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O R I G I N A L  A R T I C L E

Improved Automatic Detection of GPS Satellite Oscillator 
Anomaly using a Machine Learning Algorithm

Yunxiang Liu  Y. Jade Morton

1  INTRODUCTION

GNSS signal-in-space (SIS) quality is fundamental to the operation and accuracy 
of the position, navigation, and timing (PNT) solutions provided by GNSS. The 
stability of the onboard oscillators is of paramount importance as they provide the 
signal time-of-transmission for satellite-receiver range measurements. 

Satellite oscillator anomalies are manifested as SIS carrier phase disturbances. 
Their occurrence may be led by changes in state of the satellite clock (Blanch et al., 
2013; Walter et al., 2003; Walter et al., 2012). Large anomalies may lead to the deg-
radation of precision, service discontinuity, loss of augmentation correction service 
such as the Wide Area Augmentation System (WAAS), or even outage, ultimately 
impacting the accuracy and integrity of GNSS applications (Gordon et al., 2009; Liu 
& Morton, 2019, 2020a, 2020b; Vary, 2012). 
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Abstract
This paper presents a random forest-based machine learning algorithm to auto-
matically detect satellite oscillator anomalies using dual- or triple-frequency 
GPS carrier phase measurements. The algorithm can distinguish satellite 
oscillator anomalies from other GPS carrier phase disturbances including ion-
ospheric scintillation and receiver oscillator anomalies. Carrier phase power 
spectral density and carrier phase ratios between carriers are extracted from 
measurements and applied as input features to the random forest algorithm. 
The method is trained using data collected at seven GNSS monitoring stations 
located in Alaska, Ascension Island, Greenland, Hong Kong, Peru, Puerto Rico, 
and Singapore. The overall detection accuracies of 98.4% and 99.0% are achieved 
for dual- and triple-frequency signals, respectively. The method outperforms 
other machine learning algorithms. The preliminary detection results demon-
strate that the method presented can be employed on a global satellite oscillator 
anomaly monitoring system. 
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Therefore, it is important to monitor and provide a timely warning of anomaly 
occurrence. In addition, the characterization of the anomaly occurrence will help 
to improve monitoring systems’ performance (Heng, 2012) and enable investiga-
tion of the cause of these events, where there is a lack of understanding due to the 
availability of anomaly data (Cobb et al., 1995). Furthermore, the characterization 
also provides guidance on future navigation satellite systems and satellite oscillator 
design in order to avoid these glitches, which is of great interest to the GPS satellite 
manufacturer (e.g., GPS III [Lockheed Martin, n.d.]). 

Satellite oscillator anomalies have been investigated in several past studies 
(e.g., Benton and Mitchell [2012, 2014], Liu and Morton [2020b]). Benton and 
Mitchell (2012) observed pulses of rapid phase variations at GPS L1 caused by a 
satellite oscillator anomaly. In Benton and Mitchell (2014), a modern GPS Block 
IIF satellite (PRN 1) showed sequences of oscillator anomalies (with a maxi-
mum phase deviation larger than one cycle) on October 26, 2012. In Liu and 
Morton (2020b), frequent micro satellite oscillator anomalies (with a maximum 
phase deviation around 0.2 cycles) were observed from multiple GPS Block IIF 
satellites. 

To offer a timely warning of these anomalies for the users, in particular for 
safety-critical services with the most stringent requirements such as aircraft navi-
gation (Vioarsson et al., 2001; Weiss et al., 2010), a global satellite oscillator anom-
aly monitoring system is desired, and the capability of automatic detection is an 
important requirement (Gordon et al., 2009; Shallberg & Sheng, 2008). 

Heo and Cho (2012) proposed using the Teager Energy operator to detect 
oscillator anomalies by identifying sudden changes. They assumed that using 
dual-frequency measurements or the Klobuchar model could remove the ion-
ospheric effect such that any sudden, detected changes were contributed by the 
oscillator anomaly. However, these assumptions are not valid when there is ion-
ospheric scintillation. 

Ionospheric scintillation is typically due to a refractive or diffractive effect 
as GNSS signals propagate through ionospheric irregularities. The diffractive 
effects introduce random carrier phase fluctuations, which cannot be removed 
by dual-frequency measurements or ionospheric models (Carrano et al., 2013; 
McCaffrey & Jayachandran, 2019; Morton et al., 2020). Therefore, this approach 
is not always effective. To accommodate the problem, two (or more) nearby 
receivers were also utilized to distinguish the satellite oscillator anomaly from 
ionospheric scintillation and receiver oscillator anomalies (Gordon et al., 2009; 
Hansen et al., 1998; Ramesh et al., 2017). A satellite oscillator anomaly is iden-
tified by observing the same anomaly from two (or more) receivers. Two major 
shortcomings of this approach are that the requirement of two or more receivers 
makes it difficult to apply to existing monitoring and any updates to existing sys-
tems would be costly. 

Liu and Morton (2019, 2020a, 2020b) proposed a machine learning (ML)-based 
satellite oscillator anomaly detection method using a single receiver. It involves 
three stages: detection of the phase disturbance using a linear kernel support vector 
machine (SVM); differentiation of the oscillator anomaly from ionospheric scintil-
lation using the frequency dependence property and a radial basis function (RBF) 
kernel SVM; and differentiation of the satellite oscillator anomaly from receiver 
oscillator anomaly by examining the detected phase disturbances on different sat-
ellites at the same receiver. The two independent classification methods used in the 
first two stages result in suboptimal performance as the two detection stages are 
not end-to-end optimized. 
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In this paper, we propose a random-forest-based ML approach to replace the 
first two stages of the method discussed by Liu and Morton (2019, 2020a, 2020b). 
The random forest architecture is implemented to solve a classification problem 
with three classes: oscillator anomalies, ionospheric scintillation, and no distur-
bances. Features used in the ML algorithm include carrier phase power spec-
tral density (PSD) and ratios of the carrier phase measurements. Both dual- and 
triple-frequency GPS carrier phase measurements are used to demonstrate that this 
random-forest-based ML method outperforms the approach presented by Liu and 
Morton (2020b) for the task of oscillator anomaly detection in terms of accuracy 
and number of detected anomaly events. In this paper, the same approach used by 
Liu and Morton (2020b; the third step in the algorithm) is applied to the identified 
oscillator-induced phase disturbances to differentiate a satellite oscillator anomaly 
from a receiver oscillator anomaly. 

The rest of the paper is organized as follows: Section 2 introduces the meth-
odology of the satellite oscillator anomaly detection; Section 3 evaluates the per-
formance of the detection method; preliminary detection results are presented 
in Section 4; and finally, concluding remarks and future work are presented in 
Section 5. Note that we use the terms scintillation and phase scintillation inter-
changeably in this paper, where both terms refer to carrier phase scintillation. 

2  METHODOLOGY

The method presented in this paper consists of two stages. First, a 
random-forest-based ML algorithm is implemented to detect any oscillator anom-
alies by differentiating them from ionospheric scintillation and quiet time cases. 
Second, the differentiation between satellite oscillator anomalies and receiver 
oscillator anomalies is conducted using the same approach as discussed by Liu 
and Morton (2020b). 

A block diagram is shown in Figure 1 to illustrate the process. In this section, 
we will provide a brief summary of the random-forest algorithm, followed by 
the ML architecture for oscillator anomaly detection. Finally, the distinction 
between satellite and receiver oscillator anomalies is summarized for the sake of 
completeness. 

FIGURE 1 Satellite oscillator anomaly detection block diagram
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2.1  Decision Tree and Random Forest

Random forest is a supervised ML algorithm suitable for classification tasks 
(Breiman, 2001; Fernandez-Delgado et al., 2014). It makes a decision by majority 
vote from a group of decision trees, in which each decision tree makes their predic-
tion independently. 

The building block of the random forest is the decision tree. Assume a dataset 
of size n: {(x i, y i)}, i = 1,…, n, where the tuple (x i, y i) represents the i-th sample. 
For each sample, x ∈ Rm represents the m-dimensional features and y is the cor-
responding label. The goal of a decision tree is to learn a mapping function g from 
the training dataset such that the predicted label ŷ = g(x) matches the actual label 
y as accurately as possible. 

Figure 2 shows an example decision tree for a three-class classification task. The 
left subplot shows the feature domain of the data set. Each dot/triangle/cross rep-
resents a data sample, where each sample has two features (x1, x2). The blue dot, 
red cross, and black triangle represent label a, b, and c, respectively. The dashed 
lines denote the decision boundaries, which are determined in the training process. 
The trained decision tree is shown on the right subplot where each leaf node is 
marked with a label, which is also determined in the training process. 

The decision/classification of a data sample is made by traversing the tree from 
top to bottom. At each node, a subtree is selected based on comparing the feature 
value of the data sample to the threshold of that node. This process is repeated 
until the leaf node is reached. Then the predicted label is the corresponding label 
of the leaf node. The training process of the decision tree is to recursively find the 
best split for each node, where the feature and the corresponding threshold for that 
best split are recorded (Bishop, 2006; Quinlan, 1986). 

A decision tree may achieve excellent classification performance in a portion 
of data samples in the data set. However, a single decision tree cannot yield good 
performance when dealing with a complex system. The random-forest algorithm 
overcomes this problem by making decisions based on an ensemble of indepen-
dent decision trees (Breiman, 2001). 

Each decision tree in the random-forest algorithm is trained independently using 
a subset of features that are randomly selected from the entire feature set. In the 
classification stage, each decision tree makes its own decision independently. The 
final decision is done by the majority vote, wherein each decision tree votes for 
a label and the majority wins. An illustration of the random-forest structure is 
shown in Figure 3. 

FIGURE 2 Illustration of a decision tree for a three-class classification task
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2.2  Stage 1: Oscillator Anomaly Detection

The random-forest algorithm is applied to carrier phase measurements to 
identify any oscillator anomalies and to differentiate them from ionospheric 
scintillation and quiet time cases. Here, quiet time corresponds to no disturbance 
and ionospheric scintillation refers to rapid phase fluctuations caused by signals 
propagating through ionospheric plasma irregularities (Morton et al., 2020). 
The distinctions among the three classes are captured by features which serve 
as inputs to the random-forest algorithm. The process to design and extract fea-
tures and the implementation of the random-forest algorithm are discussed in 
the following text.

2.2.1  Feature Engineering

Feature engineering is the process of using domain knowledge of the data to 
create the features that make ML algorithms feasible. In this study, three feature 
sets are extracted from detrended phase measurements. The detrending procedure 
is necessary in order to filter out low-frequency components, which are not rele-
vant to oscillator anomalies and scintillation in phase measurements (Jiao et al., 
2017). A sixth-order Butterworth filter with a 0.1 Hz cutoff frequency is applied to 
remove the geometry trend (Van Dierendonck et al., 1993). 

The three feature sets derived from the detrended phase and used in this 
study are: (1) power spectral density (PSD), (2) ratio of phase deviations 

Data Sample

Decision Tree 1 Decision Tree 2 Decision Tree k-1 Decision Tree k

label a label c label b label a

Majority Vote

Final label
(a or b or c)

FIGURE 3 Illustration of the random forest structure consisting of many decision trees, in 
which each decision tree makes its classification independently. A majority vote is employed to 
obtain the final predicted label
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between carriers, and (3) the concatenation of (1) and (2). Here, concatenation 
refers to the operation of combining the PSD (a vector) and the ratios (other vec-
tors) to form a longer feature vector.

The PSD of quiet time phase measurements typically presents low power densi-
ties across all frequencies while the PSDs for phase disturbance events (scintilla-
tion and oscillator anomalies) are less uniform and show high power densities at 
some frequencies. Therefore, both the PSD and the maximum value of the PSD are 
included as features (denoted as Feature Set #1). 

In the implementation, only components below 2 Hz in the PSD are included 
as features to reduce the impact of high-frequency noise (Jiao et al., 2017b). It 
should be noted that the exclusion of frequency components below 0.1 Hz and 
above 2 Hz in the PSD may lead the detection method to fail to detect satellite 
oscillator anomalies that are outside the frequency range from 0.1 Hz to 2 Hz. An 
extension of the current method to cover all anomalies is a planned future work, 
which is mentioned in Section 5.

The same phase deviation ratio used by Liu and Morton (2019, 2020a, 2020b) 
are used as Feature Set #2 to differentiate phase disturbances caused by oscil-
lator anomalies and scintillation. This is based on the fact that phase deviation 
caused by an oscillator anomaly is proportional to the carrier frequency, while the 
phase deviations associated with weak-to-moderate scintillation are approximately 
inversely proportional to the carrier frequency. For strong scintillation, this inverse 
proportionality breaks down. 

For the sake of completeness, Figure 4 is a replot of Figure 3 from Liu and Morton 
(2020b) that shows L1 vs. L2C phase deviation relationships for an oscillator anom-
aly event and an ionospheric scintillation event. To compute the carrier phase devi-
ation ratio, we made scatter plots of the dual-frequency phase deviations as shown 
in Figure 4 and performed a linear fit. The slope of the fitted line is obtained as 
the ratio. To reduce the noise impact, a threshold of 0.02 cycles is used to reject 
measurements (on both bands) with phase deviations below the threshold (Liu & 
Morton, 2020b). 

FIGURE 4 Scatterplot of L1 vs. L2 phase deviations; an example of oscillator 
anomalies is shown as black circles; the ratio of phase deviations for each 
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Feature Set #3 is a concatenation of both Feature Set #1 and Feature Set #2 to 
fully utilize all available information from the phase measurements to distinguish 
oscillator anomalies and ionospheric scintillation. 

2.2.2  Feature Engineering and Random-Forest Algorithm 
Implementation

In this work, we focus on detecting the oscillator anomaly for GPS Block IIRM 
and IIF satellites, both of which broadcast L2C signals. This ensures that at least 
reliable dual-frequency carrier phase measurements are available for the phase devi-
ation ratio computation. High-rate carrier phase measurements at 100 Hz collected 
by Septentrio PolaRx5S receivers are used for training and testing the algorithms. 

The phase measurements are divided into 30-second chunks, where each chunk 
is considered as one sample. Feature engineering and oscillator anomaly detection 
is performed independently for each sample. Given the available frequency bands 
for these satellites, the feature engineering implementation can be categorized into 
the following two cases:

1. Dual-frequency Signals (Block IIRM: PRN 5, 7, 12, 15, 17, 29, 31):
a. Feature Set #1: For each sample, measurements from GPS L1 and L2 are 

used to generate the PSD and maximum value of the PSD.
b. Feature Set #2: For each sample, two sets of frequency ratios between L1 

and L2 are generated (i.e., L1 vs. L2 with a threshold on L1; L1 vs. L2 with 
a threshold on L2).

c. Feature Set #3: Concatenation of Feature Set #1 and Feature Set #2 
2. Triple-frequency Signals (Block IIF: PRN 1, 3, 6, 8, 9, 10, 24, 25, 26, 27, 30, 32):

a. Feature Set #1: In addition to that of GPS L1 and L2, measurements from 
GPS L5 are also used to generate the PSD.

b. Feature Set #2: The frequency ratios of all combinations among three 
frequency bands are generated (i.e., L1 vs. L2 with a threshold on L1; L1 vs. 
L2 with a threshold on L2; L1 vs. L5 with a threshold on L1; L1 vs. L5 with 
a threshold on L5; L2 vs. L5 with a threshold on L2; and L2 vs. L5 with a 
threshold on L5). 

c. Feature Set #3: Concatenation of Feature Set #1 and Feature Set #2 

Given a data sample, the features are concatenated together as a vector and 
then input to the random-forest algorithm. The random-forest algorithm then 
classifies this sample as one of the three classes. If the sample is identified as an 
oscillator anomaly, it is then examined to identify whether it is a satellite oscil-
lator anomaly.

2.3  Stage 2: Satellite Oscillator Anomaly Detection

The oscillator anomaly detected by the random-forest algorithm can be due to 
either a satellite or receiver oscillator anomaly. To differentiate a satellite oscillator 
anomaly from a receiver oscillator anomaly, the Stage 3 used by Liu and Morton 
(2020b) is applied. It is based on the fact that a receiver oscillator anomaly should 
simultaneously show up on measurements from all satellites in the receiver view, 
while a satellite oscillator anomaly is only present on the measurements from that 
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particular satellite. As a result, measurements from all satellites in the receiver 
view are employed. 

A receiver oscillator anomaly is identified if all satellites in the receiver view 
simultaneously observe the oscillator anomaly; otherwise, it is a satellite oscilla-
tor anomaly. Of course, we can further confirm a satellite oscillator anomaly if it 
is simultaneously observed by multiple receivers (Ramesh et al., 2017). Since the 
differentiation between satellite and receiver oscillator anomalies is a trivial pro-
cess, we focus on the performance evaluation of the random-forest-based oscillator 
anomaly detection below.

3  DATA SET DESCRIPTION AND PERFORMANCE 
EVALUATION

3.1  Data Set Description and Evaluation Method

The same data used by Liu and Morton (2020b), (i.e., 100 Hz GPS PRN 1 and 
PRN 25 carrier phase measurements obtained from Septentrio PolaRx5S receiv-
ers in Alaska, Ascension Island, Greenland, Hong Kong, Peru, Puerto Rico, and 
Singapore from 2013–2016), are used to construct the data sets for the ML training 
and performance evaluations (Liu & Morton, 2020b). 

The phase measurements are partitioned into 30-second sequential blocks with-
out overlap, wherein each block is considered one sample. From these data, we 
identified 710 scintillation events, 231 oscillator anomalies, and 462 quiet time 
samples by visual inspection. To ensure a fair comparison, all performance eval-
uations in this work are conducted using this data set, including the evaluation of 
previous methods used by Liu and Morton (2020b).

To evaluate performance, 70% of samples in the data set were randomly selected 
for training and the rest were used for testing. The best hyperparameters were 
obtained via cross-validation, where 10-fold cross validation was conducted on the 
training set (Bishop, 2006). Since the randomness in training/testing data selection 
also has an impact on performance, 10 different arrangements for training/testing 
data splits were obtained and evaluated individually. The mean and standard devi-
ation of the accuracy over these 10 trials were used as the evaluation metric (Liu & 
Morton, 2020b). 

Given the fact that this is an imbalanced data set, the following metrics were also 
obtained for thorough performance assessments:

• False positive rate (FPR): FPR measures the proportion of negative samples 
that are incorrectly classified as positive samples.

• True positive rate (TPR): TPR, also known as recall, measures the percentage 
of actual positive samples that are correctly classified as positive. 

• Positive predictive value (PPV): PPV, also known as precision, measures 
the proportion of predicted positive samples that are actual positive samples. 

• F1 score: It is a metric that combines TPR (recall) and PPV (precision) and is 
defined as the harmonic mean of both terms:

F call ecision
call ecision1 2= ∗

∗
+

Re Pr
Re Pr

 The F1 score reaches its best value at 1 and its worst value at 0. It conveys the 
balance between recall and precision and is usually used to evaluate the model 
performance given an imbalanced data set, as is the case in this study.
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In this work, our objective was to distinguish oscillator anomalies from scintilla-
tion and quiet time samples. Therefore, metrics such as FPR, TPR, PPV, and F1 were 
applied to evaluate the detection performance of oscillator anomalies, wherein 
positive samples denoted oscillator anomaly and negative samples denoted scintil-
lation or quiet time cases. 

3.2  Performance Evaluation of Random Forest

Table 1 summarizes the detection accuracy using the random-forest algorithm with 
the three sets of features. Feature Set #3 shows the best performance for both dual- 
and triple-frequency signals. This indicates that Feature Sets #1 and #2 both contrib-
uted to the classification task from different perspectives. The less than 1.1% standard 
deviation of the accuracy on all configurations shows the robustness of the method. 

Moreover, the method using triple-frequency signals outperformed the one using 
dual-frequency signals on Feature Set #3. This is because triple-frequency signals 
have more frequency diversity by providing additional information from L5. The 
performance in Table 1 also suggests that the method detects ionospheric scintilla-
tion with high accuracy. Hence, the proposed method is capable of simultaneously 
monitoring both oscillator anomalies and ionospheric scintillation. 

A thorough performance evaluation of the detection method using Feature Set 
#3 is shown in Table 2. The low standard deviations of all metrics again show the 
robustness of the method. The method using triple-frequency signals outperformed 

TABLE 1 
The mean and standard deviation (SD) of the detection accuracy of the random forest algorithm. 
A total of 10 different training/testing splits were used. The best performances are highlighted 
in bold.

Algorithm

Random Forest

Dual-frequency Triple-frequency 

Feature set # 1 2 3 1 2 3

Accuracy Mean 93.6% 93.2% 98.4% 92.9% 96.5% 99.0%

SD 1.1% 1.0% 0.4% 1.0% 1.1% 0.5%

TABLE 2 
Performance evaluation of the random forest using Feature Set #3. Ten different training/testing 
splits are used. The mean and standard deviation (SD) of the metrics are shown. FPR, TPR, and 
PPV denote false positive rate, true positive rate, and positive predictive value, respectively.

Algorithm

Random Forest

Dual Triple

Accuracy Mean 98.4% 99.0%

SD 0.4% 0.5%

FPR
(False Alarm)

Mean 0.5% 0.4%

SD 0.3% 0.2%

TPR
(Recall)

Mean 95.5% 97.6%

SD 2.4% 2.9%

PPV
(Precision)

Mean 97.7% 98.0%

SD 1.4% 0.9%

F1 score Mean 96.5% 97.8%

SD 1.2% 1.6%
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the one using dual-frequency signals over all metrics because of the greater fre-
quency diversity of the triple-frequency signals. The detection accuracies of 98.4% 
and 99.0% for dual- and triple-frequency signals demonstrate that the detection 
method is capable of accurately distinguishing among the three classes.

The FPR values of 0.5% (dual) and 0.4% (triple) show the method has very small 
false alarm rates. The TPRs for dual- and triple-frequency signals are 95.5% and 
97.6%, respectively. This implies that missed detection probabilities are also very 
low, which are 4.5% and 2.4% for dual- and triple-frequency signals, respectively. 
Furthermore, the PPVs for dual- and triple-frequency signals are 97.7% and 98.0%, 
respectively. This indicates that only 2.3% and 2% of detected oscillator anomalies 
are actually scintillation or quiet time samples. Finally, the F1 scores are 96.5% and 
97.8%, showing a very good detection performance of oscillator anomalies.

As a byproduct of the training process, the feature importance of the random-forest 
algorithm quantitatively measures the importance of each feature in the classi-
fication task (Breiman, 2001). Here, a higher value of a feature indicates its more 
important role in distinguishing among different classes. The top 12 most important 
features obtained by the random-forest algorithm trained using Feature Set #3 with 
triple-frequency signals are shown in Figure 5. 

The following notations are used in Figure 5:

• Rij: The detrended phase ratio between Li and Lj carrier with a threshold on Lj
• LimaxPhase: the maximum value of GPS Li PSD
• LiPSD_mHz: the GPS Li PSD value at mHz

Figure 5 shows that the ratio between L1 and L5 with a threshold on L5 is the most 
important feature. This is reasonable because L1 and L5 have the greatest difference in 
carrier frequency, and thus lead to a better ratio separation between oscillator anom-
alies and scintillation. The L1 and L2 ratios are also important because the frequency 

FIGURE 5 Illustration of feature importance of the random-forest algorithm. The 
top 12 most important features are presented. In this example, the random forest is trained 
using Feature Set #3 with triple-frequency signals.
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difference between L1 and L2 is slightly smaller than the one between L1 and L5, but 
still comparable. The ratios of L2 and L5 are less important because these two fre-
quency bands are closer to each other and hence show a smaller ratio separation. 

The maximum values of the PSDs from three frequency bands (L1maxPhase, 
L2maxPhase, and L5maxPhase) are also important as shown in Figure 5. This is 
because it is the key indicator between phase disturbance and quiet time cases. 

Finally, the PSD itself is less important compared to the ratios and maximum val-
ues of the PSD. This is reasonable because a single value at a specific frequency in 
the PSD fails to offer enough information for the classification. However, the entire 
PSD as a whole helps the classification task as its feature importance accumulates. 
These observations demonstrate that the max values of the PSD and ratios based 
on frequency dependence are essential features, which lead to a good detection 
performance. 

3.3  Performance Comparison with Other ML Algorithms 
and the State-of-the-Art Detection Method

The random-forest algorithm performance is also compared with logistic regres-
sion, linear SVM, decision tree, neural network, and RBF (radial basis function) 
SVM, all using the same Feature Set #3 as input features. It is also compared to the 
state-of-the-art detection method presented by Liu and Morton (2020b). A brief 
summary of these methods is listed below:

1. Logistic Regression (Bishop, 2006) is a linear model that uses a logistic 
function to model the task. Logistic regression can only be applied for binary 
classification. To adopt it to our three-class classification setting, we took the so-
called one-vs-one strategy by performing three pairs of binary classifications: 
oscillator anomalies vs. scintillation, scintillation vs. quiet time cases, and 
quiet time vs. oscillator anomalies. Three logistic functions are independently 
employed, wherein each is used to conduct the binary classification task for 
one pair. The final decision is made by the majority voting of these three 
logistic functions. In the event of a tie, it selects the class with the highest 
aggregate classification confidence by summing up the pair-wise classification 
confidence levels computed by the logistic function (Cournapeau, 2011). 

2. Linear SVM (Bishop, 2006; Chang & Lin, 2011; Jiao et al., 2017; Liu & Morton, 
2020b) is a method that uses a linear kernel for SVM. Its decision boundary 
is linear. It is also a binary classifier. The same one-vs-one strategy used in 
logistic regression is used. 

3. A Decision Tree (Bishop, 2006; Quinlan, 1986) is a tree-like model that can 
handle multi-class classification tasks. As discussed in Section 2.1, the decision 
tree, itself, is a valid classifier. The drawback is that this method tends to overfit. 

4. A Neural Network (Bishop, 2006) consists of a series of fully connected 
layers. It can deal with non-linearly separable problems and multi-class 
classification tasks. 

5. RBF SVM (Bishop, 2006; Chang & Lin, 2011; Jiao et al., 2017; Liu & Morton, 
2020b) is a method that uses a radial basis function (RBF) as the kernel. Its 
decision boundary can be non-linear. As a binary classifier, the one-vs-one 
strategy is employed. 

6. SVM-RBF SVM (Liu & Morton, 2019, 2020a, 2020b) is a state-of-the-art ML-
based oscillator anomaly detection process. To identify the oscillator anomaly, 
it involves two steps: in the first step, a linear SVM is proposed to detect a phase 
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disturbance (Jiao et al., 2017a). Given the detected phase disturbance, an RBF 
SVM is then used to differentiate oscillator anomaly from scintillation. We shall 
refer to this two-stage approach as SVM-RBF SVM. 

It should be noted that all algorithms presented (except SVM-RBF SVM) sim-
plify the detection of oscillator anomalies into one step, where the differentiation 
of oscillator anomalies, scintillation, and quiet time samples is achieved through 
one classifier. In contrast, the detection of oscillator anomaly using SVM-RBF SVM 
involves two stages. 

As shown in Table 3, logistic regression and linear SVM present the worst perfor-
mance because these two linear algorithms fail to deal with non-linearly-separable 
problems. The decision tree also presents similar performance because it tends to 
overfit. The neural network exhibits comparable performance on dual-frequency 
signals and better performance on triple-frequency signals compared to the previ-
ous three algorithms. The reason could be that the neural network fails to capture 
the relationship when the frequency diversity is low. 

RBF SVM and the random-forest algorithm show the best detection accuracy. The 
FPR and PPV of the random-forest algorithm is better while the TPR of the RBF SVM 
is better. This indicates that the random-forest method has a lower false alarm rate 
while the RBF SVM has lower missed detection probability. By taking both TPR and 
PPV into account, the F1 score of the random-forest method is slightly higher. 

The performance of the SVM-RBF SVM from Liu and Morton (2020b) is also 
shown in Table 3. It is clear that random forest outperforms the SVM-RBF SVM for 
both dual- and triple-frequency signals. We should note here that the detection per-
formance for the SVM-RBF SVM presented by Liu and Morton (2020b) is different 
from the ones presented in Table 3 in this paper. This is because the detection accu-
racy of 98.4% shown in Table 2 by Liu and Morton (2020b) refers to the accuracy of 
its Stage 2 performance, while in this paper, the detection accuracy of 93.3% refers 
to the combined performance of its Stages 1 and 2. 

The SVM-RBF SVM employs PSD features in Stage 1 and ratio features in 
Stage 2, whereas the PSD and ratio features are combined into one stage in the 

TABLE 3 
Performance comparison between the random-forest algorithm, logistic regression, linear SVM, 
decision tree, neural network, RBF SVM, and SVM-RBF SVM. Ten different training/testing splits 
are used. The mean of the metrics is shown. FPR denotes false positive rate; TPR denotes true 
positive rate; PPV denotes positive predictive value. Dual and triple denotes dual- and triple-
frequency signals. 

Algorithm
Logistic 
Regression

Linear 
SVM

Decision 
Tree

Neural 
Network

RBF 
SVM

SVM-
RBF 
SVM

Random 
Forest

Accuracy Dual 94.0% 95.9% 96.8% 96.5% 97.8% 93.3% 98.4%

Triple 96.4% 97.7% 96.0% 98.8% 99.0% 93.5% 99.0%

FPR
(False 
Alarm)

Dual 2.6% 2.1% 1.6% 2.1% 1.1% 0.4% 0.5%

Triple 0.6% 0.5% 0.7% 1.0% 0.8% 0.3% 0.5%

TPR
(recall)

Dual 86.8% 92.8% 94.8% 93.6% 96.8% 75.9% 95.5%

Triple 95.0% 98.8% 96.1% 98.0% 99.1% 77.0% 97.6%

PPV
(precision)

Dual 87.2% 89.7% 92.1% 89.8% 94.7% 97.4% 97.7%

Triple 94.5% 95.0% 96.4% 95.2% 96.2% 98.2% 98.0%

F1 score Dual 86.9% 91.2% 93.3% 91.6% 95.7% 85.3% 96.5%

Triple 94.7% 96.8% 96.2% 96.6% 97.6% 86.3% 97.8%
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random-forest method. This concatenation of PSD and ratio features in one stage 
potentially offers more information, and thus leads to better performance. 

Comparable FPR and PPV are observed from these two methods while a large 
performance improvement for the random-forest algorithm is shown in TPR. This 
means that both methods exhibit very good performance in PPV, indicating that 
if an oscillator anomaly is detected, it has a very high probability of being a true 
oscillator anomaly. 

However, the SVM-RBF SVM shows a poor TPR, indicating that the method has 
a higher missed detection probability. This could imply that poor phase disturbance 
detection in the first stage leads to a number of undetected oscillator anomalies, 
where these undetected oscillator anomalies could have similar PSDs to the quiet 
time samples. Thus, the features of the PSD fail to differentiate between them. This 
observation again demonstrates that the PSD and ratios between carriers offer dis-
tinctly different information.

4  DETECTION RESULTS

In this study, we applied the random-forest-based detection method to a data-
base collected by our global GNSS monitoring network in 2017 and 2018, where 
Septentrio PolaRx5S receivers were deployed to obtain 100 Hz phase measure-
ments (Jiao, 2017). It should be noted that the detection algorithm is trained on 
data collected from 2013–2016. This setup is to validate the general applicability of 
the algorithm to data that were not used in training. SVM-RBF SVM is also applied 
for the purpose of comparison. Station locations include Alaska, Greenland, South 
Korea, Puerto Rico, and Chile. The choice of these stations is based on the data 
availability, which is shown in Table 4. 

All GPS Block IIRM and Block IIF satellites are processed by using the 
random-forest method with dual-frequency signals. As previously mentioned, 
differentiation between satellite and receiver oscillator anomalies is done 
by checking whether the same anomaly occurs on all satellites in view at the 
same time. The purpose of this section is to demonstrate the effectiveness of 
the random-forest detection method. A comprehensive characterization of sat-
ellite oscillator anomalies is currently underway and is the subject of a future 
publication. 

We first use this database to compare the random-forest method with the 
SVM-RBF SVM. Here, the same database is also processed using the SVM-RBF SVM 
with dual-frequency signals. Table 5 shows the number of detected satellite oscilla-
tor anomalies for each method from each station. It is clear that the random-forest 
method is capable of detecting more anomalies compared to the SVM-RBF SVM. 
This observation supports our performance analysis in Section 3.3, wherein we 

TABLE 4 
Summary of data availability

Location Coordinates Date
Number of 
Days Available

Percentage of 
Availability

Greenland 67.0°N, 50.9°W 01-2018 to 05-2018 146 97%

Alaska 65.1°N, 147.4°W 01-2018 to 10-2018 238 78%

South Korea 37.4°N, 126.9°E 05-2018 to 07-2018 50 54%

Puerto Rico 18.3°N, 66.8°W 01-2018 to 12-2018 321 88%

Chile 30.1°S, 71.1°W 01-2017 to 07-2017 65 31%
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suspected that a poor phase disturbance detection in SVM-RBF SVM may lead to 
undetected anomalies. 

Table 5 also demonstrates the capability of the random-forest algorithm on sat-
ellite oscillator anomaly detection. On average, 30–50 satellite oscillator anomaly 
events are detected by each station daily. The Alaska station has the highest aver-
age number of observations (49.6/day) and Puerto Rico and Chile have the lowest 
average number of observations (34.3/day). It should be noted that Table 3 shows 
that the TPRs of SVM-RBF SVM and the random-forest method are ~76% and 
~95%, respectively, which shows ~20% difference on true positive rate (detection 
rate). However, as shown in Table 5, the number of detected events of random for-
est is ~10 times larger than the one of SVM-RBF SVM. The reasons that cause this 
discrepancy are as follows: To ensure a fair comparison in performance evaluation, 
the same data set (the data set with samples that are 30-second chunks) is used for 
the random-forest method and SVM-RBF SVM. This yields the TPRs in Table 3. 
In the detection results, the classifier in the first stage of SVM-RBF SVM is inherited 
from Jiao et al. (2017a) so the classifier is not re-trained as what we did in the perfor-
mance evaluation. It was designed to detect scintillation and missed a large number 
of small satellite oscillator anomalies. As a result, the detection results of SVM-RBF 
SVM show a significantly smaller number of detected anomalies compared to the 
random-forest method, which are consistent with the numbers shown in Table 5 in 
Liu and Morton (2020b).

In the detection results, ~35 anomalies are detected from stations in South Korea 
and Chile per day. It should be noted that the data from these two stations are not 
used for training the detection method. This demonstrates that the detection method 
is generally applicable to stations at locations that were not included in the training. 

In total, ~32,000 satellite oscillator anomalies are detected by the random-forest 
algorithm. In comparison, only 317 receiver oscillator anomalies are detected. To 
verify that the events detected by the random-forest algorithm are genuine sat-
ellite oscillator anomalies, 200 events were randomly selected from the detected 
anomalies and manually inspected. Among them, only three events were false pos-
itives, indicating a PPV of 98.5%. This PPV roughly matches the PPV (97.7%) of the 
random-forest method for dual-frequency signals in Table 3, indicating that the 
random-forest algorithm works as expected. 

The comparison of the distributions of maximum phase deviation at L1 is shown 
in Figure 6, where the curves are obtained by the distribution fit to the histograms. 
The plot shows that the random-forest distribution shifts to the left of the SVM-RBF 
SVM distribution. This indicates that the random-forest algorithm detected many 
anomalies with smaller maximum phase deviations that are missed by SVM-RBF 

TABLE 5 
Comparison of station-wise statistics of detected satellite oscillator anomaly events on GPS Block 
IIRM and Block IIF satellites

Station 
Location

Number 
of Days 
Available

Number of Detected 
Oscillator Anomaly Average Number Per Day

SVM-RBF 
SVM

Random 
Forest

SVM-RBF 
SVM

Random 
Forest

Greenland 146 306 5,332 2.1 36.6

Alaska 238 821 11,726 3.4 49.6

South Korea 50 99 1,941 2.0 38.9

Puerto Rico 321 784 10,793 2.4 34.3

Chile 65 113 2,231 1.7 34.3



LIU and MORTON

SVM. Figure 6 also shows that the most events detected by the random-forest method 
have a L1 maximum phase deviation below 0.4 cycles, although it also detects a few 
events that have larger L1 maximum phase deviations (above 0.4 cycles). In total, the 
random-forest method detects 32 large anomaly events, with 13, 12, 4, and 3 events 
from PRN 1, PRN 6, PRN 10, and PRN 26, respectively. 

As mentioned in Section 2.3, a detected satellite oscillator anomaly event can be 
further confirmed if it is simultaneously observed by multiple stations. It should 
be noted that each anomaly event is independently detected by the random-forest 
method. If multiple detected anomaly events from the same satellite are simultane-
ously observed at different stations, they correspond to the same satellite oscillator 
anomaly. We process these detected events by grouping the events that correspond 
to the same satellite oscillator anomaly. 

The results are shown in Table 6. There are 5,385 anomalies observed by two sta-
tions, 1,085 anomalies observed by three stations, and 5 anomalies that are simul-
taneously observed by four stations. 

One example of an anomaly observed by four stations is shown in Figure 7. 
Although different noises are present, the four stations show the same shape 

FIGURE 6 Comparison of the distributions of L1 maximum phase deviation between 
random forest and SVM-RBF SVM. The curves above are obtained by the distribution fit to the 
histograms 

TABLE 6 
Satellite Oscillator Anomalies Observed by Multiple Stations in 2018. Stations include Greenland, 
Alaska, South Korea, and Puerto Rico. 

Number of Anomalies Number of Detected Events

Observed by Two Stations 5,385 2 × 5,385

Observed by Three Stations 1,085 3 × 1,085

Observed by Four Stations 5 4 × 5

All 6,475 14,045
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of the anomaly at the same time, confirming that the detected event is indeed a 
satellite oscillator anomaly, which again demonstrates the effectiveness of the 
random-forest method on satellite oscillator anomaly detection. 

A histogram for each satellite’s average oscillator anomaly observations per vis-
ible day per station is shown in Figure 8. Here, a visible day refers to a 24-hour 
period during which the corresponding satellite is in view with elevation above 
30 degrees at a station. Red PRN numbers refer to GPS Block IIRM and blue PRN 
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FIGURE 7 A satellite oscillator anomaly that is simultaneously observed by four stations 
(Alaska, South Korea, Greenland, and Puerto Rico). The anomaly occurred at 6:39 AM, on May 
23, 2018 UTC for PRN 10, which is over Pacific Ocean, close to the US coast at that time

FIGURE 8 Satellite-wise average number of detected satellite oscillator anomaly events 
per visible day at each station. PRNs are sorted by launch time (PRN 17 is the oldest satellite). 
Red PRN numbers refer to GPS Block IIRM and blue PRN numbers refer to GPS Block IIF. The 
anomalies are detected by the random-forest algorithm.
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numbers refer to GPS Block IIF. The PRNs are sorted by launch time (PRN 17 is 
the oldest satellite). 

It is apparent that most satellite oscillator anomaly events are from Block IIF 
satellites. In particular, the largest average number of events is observed in Alaska 
for PRN 10. On average, most Block IIF satellites show approximately 8–36 events 
per visible day per station. The exceptions are PRN 8 and PRN 24, where very few 
anomaly events were observed. We should note here that currently PRN 8 and PRN 
24 use Cesium clocks while the rest of the PRNs in Block IIF use Rubidium clocks 
(Yang et al., 2019). 

In contrast to Block IIF, all Block IIRM satellites observe very few anomaly 
events. Finally, the average number of anomalies per visible day does not increase 
with the age of the satellite, indicating that the aging factor does not have a clear 
correlation with the occurrence of anomalies. 

The time series of satellite oscillator anomaly daily occurrence is also investi-
gated. Figure 9 shows the oscillator anomaly daily occurrence over Greenland from 
PRN 1 and 10. Random daily occurrence patterns are observed from both satellites. 
This indicates no periodic pattern is observed from detected oscillator anomaly 
events.

FIGURE 9 Satellite oscillator anomaly daily occurrence over Greenland. a) PRN 1; 
b) PRN 10. The anomalies are detected by the random-forest method.
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In short, the random-forest method outperforms SVM-RBF SVM and shows its 
capability of automatically monitoring satellite oscillator anomaly events. 

5  CONCLUSION AND FUTURE WORK

This paper demonstrates a machine-learning-based satellite oscillator anomaly 
detection method. It is based on a random-forest algorithm that uses input fea-
tures containing the detrended carrier phase PSD and phase disturbance ratios 
from two carriers. The detection accuracies are 98.4% and 99.0% for dual- and 
triple-frequency signals, respectively. 

The method outperforms linear SVM, logistic regression, decision tree, neural 
network, and RBF SVM. Compared to the state-of-the-art method SVM-RBF SVM, 
it not only simplifies the detection process but also shows better performance. 
Preliminary detection results demonstrate that the random-forest-based method 
can be employed in a global satellite oscillator anomaly monitoring system. The 
detection method also identifies ionospheric scintillation accurately, indicating 
that the method can also be applied to monitor scintillation. 

The accurate detection performance shows the potential to apply this method 
in a global satellite oscillator anomaly monitoring system. In the future, the detec-
tion method will be applied to the data collected by our global GNSS monitor-
ing network. A comprehensive global characterization of the satellite oscillator 
anomalies will be investigated. A series of explorations including the occur-
rence pattern and the behavior for different GPS satellites will be conducted. In 
addition, limited availability of the high rate (100 Hz) GPS receivers may pro-
hibit a comprehensive global characterization. In the future, an investigation of 
whether low-rate GNSS receivers (1 Hz) from a public GNSS network is capable 
of detecting satellite oscillator anomalies by using the proposed method will be 
conducted. Finally, the current detection method has limitations on detecting 
satellite oscillator anomalies outside the frequency range from 0.1 Hz to 2 Hz 
due to the feature extraction design. The extension of satellite oscillator anomaly 
detection to higher frequencies will be conducted, which will also involve inter-
ference detection. 
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