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Abstract
Adopting a joint approach toward state estimation and integrity monitoring
results in unbiased integrity monitoring unlike traditional approaches. So far,
a joint approach was used in particle RAIM (Gupta & Gao, 2019) for GNSS mea-
surements only. In our work, we extend Particle RAIM to a GNSS-camera fused
system for joint state estimation and integrity monitoring. To account for vision
faults, we derived a probability distribution over position from camera images
using map-matching. We formulated a Kullback-Leibler divergence (Kullback &
Leibler, 1951)metric to assess the consistency ofGNSS and camerameasurements
andmitigate faults during sensor fusion. Experimental validation on a real-world
data set shows that our algorithm produces less than 11 m position error and the
integrity risk over bounds the probability of HMI with 0.11 failure rate for an 8 m
alert limit in an urban scenario.
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1 INTRODUCTION

In urban environments, GNSS signals suffer from a lack
of continuous satellite signal availability, non-line-of-sight
(NLOS) errors, and multipath effects. Thus, it is important
to quantify the integrity or measure of trust in the correct-
ness of the positioning solution provided by the navigation
system. Traditional integrity monitoring approaches esti-
mate the state and detect faults sequentially (Zhu et al.,
2018); they assume that the state estimation algorithm is
correct and then assess the integrity of the point position-
ing solution.
While this sequential approach captures the uncertainty

in the state in nominal scenarios, it biases the estima-
tion error when multiple measurements are faulty or con-
tain high bias values. Since traditional approaches do not
account formultiple fault hypotheses, they can exclude the
wrong fault in the above scenarios. Subsequently, they fail

to quantify the uncertainty in the state which leads to erro-
neous positioning estimates.
Recently, an approach toward joint state estimation and

integrity monitoring for GNSS measurements was pro-
posed in Particle RAIM for integrity monitoring (Gupta &
Gao, 2019). Instead of producing point-positioning esti-
mates, particle RAIM uses a particle filter to form a multi-
modal probability distribution over position, represented
as particles. Traditional RAIM (Lee, 1986) is used to assess
the correctness of different ranging measurements and
the particle weights are updated to form the distribution
over the position. From the resulting probability distribu-
tion, the integrity risk is derived using an approximate
upper bound to the probability of HMI or the reference
risk. By incorporating the correctness of different mea-
surement subsets directly into the state estimation, particle
RAIM is able to exclude multiple faults in GNSS ranging
measurements. However, due to large errors from GNSS
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measurements, particle RAIM requires the employment
of conservative measures such as large alert limits to ade-
quately bound the reference risk.
For urban applications, improved positioning accu-

racy from particle RAIM is necessary to provide adequate
integrity for smaller alert limits. Sincemeasurements from
GNSS are not sufficient to provide the desired accuracy, it
is helpful to augment GNSS with additional sensors that
increase redundancy in measurements. Sensors such as
cameras are effective complimentary sensors to GNSS. In
urban regions, cameras have access to rich environmental
features (Bhamidipati & Gao, 2019; Rife, 2012; Wang
et al., 2020) and provide more superior sensing than
GNSS which suffers from multi-path and NLOS errors
(Chengyan et al., 2014; StevenMiller et al., 2015; Zhu et al.,
2018).
Thus, with added vision, we need a framework to pro-

vide integrity for the fused GNSS-camera navigation sys-
tem to account for two categories of faults. The first cate-
gory includes data association errors across images, where
repetitive features are found in multiple images creat-
ing ambiguity during feature and image association. This
ambiguity is further amplified due to variations in light-
ing and environmental conditions. The second category
is comprised of errors that arise during the sensor fusion
of GNSS and camera measurements. Ensuring that faults
in either measurement do not dominate the sensor fusion
process is paramount for maximizing the complimentary
characteristics of GNSS and camera.
Many works provide integrity for GNSS-camera fused

systems utilizing a Kalman filter (Kalman, 1960) frame-
work or an information filter (Wang et al., 2009). Vision-
aided RAIM (Fu et al., 2015) introduced landmarks such
as pseudo-satellites and integrated them into a linear mea-
surementmodel alongside GPS observations. In Tanil et al.
(2018), the authors implemented a sequential integrity
monitoring approach to isolate single satellite faults. The
integrity monitor used the innovation sequence output
from a single Kalman filter to derive a recursive expression
of the worst-case failure mode slopes and compute protec-
tion levels (PLs) in real time.
An information filter (IF) is used in Al Hage and El Naj-

jar (2020) for data fusion wherein faults are detected based
on the Kullback-Leibler divergence (KL divergence; Kull-
back & Leibler, 1951) between the predicted and updated
distributions. After all detected faulty measurements were
removed, the errors were modeled by a student’s T-
distribution to compute a PL. A student’s T-distribution is
also used in Al Hage et al. (2018) alongside informational
sensor fusion for fault detection and exclusion.
The degree of the distribution was adapted in real time

based on the computed residual from the information fil-
ter. A distributed information filter is proposed in Tmazirte

et al. (2012) to detect faults in GPS measurement by check-
ing the consistency through the log-likelihood ratio of
information innovation of each satellite. These approaches
model measurement fault distributions with a Gaussian
distribution although for camera measurements, the true
distribution might be non-linear, multi-modal, and arbi-
trary in nature. Using a simplified linear measurement
probability distribution renders these frameworks infea-
sible and unreliable for safety-critical vision-augmented
GNSS applications.
Another line of work builds on simultaneous localiza-

tion and mapping (SLAM) based factor graph optimiza-
tion techniques. Bhamidipati andGao (2019) derived PL by
modeling GPS satellites as global landmarks and introduc-
ing image pixels from a fish-eye camera as additional land-
marks. The raw image was categorized into sky and non-
sky pixels to further distinguish between LOS and NLOS
satellites. The overall state is estimated using graph opti-
mization along with an M-estimator.
Although this framework is able to exclude multiple

faults in GPS measurements, it is not extendable to mea-
surements from forward or rear-facing cameras that do not
capture sky regions. Along similar lines, measurements
from a stereo camera along with GNSS pseudoranges were
jointly optimized in a graph optimization framework in
Gong et al. (2018). GNSS satellites are considered as feature
vision points and pose-graph SLAM is applied to achieve
a positioning solution. However, graph optimization
approaches also share the same limitation as Kalman-
filter-based approaches: They produce point-positioning
estimates and do not account for the uncertainty in state
estimation that biases integrity monitoring.
Overall, existing integrity monitoring algorithms for

GNSS-camera fusion have the following limitations:

1. They address state estimation and integrity monitoring
separately, similar to traditional RAIM approaches.

2. They accommodate camerameasurementswithin a lin-
ear or linearizable framework such as KF, EKF, or IF,
and become infeasible when camerameasurements are
not linearizable without loss of generality.

3. There is no standard way in literature to quantify the
uncertainty in camera measurements directly from raw
images.

4. They use outlier rejection techniques to perform fault
detection and exclusion after obtaining the positioning
solution. There is no framework that accounts for faults
both independently in GNSS and camera as well as the
faults that arise during sensor fusion.

In our work, we propose the following contributions.
This paper is based on our recent ION GNSS+ 2020 con-
ference paper (Mohanty et al., 2020):
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F IGURE 1 Particle filter framework with probabilistic sensor fusion of GNSS, camera measurements, and integrity risk bounding. The
modules containing the highlighted text represent our contributions. The GNSS and risk bounding modules are adopted from Gupta and Gao
(2019) [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

1. We jointly address state estimation and integrity
monitoring for GNSS-camera fusion with a particle-
filtering framework. We treat both tasks under a single
optimization framework with our proposed KL diver-
gence metric in Section 5. First, we leverage a RAIM-
based voting scheme to form the GNSS measurement
likelihood in a fault-tolerant manner. The likelihood
is represented with a Gaussian mixture model (GMM)
where the weight of each measurement corresponds to
the measurement quality. With this GMM and our pro-
posed KL divergence metric, we then form the camera
measurement likelihood in a fault-tolerantmanner. The
divergence metric optimizes the weights of the cam-
era measurements by minimizing the divergence of the
camera likelihood with respect to the GNSS likelihood.
Note that both GNSS and camera likelihoods represent
valid probability distributions of the state and have been
assessed independently. The distributions are fused to
form the joint distribution that reliably approximates
the distribution of the state even in the presence ofmul-
tiple faulty measurements. Our approach directly mon-
itors the integrity in the 3D position while forming the
probability distribution of the state.

2. We derived a probability distribution over position
directly from images leveraging image registration.

3. We developed a metric based on KL divergence
(Kullback & Leibler, 1951) to compute the joint mea-
surement likelihood from both GNSS and camera mea-
surements in a fault-tolerant manner. By minimizing
the KL divergence of the distribution from each camera
measurement with respect to the GNSS measurement
distribution, we ensure that erroneous camera mea-
surements do not affect the overall probability distri-
bution. Stated otherwise, the divergence metric aug-

ments the shared belief over the position from both sen-
sor measurements by minimizing cross-contamination
during sensor fusion.

4. We experimentally validated our framework on an
urban environment data set (Reisdorf et al., 2016) with
faults in GNSS and camera measurements.

The rest of the paper is organized as follows: In Sec-
tion 2, we describe the overall particle-filter framework
for probabilistic sensor fusion; in Sections 3 and 4, we
infer a distribution over position from GNSS and camera
measurements, respectively; Section 5 elaborates on the
probabilistic sensor fusion of GNSS and camera measure-
ments along with the proposed KL divergence metric; in
Section 6, we describe the integrity risk bounding; Sec-
tions 7 and 8 show the experimental setup and the results
from experimental validation on the urban environment
data set, respectively; and in Section 9, we conclude our
work.

2 PARTICLE FILTER FRAMEWORK
FOR PROBABILISTIC SENSOR FUSION

The distribution over the position inferred from GNSS
and camera measurements is multi-modal due to faults
in a subset of measurements. To model such distribu-
tions, we choose a particle-filtering approach that further
allows us to keep track of multiple position hypotheses
rather than a single position estimate. Although a particle-
filtering approach was used in Gupta and Gao (2019), the
authors only considered GNSS ranging measurements. In
our work, we extend the framework to include measure-
ments from a camera sensor.
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Figure 1 represents our overall framework. We add the
camera and probabilistic sensor fusionmodules to the pro-
posed framework in Gupta and Gao (2019).
Problem Setup: We consider a vehicle navigating in

an urban environment. It receives GNSS measurements,
camera measurements, and odometry measurements. The
state vector consists of the vehicle’s 3D position in the
Earth-centered, Earth-fixed (ECEF) coordinate frame. At
any time instant 𝑡, the state vector is denoted by 𝑋𝑡 and
is approximated by a probability distribution 𝜋𝑡. Let us
denote the set of GNSS pseudorange measurements with
𝑀𝑡 and the set of camera measurements with 𝑁𝑡. We
assume that the camerameasurements have been synchro-
nized leveragingmotion data 𝑢𝑡. Using a conventional par-
ticle filter, the probability distribution of the state is given
by:

𝜋𝑡 = 𝑃(𝑋𝑡|𝑋𝑡−1,𝑀𝑡,𝑁𝑡, 𝑢𝑡) (1)

where 𝑃(𝑋𝑡|𝑋𝑡−1,𝑀𝑡,𝑁𝑡, 𝑢𝑡) is the conditional probability
distribution that is obtained after applying the Bayes theo-
rem andMarkov assumption on the state𝑋𝑡. This assump-
tion entails that the state𝑋𝑡 depends only on the state𝑋𝑡−1

instead of the entire history of states and measurements
(𝑋1,𝑋2, ..𝑀1,𝑀2,., and𝑁1,𝑁2,...). The above distribution
can be further factored as follows after applying indepen-
dence assumptions on𝑀𝑡, 𝑁𝑡, and 𝑢𝑡:

𝑃(𝑋𝑡|𝑋𝑡−1,𝑀𝑡,𝑁𝑡, 𝑢𝑡) ∝ 𝑃(𝑀𝑡,𝑁𝑡|𝑋𝑡)…𝑃(𝑋𝑡|𝑋𝑡−1, 𝑢𝑡)

(2)

where 𝑃(𝑀𝑡,𝑁𝑡|𝑋𝑡) represents the joint likelihood from
GNSS and camerameasurements, and𝑃(𝑋𝑡|𝑋𝑡−1, 𝑢𝑡) is the
propagation term. We approximate this term by using the
probability distribution at the previous time epoch and the
odometry measurement.
In addition to the joint likelihood term 𝑃(𝑀𝑡,𝑁𝑡|𝑋𝑡), we

introduce and utilize two other likelihoods in the paper–
GNSS log likelihood and camera likelihood. The GNSS
log likelihood is derived in Section 3. The camera likeli-
hood and the joint likelihoods are derived in Section 5.
Note that the joint likelihood is used to compute the par-
ticle weights and form the posterior distribution of the
state.
Our algorithm is summarized in Algorithm 1. Below, we

elaborate on different modules of our framework:

Perturbation: As a prior for the particle distribu-
tion, we use a normal distribution where we set
the mean of the distribution to be the initial posi-
tion. In the perturbation module, we generate a
set of motion samples using odometry measure-

ALGORITHM 1 Joint state estimation (3D position) and
integrity monitoring for GNSS-camera sensor fusion

1: Initialize particle weights
2: Initial particle distribution (normal distribution with

mean = initial position)
3: Receive GNSS pseudorange measurements, camera

images, and odometry measurements
4: Assume known system dynamics
5: procedure (𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛)
6: Create uniform distribution around mean motion

samples
7: Create motion samples from odometry
8: Perturb initial particle distribution
9: procedure (𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛)
10: Use propagation noise and first-order finite difference

model to propagate particles
11: procedure (𝐺𝑁𝑆𝑆 𝑀𝑜𝑑𝑢𝑙𝑒)
12: Apply RAIM voting to weigh the pseudorange

measurements
13: Construct GMM log measurement likelihood
14 Send GMM to Probabilistic Sensor Fusion module
15: procedure (𝐶𝑎𝑚𝑒𝑟𝑎 𝑀𝑜𝑑𝑢𝑙𝑒)
16: Synchronize camera measurements based on GNSS

timestamps
17: Construct individual camera measurement likelihood
18: procedure (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝑆𝑒𝑛𝑠𝑜𝑟 𝐹𝑢𝑠𝑖𝑜𝑛)
19: KL divergence metric: Calculate weight of each

camera measurement in MoE model
20: Compute MOE log camera measurement likelihood
21: Compute joint log likelihood or posterior distribution
22: Update particle weights
23: Estimate state = weighted average of particles
24: Resample particles
25: if 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 then:
26: procedure (𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 𝑅𝑖𝑠𝑘 𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔)
27: Perturb initial particle distribution with odometry
28: Repeat steps 8-24
29: Compute integrity risk from all posterior distributions

ments. Themotion samples are created using a uni-
form distribution around the mean motion sample
which generates the final perturbation to the parti-
cle distribution 𝜋𝑡−1.

Propagation: We use the extended state-space formu-
lation proposed in Gupta and Gao (2019) where the
state space is augmented to 𝑋𝑡−1, 𝜒. Here, 𝜒 rep-
resents the association of a particle with a current
epoch measurement and takes values up to 𝑅, the
total number of GNSS pseudorange measurements
in the current time epoch.
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The extended state-space particles is propagated by
the Markov Chain for odometry 𝑢𝑡 as follows:

𝑃(𝑋𝑡|𝑋𝑡−1, 𝑢𝑡) = 𝑃((𝑋𝑡, 𝜒)|(𝑋𝑡−1, 𝜒), 𝑢𝑡
𝑖
) (3)

where 𝑢𝑡
𝑖
represents each motion sample from

the perturbation step, and 𝑃((𝑋𝑡, 𝜒)|(𝑋𝑡−1, 𝜒), 𝑢𝑡
𝑖
is

computed by propagating the state using odometry
and known system dynamics. Specifically, we use
a linear Gaussian state space and first-order finite
difference model as shown below:

𝑋𝑡 = 𝐴𝑋𝑡−1 + 𝐵𝑢𝑡 + 𝜖 (4)

where 𝑋𝑡 represents the state at the current time
epoch and 𝑋𝑡−1 represents the state at the previ-
ous time epoch. 𝐴 represents the transition matrix
which is considered to be the identity matrix. 𝐵 is
considered as a matrix of all ones. 𝜖 denotes the
stochastic term in propagation of each extended
state-space particle that is drawn from a Gaussian
noise distribution. We keep the standard deviation
of this propagation noise as a controlled parameter.

GNSS module: This module from Gupta and Gao
(2019) takes GNSS ranging measurements from
multiple satellites, some of which may be faulty,
and outputs a probability distribution over posi-
tion using a fault-tolerant weighting scheme as
described in Section 3. The module consists of two
steps—GMMweighting and RAIM voting.

Camera module and synchronization with
motion data: The camera module takes a camera
image and matches it to the images in a map
database using image registration to generate
similarity scores. The underlying state of the
best-matched image is extracted and propagated
forward to the current GNSS time stamp by inter-
polating with IMU odometry. This step ensures
that the probability distributions from camera
and GNSS measurements are generated at the
same time stamps. Finally, we use a categorical
distribution function to transform the similarity
scores into a probability distribution over position
hypotheses as described in Section 4.

Probabilistic sensor fusion: This module outputs
a joint likelihood over positions from GNSS and
camera measurements after fusing them with the
proposed KL divergence metric in Section 5.1. Par-
ticles are resampled from the current distribution
with sequential importance resampling (Gustafs-
son et al., 2002).

Risk bounding: We execute this module at a lower
frequency than the rest of the modules. For esti-

mating the 3D position, we use a single poste-
rior distribution from the particle filter. However,
for deriving the integrity risk, we create multiple
posterior distributions leveragingmotion data from
IMU. Each uniform perturbation of the IMU results
in a different posterior distribution. The average
pHMI from multiple such distributions results in
the integrity risk bound which is computed using
the formulation in Gupta and Gao (2019). Accord-
ing to generalization bounds from statistical learn-
ing theory (Bousquet et al., 2004), the derived risk
bound forms a probabilistic upper bound to the ref-
erence risk. We elaborate on this module in Sec-
tion 6.

3 GNSSMODULE: PARTICLE RAIM

A likelihood model for GNSS measurements is derived
using the mixture-weighting method proposed in Gupta
and Gao (2019). Instead of assuming the correctness of all
GNSS measurements, the likelihood is modeled as a mix-
ture of Gaussians to account for faults in some measure-
ments. Individual measurement likelihoods are modeled
as Gaussians with the expected pseudoranges as means
and a fixed variance value of 5 m. The GMM (Šimandl &
Duník, 2006; Sorenson & Alspach, 1971) is expressed as:

𝐿𝑡(𝑚
𝑡) =

𝑅∑
𝑘=0

𝛾𝑘
(
𝑚𝑡

𝑘
|𝜇𝑡,𝑘𝑋 , 𝜎

𝑡,𝑘
𝑋

)
;

𝑅∑
𝑘=0

𝛾𝑘 = 1 (5)

where 𝐿𝑡(𝑚𝑡) denotes the likelihood of measurement𝑚 at
time 𝑡. 𝛾 denotes the measurement responsibility or the
weights of the individual measurement components and
𝑅 refers to the total number of GNSS ranging measure-
ments. 𝜇 and 𝜎 represent the mean and the standard devi-
ation of each Gaussian component. 𝑋 refers to the col-
lection of position hypotheses denoted by particles and
𝑘 is the index of the number of Gaussians in the mix-
ture. The weights are inferred with a single step of the
Expectation-Maximization (EM) scheme (Vila & Schniter,
2013) as shown in Figure 2.
The equations for the EM step are directly adopted from

Equations 5 and 6 in Gupta and Gao (2019). In the E-step,
each particle votes for a local confidence in the measure-
ment corresponding to its extended state-space variable.
The voting is identical to residual-based RAIM based on
the normalized residual for each particle. In the M-step,
we normalize the votes for each particle. Repeating this
step across all the particles gives us the weights in the
GMMmodel.
With the GMM likelihood model, numerical errors

due to finite precision can create particle degeneracy.
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F IGURE 2 Two steps of the EM scheme used to derive the
weight of each Gaussian likelihood in the GMM. In the expectation
step, the local vote for each particle is computed based on the
squared-normal voting on the normalized residual for a particle
obtained with traditional RAIM. The overall confidence is inferred
by normalizing the votes and pooling them using Bayesian
maximum a posteriori (MAP) estimation. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

To mitigate this, Gupta and Gao (2019) proposed to
extend the input state space to contain additional copies
of the state-space variable 𝜒 (introduced earlier), one
for each GNSS measurement (Bishop, 2006). Now, the
GMM likelihood is represented with a log likelihood. We
modify the likelihood term to depict the augmented state
space:

𝐿𝑡(𝑚
𝑡) = 𝑃

(
𝑚𝑡||𝑋𝑡, 𝜒 = 𝑘

)
= 𝛾𝑘

(
𝑚𝑡

𝑘
||𝜇𝑡,𝑘𝑥 , 𝜎

𝑡,𝑘
𝑥

)
;

𝑅∑
𝑘=1

𝛾𝑘 = 1 (6)

where 𝜒 is the index that denotes the associated GNSS
measurement with the particle replica and 𝑘 keeps track
of the index for the particle replicas. By exploiting the
indicator function, we then compute the log likelihood
from the above equation as given below.

𝑙𝑜𝑔(𝑃(𝑚𝑡|𝑋𝑡, 𝜒))=

𝑅∑
𝑘=1

𝕀 [𝜒 = 𝑘]
(
𝑙𝑜𝑔(𝛾𝑘)

+𝑙𝑜𝑔
(


(
𝑚𝑡

𝑘
|𝜇𝑡𝑥, 𝑘, 𝜎𝑡𝑥, 𝑘))) ; 𝑅∑

𝑘=1

𝛾𝑘 =1

(7)

where 𝕀 is the indicator function with respect to the
variable 𝜒.

4 CAMERAMODULE

We propose an algorithm to directly quantify the uncer-
tainty from camera images and generate a camera mea-
surement likelihood (similar to the GNSS measurement

likelihood). For quantifying the uncertainty from camera
images, we use a map-matching algorithm that matches
a camera image directly to an image present in a map
database. Our method is implemented in OpenCV (Brad-
ski, 2000) and is comprised of three sub-modules as shown
in Figure 3.
We elaborate on each sub-module below.

Preprocessing: We assume prior knowledge of the
geographical regionwherewe are navigating. Based
on the coordinates (from GPS), we use Google
Street View Imagery to select images from the
known area. These images, along with their asso-
ciated coordinates, form the database. Features are
extracted from these images and stored in a key
point-descriptor format.

Image registration: After receiving a camera test
image, we extract features and descriptors with
the ORB (Rublee et al., 2011) algorithm. Although
we experimented with other feature extraction
methods such as SIFT (Lowe, 2004), SURF (Bay
et al., 2006), and AKAZE (Alcantarilla & Solutions,
2011), ORB was found most effective for extract-
ing descriptors from highly blurred images. The
descriptor vectors are clustered with a k-means
algorithm (Lloyd, 1982) to form a vocabulary tree
(Nister & Stewenius, 2006). Each node in the tree
corresponds to an inverted file (i.e., a file contain-
ing the ID numbers of images in which a particular
node is found and the relevance of each feature to
that image). The database is then scored hierarchi-
cally based on Term Frequency Inverse Document
Frequency (TF-IDF) scoring (Nister & Stewenius,
2006), which quantifies the relevance of the images
in the database to the camera image. We refer to
these scores as the similarity scores. The image with
the highest score is chosen as the best match and
the underlying state is extracted.

Mapping scores to a camera measurement likeli-
hood: After extracting the state from the best cam-
era image in the database, we propagate the state
to the same time stamp as the GNSS measurement.
The rawvehicle odometry is first synchronizedwith
GNSS measurements using the algorithm in Reis-
dorf et al. (2016). Using the time difference between
the previous and current GNSS measurements, we
linearly interpolate the extracted state with IMU
motion data as shown below:

𝑥𝑡 = 𝑥𝑡−1 + 𝑣𝑡−1𝑑𝑡 + 0.5𝑎𝑡−1 𝑑𝑡2 (8)

where 𝑥𝑡 refers to the 3D position at epoch 𝑡, 𝑑𝑡
refers to the time difference between successive
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F IGURE 3 Our proposed algorithm for generating camera measurement likelihood from camera images at runtime. The method
consists of the following steps: preprocessing where we construct a database of images from a known mapped area, image registration where
we find the best-matched database image to the given test image, and lastly, mapping the scores to the likelihood of a single camera image.
This algorithm produces a unimodal distribution for a single image [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

camera measurements, and 𝑣 and 𝑎 are the inter-
polated IMU velocity and accelerations at epoch 𝑡.
Next, we compute the Euclidean distance between
the interpolated state and the current particle dis-
tribution to obtain new similarity scores. Note that
the particle distribution represents the position
hypotheses. A SoftMax function takes the scores
and outputs an individual camera measurement
likelihood. Normalization of the scores enforces a
unit integral for the distribution:

𝑄(𝑛𝑡|𝑋𝑡) =
exp(Ω𝑡)∑
𝑐
exp(Ω𝑡

𝑐)
(9)

where 𝑄 is the probability distribution associated
with camerameasurement 𝑛 at time 𝑡 over the posi-
tion domain 𝑋, Ω𝑡

𝑐 represents computed distance
score, and 𝑐 is the index for individual particles.

For successive test images,we generated individualmea-
surement likelihoods using the above algorithm. These
likelihoods are unimodal since each test image corre-
sponds to a single peak over the particle distribution. As
illustrated in Figure 4, we pass the individual likelihoods
to the KL divergence module (described in Section 5) and
then compute the overall camerameasurement likelihood.
Unlike the individual likelihoods, the overall likelihood is

multi-modal, characterized by peaks of particle subsets in
the current particle distribution.

5 PROBABILISTIC SENSOR FUSION

After obtaining the probability distributions from the
GNSS and camera, we needed to form a joint distribu-
tion over the position. However, we also needed to ensure
that faults in camera measurements did not degrade the
distribution from GNSS measurements, one that is coarse
but correct since the distribution accounts for faults in the
ranging measurements through the RAIM voting scheme.
Thus, we needed a metric to identify and exclude faulty
camera measurements leveraging knowledge of the distri-
bution from GNSS.
Additionally, themetric needed to assess the consistency

of the probability distribution from each camera measure-
ment with respect to the GNSS distribution and mitigate
inconsistent distributions that resulted from vision faults.
The KL divergence (van Erven & Harremos, 2014) repre-
sents one way to assess the consistency of two probability
distributions. By minimizing the divergence between the
distributions inferred from camera and GNSS, we ensure
that both distributions are consistent.
Our KL divergence metric treats the GNSS and camera

as complementary sensors. We assume that faults occur
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F IGURE 4 Generating a multi-modal camera measurement likelihood from a sequence of test images. From the camera module, we
obtain unimodal likelihoods for a single test image. Each likelihood is then passed to the KL divergence metric that is described in Section 5.
The metric also takes the GNSS measurement likelihood and outputs the optimal weights (𝛼) for combining the individual camera
measurement likelihoods. The final output is a multi-modal camera measurement likelihood that is characterized by a MoE model. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

in both sensors independently of each other and corre-
lated or coupled faults occur with a low probability. The
metric also assumes that we always have access to GNSS
pseudorange measurements albeit multiple of them could
be faulty. When there are no GNSS measurements, we do
not update the particle weights based on camera measure-
ments only. Instead, we wait for the next GNSS measure-
ment so that we can utilize all the camera measurements
between successive GNSS time epochs.

5.1 KL divergence: Metric formulation

The KL divergence (van Erven&Harremos, 2014) between
two discrete probability distributions, 𝑝 and 𝑞, in the same
domain is defined as:

𝐷𝐾𝐿(𝑝||𝑞) = ∑
𝑧∈𝜁

𝑝𝑧 𝑙𝑜𝑔
𝑝𝑧
𝑞𝑧

(10)

where 𝜁 represents the domain of both distributions and
𝑧 is each element of the domain. In our work, we propa-
gate the same set of particles from the GNSSmodule to the
camera module. As a result, the distributions from GNSS
and camera share the same position domain. Additionally,
to satisfy the requirements of our metric, we also propa-
gate the log likelihood from the GNSS module to the cur-
rent module.
Two important properties of the KL divergence are:

The KL divergence between two distributions is
always non-negative and not symmetrical (van
Erven & Harremos, 2014):

𝐷𝐾𝐿(𝑝||𝑞) ≠ 𝐷𝐾𝐿(𝑞||𝑝) (11)

where 𝐷𝐾𝐿(𝑞||𝑝) is the reverse KL divergence
between the distributions 𝑝 and 𝑞.

𝐷𝐾𝐿(𝑝||𝑞) is convex in the pair (𝑝||𝑞) if both distri-
butions represent probabilitymass functions (PMF;
van Erven & Harremos, 2014).

Leveraging the discussed properties, we formulate our
metric below.

Mixture of Experts (MoE): We formed a mixture
distribution to represent probability distributions
from successive camera measurements, where a
non-Gaussian probability distribution is derived
from a single camera image. Each measurement is
assigned a weight to represent its contribution in
the mixture. Instead of setting arbitrary weights,
we leverage the GNSS distribution to infer weights
that directly correspond to whether a camera mea-
surement is correct or faulty. Thus, highly faulty
camera measurements are automatically assigned
low weights in the MoE. The mixture distribution
is given as:

𝑄∗(𝑛𝑡|𝑋𝑡) =

𝐾∑
𝑗=1

𝛼∗
𝑗
𝑄𝑗

(
𝑛𝑡
𝑗
|𝑋𝑡

)
;

𝐾∑
𝑗=1

𝛼∗
𝑗
= 1 (12)

where 𝑄∗(𝑛𝑡|𝑋𝑡) represents the mixture distribu-
tion formed using 𝐾 camera images between two
successive GNSS time epochs.𝑄𝑗(𝑛𝑡

𝑗
|𝑋𝑡) is the like-

lihood of a single camera image 𝑛𝑡
𝑗
recorded at time

𝑡 with 𝛼∗
𝑗
as the normalized weight. 𝑋𝑡 are the par-

ticles representing position hypothesis and 𝑗 is the
index for the camera images. The weights are nor-
malized below to ensure that theMoE forms a valid
probability distribution:

𝛼∗
𝑗
=

𝛼𝑗
𝐾∑
𝑟=1

𝛼𝑟

(13)

where 𝛼∗
𝑗
is the normalized weight, 𝛼𝑗 is the weight

prior to normalization, 𝑟 is the index for the num-
ber of camera images between two successiveGNSS
time epochs, and 𝐾 is the total number of camera
measurements.
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Set up KL divergence: We set up a divergence min-
imization metric between the distributions from
each camera measurement and all GNSS measure-
ments:

𝐾𝐿𝑗

((
𝛼𝑗 𝑄

𝑗
(
𝑛𝑡
𝑗
||𝑋𝑡

) || 𝑃 (
𝑚𝑡

𝑘
||𝑋𝑡, 𝜒 = 𝑘

))

=

𝑆∑
𝑖=1

(
𝛼𝑗 𝑄

𝑗(𝑛𝑡
𝑗
| 𝑋𝑡)

)
𝑙𝑜𝑔

⎡⎢⎢⎢⎣
(
𝛼𝑗 𝑄

𝑗(𝑛𝑡
𝑗
| 𝑋𝑡)

)
𝑃
(
𝑚𝑡

𝑘
||𝑋𝑡, 𝜒 = 𝑘

)
⎤⎥⎥⎥⎦

(14)

where || denotes the divergence between both prob-
ability distributions, 𝑆 represents the total num-
ber of particles or position hypotheses across both
distributions, and 𝑖 is the index for the particles.
𝑃 (𝑚𝑡

𝑘
|𝑋𝑡, 𝜒 = 𝑘 ) is the probability distribution at

epoch 𝑡 from GNSS measurements as defined in
Equation (2), 𝛼𝑗 is the unnormalized weight, and
𝑗 is the index for the camera measurement.

Minimize divergence: Using the convexity of the KL
divergence (Property 2), we minimize each diver-
gence metric with respect to the unknown weight
assigned to the likelihood of each camera measure-
ment. We abbreviate 𝑃(𝑚𝑡

𝑖
|𝑋𝑡, 𝜒 = 𝑖 ) as 𝑃(𝑥𝑖) and

𝑄(𝑛𝑡
𝑗
|𝑋𝑡) as 𝑄(𝑥𝑖) for brevity and expand Equa-

tion (9). Since 𝛼𝑗 is independent of the summation
index, we keep it outside the summation and sim-
plify our expansion below.

𝐾𝐿𝑗(𝑄| |𝑃) = 𝛼𝑗

𝑆∑
𝑖 = 1

𝑄 (𝑥𝑖) log 𝛼𝑗

+𝛼𝑗

𝑆∑
𝑖 = 1

𝑄 (𝑥𝑖) log 𝑄 (𝑥𝑖)

−𝛼𝑗

𝑆∑
𝑖 = 1

𝑄 (𝑥𝑖) log 𝑃 (𝑥𝑖) (15)

Taking the first derivative with respect to 𝛼𝑗 we
obtain:

min
𝛼𝑗

𝐾𝐿𝑗 (𝑄||𝑃) = 𝑙𝑜𝑔 𝛼𝑗

𝑆∑
𝑖 = 1

𝑄(𝑥𝑖) +

𝑆∑
𝑖 = 1

𝑄(𝑥𝑖)

+

𝑆∑
𝑖 = 1

𝑄(𝑥𝑖)𝑙𝑜𝑔 𝑄(𝑥𝑖)

−

𝑆∑
𝑖 = 1

𝑄(𝑥𝑖)𝑙𝑜𝑔 𝑃(𝑥𝑖) (16)

Equating the expression on the right to 0 and solv-
ing for 𝛼𝑗 gives us:

𝛼𝑗 = 𝑒𝑘 ; 𝑘 =

∑𝑆

𝑖=1
𝑄(𝑥𝑖) 𝑙𝑜𝑔

𝑃(𝑥𝑖)

𝑄(𝑥𝑖)∑𝑆

𝑖=1
𝑄(𝑥𝑖)

− 1 (17)

We also perform a second derivative test to ensure
that the 𝛼𝑗 value inferred is aminimum value of the
divergence measure. Since the exponential func-
tion with the natural base is always positive, 𝛼𝑗 is
always positive as well. Thus, evaluating the second
derivative gives us a positive value.

1

𝛼𝑗

𝑆∑
𝑖=1

𝑄(𝑥𝑖) > 0 (18)

Joint probability distribution over position: After
obtaining the weights, we normalize them using
Equation (8). We obtain the joint distribution
assuming that the mixture distribution from cam-
era measurements and the GMM from GNSS mea-
surements aremutually independent. The joint dis-
tribution is given as:

𝑃∗
(
𝑛𝑡, 𝑚𝑡||𝑋𝑡

)
= 𝑃

(
𝑚𝑡

𝑖
||𝑋𝑡, 𝜒 = 𝑘

)
𝑄∗

(
𝑛𝑡||𝑋𝑡

)
(19)

where 𝑃 (𝑚𝑡
𝑘
|𝑋𝑡, 𝜒 = 𝑘 ) is the probability distribu-

tion from GNSS measurements in Equation (2).
Computing new particle weights: With the above
formulation, we compute the new weights for each
particle as shown below. First, we compute the joint
log likelihood:

𝑙𝑡
𝑘,𝑖

= 𝑙𝑜𝑔𝑃∗
(
𝑛𝑡, 𝑚𝑡||𝑋𝑡

)
= 𝑙𝑜𝑔

(
𝑃
(
𝑚𝑡

𝑖
||𝑋𝑡, 𝜒 = 𝑘

))
+ 𝑙𝑜𝑔

(
𝑄∗

(
𝑛𝑡||𝑋𝑡

))
(20)

where 𝑙𝑡
𝑘,𝑖

is the joint log likelihood at one time
epoch for each particle. The new particle weights
𝑤𝑡
𝑖,𝜒=𝑘

are given as:

𝑤𝑡
𝑖,𝜒=𝑘

=
𝑒𝑥𝑝(𝑙𝑡

𝑘,𝑖
)∑𝑆

𝑖=1
𝑒𝑥𝑝(𝑙𝑡

𝑘,𝑖
)

(21)

6 INTEGRITY RISK BOUNDING

We compute the integrity risk from the particle filter at a
lower frequency compared to the state estimation. Here,
the integrity risk is computed for the probability distribu-
tion of the state (in 3D-X,Y,Z) rather than a point solution,
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F IGURE 5 We illustrate the classification problem in a 2D
state space although we compute the risk bound for the entire 3D
position. We perturb the initial particle distribution using samples
from noisy inertial odometry. Each inertial sample results in a
different posterior distribution, the output from the particle filter.
Given a reference position and an alert limit, the surrogate loss
function classifies whether the posterior distribution is hazardous
with a certain probability. For such problems, the expected risk can
be over bound by the empirical risk (from finite such perturbed
distributions) and the uncertainty due to unseen samples or the
divergence risk (Valiant, 1984). [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

as illustrated in Figure 5. We upper bound the probability
of HMI using the risk bounding framework introduced in
Gupta and Gao (2019). For a single epoch, the probability
of HMI for a given alert limit 𝑟 is defined as:

𝑅𝑥∗(𝜋
𝑡) = 𝔼

𝑥∼𝜋𝑡
[𝑃(‖𝑥 − 𝑥∗‖ ≥ 𝑟)] (22)

where𝑅𝑥∗(𝜋) is the probability ofHMIwith reference posi-
tion 𝑥∗ and posterior distribution 𝜋, 𝑥 represents a sample
from the posterior, and 𝑡 refers to the time epoch. Since
the reference position is unknown, we need to evoke a
surrogate loss function to compute the previous equation
directly. First, let us rewrite the above equation by intro-
ducing a random variable:

(𝑥 − 𝑥∗)2 = 𝔼𝑥′∼𝜋𝑡′ [(𝑥 − 𝑥
′
)2]

−𝑉𝑎𝑟(𝑥
′
)∀𝜋

′
𝑠.𝑡.𝔼𝑥′∼𝜋′ [𝑥

′
] = 𝑥∗ (23)

where 𝑥′ refers to a random variable with mean of 𝑥∗ and
𝜋

′ refers to a candidate posterior distribution. This distri-
bution is approximated with a mean distribution created
by all possible posterior likelihoods by perturbing the ini-
tial input. Note that these likelihoods are created by per-
turbing the initial particle distribution with noisy odom-
etry samples (prior to the propagation step). With some
rearrangement of the previous equation, the surrogate loss
function is given as:

𝑙(𝑥, 𝜋𝑡′ ) = 𝔼𝑥′∼𝜋𝑡′

[
𝕀‖𝑥 − 𝑥

′‖ >
√
𝑟2 + 𝑉𝑎𝑟(𝑥′)

]
(24)

where 𝕀 denotes the indicator function with respect to
the random variable 𝑥 and 𝑥

′ . When the distribution 𝜋
′

approximates 𝑥∗, the surrogate term equals the true loss.
Thus, with increasing quality of measurements, the can-
didate posterior distribution should converge to the true
position. Calculating the expectation over these posterior
distributions gives us the expected risk:

𝐑𝑢(𝜋
𝑡) = 𝔼𝑢𝔼𝑥′∼𝜋𝑡′

[
𝑙(𝑥, 𝜋𝑡

𝑢)
]

(25)

where 𝐑𝑢(𝜋) is the expected risk over the set of poste-
rior distributions 𝜋, 𝑙(𝑥, 𝜋𝑢) is the surrogate loss func-
tion, and 𝔼𝑢 is the expectation over odometry samples 𝑢
that perturb the initial particle distribution. To circum-
vent the need to compute over infinite possible odom-
etry samples, we first draw a finite number of samples
and then define the empirical risk in regards to that sam-
ple size. As the number of samples approach infinity,
the empirical risk should approximate the expected risk
correctly:

𝐑𝑀(𝜋
𝑡) =

1

𝑀

𝑀∑
𝑖=1

𝔼
𝑥∼𝜋𝑡

[
𝑙
(
𝑥, 𝜋𝑡

𝑢𝑖

)]
(26)

where 𝐑𝑀(𝜋
𝑡) represents the empirical risk,𝑀 is the size

of the perturbed odometry samples, and 𝜋𝑢𝑖 is the ran-
domly drawn odometry sample. In our setup, we utilize
a kernel density estimate (KDE) to compute the integral
over a set of discrete particles. To evoke generalization
error bounds for our setup, we characterize the surrogate
loss function as a classification loss. The task is to clas-
sify whether the posterior distribution is classified as haz-
ardous (with respect to the alert limit) given amotion sam-
ple 𝑢𝑖 .
From the PAC-Bayesian theory of generalization error

bounds (Seeger, 2003), an appropriate bound for such
a classification problem (Gupta & Gao, 2019) is given
as:

𝐑(𝜋𝑡) ≤ 𝐑𝑀(𝜋
𝑡) +−1

𝐵𝑒𝑟(𝐑𝑀(𝜋
𝑡), 𝜖) (27)

where𝐑(𝜋𝑡) is the expected risk that is upper bound by the
empirical risk𝐑𝑀(𝜋

𝑡) and a term𝐑𝑀((𝜋
𝑡), 𝜖) that denotes

the divergence risk or the sample uncertainty due to unob-
served samples.
As noted in Seeger (2003), the above bound is only

a probabilistic bound and thus cannot be ensured at all
times. The bound holds for any data distributionwhere the
probability is over random i.i.d. samples (as is true in our
case since the odometry perturbations are generated inde-
pendently) drawn from the data distribution.
To compute the divergence risk, we first calculate the

gap term 𝜖 using KL divergence (Kullback & Leibler, 1951)
of the current distribution from the prior and a confidence
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requirement in the bound 𝛿:

𝜖 =
1

𝑀

(
𝐾𝐿(𝜋𝑡||𝜋𝑡−1) + 𝑙𝑜𝑔

(
𝑀 + 1

𝛿

))
(28)

where 𝛿 refers to the bound gap or the gap between the
expected generalization error and the expected empiri-
cal error from the finite set of drawn samples. Accord-
ing to Equations 4 and 5 of Seeger (2003), any non-
negative value of the bound gap satisfies the inequality in
Equation 26.
The means the prior and current distributions are taken

as 𝜋𝑡−1 and 𝜋𝑡. The prior and current distributions are
approximated as multivariate Gaussian distributions.
The Inverse Bernoulli Divergence (Gupta & Gao, 2019)

−1
𝐵𝑒𝑟 is then defined as:

−1
𝐵𝑒𝑟(𝑞, 𝜖) = 𝑡 𝑠.𝑡. 𝐵𝑒𝑟(𝑞||𝑞 + 𝑡) = 𝜖 (29)

where 𝑞||𝑞 + 𝑡 is the KL divergence (Kullback & Leibler,
1951) between 𝑞 and 𝑞 + 𝑡 and 𝑞 is given by the empirical
risk term. Adopting a Taylor series expansion (up to the
second order), the Inverse Bernoulli Divergence (Gupta &
Gao, 2019) is computed as follows:

𝐵𝑒𝑟(𝑞, 𝜖) =

√√√√ 2𝜖
1

𝑞
+

1

1−𝑞

(30)

We note that evoking the generalization error bounds
enables us to generate an upper bound to the reference risk
with a low failure rate. Since the number of odometry sam-
ples always remains finite, we cannot guarantee the upper
bound at all time instances.

7 EXPERIMENTS

7.1 Data sets

We test our framework on a 2.3-km-longurbandriving data
set from Frankfurt (Reisdorf et al., 2016). We use GNSS
pseudorangemeasurements, images froma forward-facing
camera, ground truth from a NovAtel receiver, and odom-
etry from the IMU. The data set contains NLOS errors in

GNSS measurements and vision faults due to variations
in illumination. In addition to the real-world data set, we
create emulated data sets by inducing faults in GNSS and
vision measurements with various controlled parameters.

7.2 Experimental setup and parameters

Real-world data set: We use GNSS rangingmeasure-
ments with NLOS errors. For simplicity, we esti-
mate the shared clock bias by subtracting the aver-
age residuals with respect to ground truth from all
GNSS pseudoranges at one time epoch.

Emulated data set: First, we vary the number of
satellites with NLOS errors by adding back the
pseudorange residuals to randomly selected satel-
lites. This induces clock errors in some measure-
ments which are perceived as faults. Although
the residuals approximate the true distribution of
errors in the pseudorange measurements, they do
not encapsulate all types of faults that our frame-
work can handle. Hence, to test our algorithm
under various controlled parameters, we remove
the NLOS errors and add Gaussian bias noise to
pseudorangemeasurements from random satellites
at random time instances. The number of faults
are varied between 2–9 out of 12 available measure-
ments at any given time step. We induce faults in
camera measurements by adding blurring with a
21x21 Gaussian kernel and occlusions of 25% to 50%
height and width to random images.

During the experimental simulation, a particle filter
tracks the 3D position (x, y, z) of the car and uses faulty
GNSS and camera measurements along with noisy odom-
etry. Probability distributions are generated independently
from GNSS and camera and fused with the KL divergence
metric to form the joint distribution over positions. At each
time epoch, the particle distribution with the highest total
log likelihood is chosen as the estimated distribution for
that epoch. The integrity risk is computed from 10 poste-
rior distributions of the initial particle distribution and the
reference risk is computed with ground truth. Our experi-
mental parameters are listed in Table 1.

TABLE 1 Experimental parameters for validation with real-world and emulated data sets

Parameter Value Parameter Value
No. of GNSS measurements 12 Added Gaussian bias to GNSS measurements 20–200 m
No. of faults in GNSS measurements 2–9 No. of particles 120
Measurement noise variance 10 m 2 Filter propagation variance 3 m 2

Alert Limit 8, 16 m No. of odometry perturbations 10
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TABLE 2 RMSE in 3D position with NLOS errors and added
vision faults

No. of faults out of 12
available GNSS
measurements

Particle RAIM-
Baseline
(meter)

Our Algorithm
(meter)

2 18.1 6.3
4 19.1 6.1
6 16.9 5.9
9 26.6 10.6

7.3 Baselines and metrics

We use particle RAIM as the baseline to evaluate our
algorithm’s performance for state estimation. The metric
for state estimation is the root mean square error (RMSE)
of the estimated position with respect to ground truth for
the entire trajectory. The risk bounding performance is
evaluated with metrics derived from a failure event (i.e.,
when the derived risk bound fails to upper bound the
reference risk). The metrics are the following: failure ratio
(the fraction of cases where the derived risk bound fails to
upper bound the reference risk), failure error (the mean
error during all failure events), bound gap (average gap
between the derived integrity risk), and reference risk.
For evaluating the integrity risk, we specify a perfor-

mance requirement that the position should lie within the
alert limit with at least 90% probability. A fault occurs if
the positioning error exceeds the alert limit. The metrics
for integrity risk are reported based on when the system
has insufficient integrity or sufficient integrity (Pesonen,
2011), which respectively refer to the states when a fault
is declared or not. The false alarm rate equals the fraction
of the number of times the system declares insufficient
integrity in the absence of a fault. The missed identifica-
tion rate is defined as the fraction of the number of times
the system declares sufficient integrity even though a fault
is present.

8 RESULTS

8.1 State estimation

First, we test our algorithm with NLOS errors in GNSS
ranging measurements and added camera faults.
Quantitative results in Table 2 demonstrate that our
algorithm produces 3D positioning estimates with overall
RMSE of less than 11 m. Additionally, our algorithm
reports lower errors compared to particle RAIM for all
test cases. Our algorithm is able to compensate for the
residual errors from particle RAIM by including camera

measurements in the framework. This leads to improved
accuracy in the positioning solution.
For qualitative comparison, we overlay the trajectories

from our algorithm on ground truth and highlight regions
with positioning error of greater than 10m in Figures 6 and
7. Trajectories from particle RAIM show large deviations
from ground truth in certain regions, either due to poor
satellite signal availability or highNLOS errors in the faulty
pseudorange measurements. However, similar deviations
are absent from the trajectories from our algorithm which
uses both GNSS and camera measurements. Our KL diver-
gence metric is able to mitigate the errors from vision and
the errors from cross-contamination during sensor fusion,
allowing us to produce lower positioning error.
Secondly, we tested our algorithm with the emulated

data sets. Quantitatively, we plotted the RMSE as a func-
tion of the added Gaussian bias value in Figure 8 and as a
function of the number of faulty GNSS ranging measure-
ments in Figure 9. For all validation cases, our algorithm
produces an overall RMSE less than 10 m. Similar to the
results from the real-world data set, our algorithm reports
lower RMSE values than particle RAIM.
With a fixed number of faults, the errors generally

increase with increasing bias. At a fixed bias value, the
errors decrease with increasing number of faults up to
six faulty GNSS measurements since a large number of
faults are easily excluded by particle RAIM producing an
improved distribution over the position.
The improved distribution from GNSS further enables

the KL divergence metric to exclude faulty camera mea-
surements and produce a tighter distribution over the posi-
tion domain.However, with a higher number of faults, par-
ticle RAIM does not have enough redundant correct GNSS
measurements to exclude the faulty measurements result-
ing in higher positioning error. Nevertheless, with added
vision, our algorithmproduces better positioning estimates
for all test cases than particle RAIM.

8.2 Integrity monitoring

We evaluated the integrity risk bounding performance for
two alert limits: 8 m and 16 m. For an alert limit of 8 m,
Table 3 shows that the derived integrity risk satisfies the
performance requirement with very low false alarm and
missed identification rates. While the false alarm rates
reported are zero for all test cases except two, the missed
identification rates are always less than 0.11. Additionally,
the integrity risk bound upper bounds the reference risk
with a failure ratio of less than 0.11 and a bound gap of less
than 0.4 for all cases.
Figures 10 and 11 further support the observation that

the derived risk bound is able to over bound the reference
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F IGURE 6 State estimation under NLOS errors for six faulty GNSS pseudo range measurements and added vision faults; regions with
positioning error greater than 10 m are highlighted in red [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

F IGURE 7 State estimation under NLOS errors for nine faulty GNSS pseudo range measurements and added vision faults; regions with
positioning error greater than 10 m are highlighted in red [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

TABLE 3 Integrity risk for alert limit of 8 m

Added bias
value (meter)

No. of
faults 𝑷𝑭𝑨 𝑷𝑴𝑰

Failure
ratio

Failure error
(meter)

Bound
gap

100 2 0 0.03 0.07 7.5 0.26
100 4 0 0.04 0.04 2.3 0.25
100 6 0 0.07 0.11 2.9 0.25
100 9 0.07 0.03 0.07 4.7 0.36
200 2 0 0.07 0.07 3.5 0.20
200 4 0.11 0 0.04 4.8 0.40
200 6 0 0 0 - 0.38
200 9 0 0.07 0.04 5.4 0.36

risk with low failure rate for the same alert limit. The few
instanceswhen the derived risk bound fails to upper bound
the reference risk occur due to large sudden jumps in the
reference risk that go undetected considering the fixed size
of our motion samples.

For the validation cases considered in this paper, the
integrity risk satisfies the desired performance require-
ment and over bounds the reference risk with a low fail-
ure rate for an alert limit as small as 8 m. This choice
of alert limit is allowed because of the low positioning
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F IGURE 8 RMSE from our algorithm and particle RAIM (baseline) for varying numbers of faults in GNSS ranging measurements at a
fixed added Gaussian bias value [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

F IGURE 9 RMSE from our algorithm and particle RAIM (baseline) for various added Gaussian bias values with fixed number of faulty
GNSS measurements [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

TABLE 4 Integrity risk for alert limit of 16 m

Added bias
value (meter)

No. of
faults 𝑷𝑭𝑨 𝑷𝑴𝑰

Failure
ratio

Failure error
(meter)

Bound
gap

100 2 0 0 0 - 0.10
100 4 0 0 0 - 0.08
100 6 0 0 0.04 5.9 0.05
100 9 0 0.04 0.07 9.7 0.08
200 2 0 0 0.07 5.0 0.09
200 4 0 0 0.07 4.2 0.07
200 6 0 0 0 3.6 0.06
200 9 0 0 0.04 3.8 0.01

errors that further enable non-conservative integrity risk
bounds.
For an alert limit of 16m, Table 4 shows that the integrity

risk satisfies the integrity performance requirement with
zero false alarm rates. Furthermore, the missed identifica-
tion rates are always zero except for the test case with nine
faults and 100 m added bias. Specifying a larger alert limit

lowers the risk associated with the distribution over posi-
tion since almost all particles from the perturbed distribu-
tions lie within the alert limit.
Thus, the integrity risk with a 16m alert limit is reported

to be much smaller compared to the risk obtained with a
8 m alert limit as shown in Figures 12 and 13. Additionally,
the derived risk bound produces an even lower failure
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F IGURE 10 Reference risk and integrity risk bound with 8 m alert limit for varying numbers of faults and added bias of 100 m in GNSS
measurements; the derived risk bound over bounds the reference risk with less than 0.11 failure ratio for all test cases [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

F IGURE 11 Reference risk and integrity risk bound with 8 m alert limit for varying numbers of faults and added bias of 200 m in GNSS
measurements; the derived risk bound over bounds the reference risk with less than 0.07 failure ratio for all test cases [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

F IGURE 1 2 Reference risk and integrity risk bound with 16 m alert limit for varying numbers of faults and added bias of 100 m in GNSS
measurements; the derived risk bound over bounds the reference risk with less than 0.07 failure ratio for all test cases. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]
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F IGURE 13 Reference risk and integrity risk bound with 16 m alert limit for varying numbers of faults and added bias of 200 m GNSS
measurements; the derived risk bound over bounds the reference risk with less than 0.07 failure ratio for all test cases. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com and www.ion.org]

ratio of less than 0.07 and a tighter bound gap of less than
0.1. For three of the eight validation cases, the derived
risk bound over bounds the reference risk as shown in
Figures 10 and 11.

9 CONCLUSION

In this paper, we presented a framework for joint state esti-
mation and integrity monitoring for a GNSS-camera fused
system using a particle-filtering approach. To quantify the
uncertainty in camera measurements, we derived a proba-
bility distribution directly from camera images leveraging
a data-driven approach along with image registration.
Furthermore, we designed a metric based on KL diver-

gence to probabilistically fuse measurements from the
GNSS and camera in a fault-tolerant manner. The metric
accounts for vision faults andmitigates the errors that arise
due to cross-contamination of measurements during sen-
sor fusion. We experimentally validated our framework on
real-world data under NLOS errors, added Gaussian bias
noise to GNSS measurements, and added vision faults.
Our algorithm reported lower positioning error com-

pared to particle RAIM which uses only GNSS measure-
ments. The integrity risk from our algorithm satisfied the
integrity performance requirement for alert limits of 8 m
and 16 m with low false alarm and missed identification
rates. Additionally, the derived integrity risk successfully
provided an upper bound to the reference risk with a low
failure rate for both alert limits,making our algorithm suit-
able for practical applications in urban environments.
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