computed
using the protection level and true position error val-
ues at time 𝑡. The indicator function evaluates to 1 if
the event in its argument holds true, and otherwise
evaluates to 0

– 𝑇max denotes the total time duration of the test
sequence

The failure rate 𝐹𝑅lat, 𝐹𝑅lon, and𝐹𝑅vert should be con-
sistent with the specified value of the integrity risk 𝐼𝑅
to meet the safety requirements.

3. False alarm rate is computed for a specified alarm
limit 𝐴𝐿lat, 𝐴𝐿lon, and𝐴𝐿vert in the lateral, longitudi-
nal, and vertical directions and measures the fraction
of time instances in the test data sequence for which
the computed protection levels 𝑃𝐿lat, 𝑃𝐿lon, and 𝑃𝐿vert
exceed the alarm limit𝐴𝐿lat, 𝐴𝐿lon, and𝐴𝐿vertwhile the
position error magnitude is within the alarm limits. We
first define the following integrity events:

Ωlat,PL = (𝑃𝐿lat > 𝐴𝐿lat)

Ωlat,PE = (|Δ𝑥∗| > 𝐴𝐿lat)

Ωlon,PL = (𝑃𝐿lon > 𝐴𝐿lon)

Ωlon,PE = (|Δ𝑦∗| > 𝐴𝐿lon)

Ωvert,PL = (𝑃𝐿vert > 𝐴𝐿vert)

Ωvert,PE = (|Δ𝑧∗| > 𝐴𝐿vert) (26)

The complement of each event is denoted by Ω̄. Next,
we define the counts for false alarms𝑁𝑋,𝐹𝐴, true alarms
𝑁𝑋,𝑇𝐴, and the number of times the position error
exceeds the alarm limit 𝑁𝑋,𝑃𝐸 with 𝑋 = 𝑙𝑎𝑡, 𝑙𝑜𝑛, and
𝑣𝑒𝑟𝑡:

𝑁𝑋,FA =

𝑇max∑
𝑡=1

𝕞1𝑡

(
Ω𝑋,PL ∩ Ω𝑋,PE

)

𝑁𝑋,TA =

𝑇max∑
𝑡=1

𝕞1𝑡
(
Ω𝑋,PL ∩ Ω𝑋,PE

)
𝑁𝑋,PE =

𝑇max∑
𝑡=1

𝕞1𝑡
(
Ω𝑋,PE

)
(27)

Finally, we compute the false alarm rates
FA𝑅lat,FA𝑅lon, andFA𝑅vert after normalizing the
total number of position error magnitudes lying above
and below the alarm limit 𝐴𝐿:

FA𝑅𝑋 =
𝑁𝑋,FA ⋅ (𝑇max − 𝑁𝑋,PE)

𝑁𝑋,FA ⋅ (𝑇max − 𝑁𝑋,PE) + 𝑁𝑋,TA ⋅ 𝑁𝑋,PE
(28)

6.6 Results

Figure 5 shows the lateral and longitudinal protection lev-
els computed by our approach on two 200 s subsets of the

F IGURE 5 Lateral and longitudinal protection level results on the test sequence in real-world dataset. We show protection levels for two
subsets of the total sequence, computed at 5 s intervals. The protection levels successfully enclose the state estimates in ∼ 99% of the cases
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]
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bound gap

F IGURE 6 Vertical protection level results on the test sequence in real-world dataset. We show protection levels for a subset of the total
sequence. The protection levels successfully enclose the position error magnitudes with a small bound gap [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com and www.ion.org]

test sequence. For clarity, protection levels are computed
at every 5th time instance. Similarly, Figure 6 shows the
vertical protection levels along with the vertical position
error magnitude in a subset of the test sequence.
As can be seen from both the figures, the computed pro-

tection levels successfully enclose the position error mag-
nitudes at amajority of the points (∼ 99%) in the visualized
subsequences. Furthermore, the vertical protection levels
are observed to be visually closer to the position error as
compared to the lateral and longitudinal protection lev-
els. This is due to the superior performance of the DNN in
determining position errors along the vertical dimension,
which is easier to determine since all the camera images in
the dataset are captured by a ground-based vehicle.
Figure 7 displays the integrity diagrams generated after

the Stanford-ESA integrity diagram proposed for SBAS
integrity (Tossaint et al., 2007). The diagram is generated
from 15,000 samples of protection levels corresponding
to randomly selected state estimates and camera images
within the test sequence.
For protection levels in each direction, we set the alarm

limit (Table 1) based on the specifications suggested for
mid-size vehicles in Reid et al. (2019), beyond which the
state estimate is declared unsafe to use. The lateral, longi-
tudinal, and vertical protection levels are greater than the
position error magnitudes in ∼ 99% cases, which is con-
sistent with the specified integrity requirement. Further-
more, a large fraction of the failures is in the region where
the protection level is greater than the alarm limit and
thus the system has been correctly identified to be under
unsafe operation.
We conducted an ablation study to numerically evaluate

the impact of our proposed epistemic uncertainty measure
and outlier weightingmethod in computing protection lev-

els. We evaluated protection levels in three different cases:
IncorporatingDNNcovariance, epistemic uncertainty, and
outlier weighting (VAR+EO); incorporating just the DNN
covariance and epistemic uncertainty with equal weights
assigned to all position error samples (VAR+E); and only
using the DNN covariance (VAR).
For VAR, we constructed a Gaussian distribution using

the DNN position error output and diagonal variance
entries in each dimension. Then, we computed protection
levels from the inverse cumulative distribution function of
the Gaussian distribution corresponding to the specified
value of integrity risk 𝐼𝑅. Table 2 summarizes our results.
Incorporating the epistemic uncertainty in computing

protection levels improved the failure rate from 0.05 in lat-
eral protection levels, 0.05 in longitudinal protection lev-
els, and 0.03 in vertical protection levels to within 0.01 in
all cases. This is because the covariance estimate from the
DNN provides an overconfident measure of uncertainty,
which is corrected by our epistemic uncertainty measure.
Furthermore, incorporating outlier weighting reduced the
average nominal bound gap by about 0.02 m in lateral pro-
tection levels, 0.05 m in longitudinal protection levels, and
0.05 m in vertical protection levels as well as false alarm
rate by about 0.02 for each direction while keeping the fail-
ure rate within the specified integrity risk requirement.
The mean bound gap between the lateral protection lev-

els computed from our approach and the position error
magnitudes in the nominal cases is smaller than a quar-
ter of the width of a standard US lane. In the longitudinal
direction, the bound gap is somewhat larger since fewer
visual features are present along the road for determining
the position error using theDNN. The corresponding value
in the vertical dimension is smaller, owing to the DNN’s
superior performance in determining position errors and
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F IGURE 7 Integrity diagram results for the lateral, longitudinal, and vertical protection levels. The diagram contains protection levels
evaluated across 15,000 different state estimates and camera images randomly selected from the test sequence. A majority of the samples are
close to and greater than the position error magnitude, validating the applicability of the computed protection levels as a robust safety
measure [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

TABLE 2 Evaluation of lateral, longitudinal, and vertical protection levels from our approach. We compare protection levels computed
by our trained model using DNN covariance, epistemic uncertainty, and outlier weighting (VAR+EO); DNN covariance and epistemic
uncertainty (VAR+E); and only using the DNN covariance (VAR). Incorporating epistemic uncertainty results in lower failure rate while
incorporating outlier weights reduces bound gap and false alarm rate

Lateral PL Longitudinal PL Vertical PL
𝑩𝑮(m) 𝑭𝑹 𝑭𝑨𝑹 𝑩𝑮(m) 𝑭𝑹 𝑭𝑨𝑹 BG(𝒎) 𝑭𝑹 𝑭𝑨𝑹

VAR+EO 0.49 0.01 0.47 0.77 0.01 0.40 0.38 < 0.01 0.14
VAR+E 0.51 0.01 0.49 0.82 0.01 0.43 0.43 < 0.01 0.16
VAR 0.42 0.05 0.45 0.64 0.05 0.36 0.30 0.02 0.12
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uncertainty in the vertical dimension. This demonstrates
the applicability of our approach to urban roads.
For an integrity risk requirement of 0.01, the protec-

tion levels computed by our method demonstrate a fail-
ure rate equal to or within 0.01 as well. However, further
lowering the integrity risk requirement during our experi-
ments either did not similarly improve the failure rate or
caused a significant increase in the bound gaps and the
false alarm rate.
A possible reason is that the uncertainty approximated

by our approach through both the aleatoric and epistemic
measures fails to act as an accurate uncertainty represen-
tation for smaller integrity risk requirements than 0.01.
Future research would consider more and varied train-
ing data, better strategies for selecting candidate states,
and different DNN architectures to meet smaller integrity
risk requirements.
A shortcoming of our approach is the large false alarm

rate exhibited by the computed protection levels shown
in Table 2. The large value results both from the inherent
noise in theDNN-based estimation of position and rotation
error as well as from frequently selecting candidate states
that result in large outlier error values. A futurework direc-
tion for reducing the false alarm rate is to explore strategies
for selecting candidate states and mitigating outliers.
A key advantage offered by our approach is its applica-

tion to scenarioswhere a direct analysis of the error sources
in the state estimation algorithm is difficult, such as when
feature rich visual information is processed by a machine
learning algorithm for estimating the state. In such
scenarios, our approach computes protection levels sepa-
rately from the state estimation algorithm by both evaluat-
ing a data-driven model of the position error uncertainty
and characterizing the epistemic uncertainty in the model
outputs.

7 CONCLUSION

In thiswork,we presented a data-driven approach for com-
puting lateral, longitudinal, and vertical protection levels
associated with a given state estimate from camera images
and a 3D LiDAR map of the environment. Our approach
estimates both aleatoric and epistemic measures of uncer-
tainty for computing protection levels, thereby providing
robust measures of localization safety.
We demonstrated the efficacy of our method on real-

world data in terms of bound gap, failure rate, and false
alarm rate. Results show that the lateral, longitudinal,
and vertical protection levels computed from our method
enclose the position error magnitudes with 0.01 probabil-
ity of failure and less than 1 m bound gap in all direc-

tions, which demonstrates that our approach is applicable
to GNSS-denied urban environments.
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