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O R I G I N A L  A R T I C L E

Robust GPS-Vision Localization via Integrity-Driven 
Landmark Attention

Sriramya Bhamidipati  Grace Gao

1  INTRODUCTION

Sensor fusion, a widely-implemented framework for urban navigation, combines 
measurements from complementary sensors, such as GPS and vision, to address 
the limitations of individual contributors. These limitations induce time-varying 
bias in GPS and vision data that are termed measurement faults. For instance, 
GPS signals may be blocked or reflected by surrounding infrastructure, such as 
tall buildings and thick foliage, which significantly degrades the satellite visibility 
and induces a multipath effect in the received measurements (Zhu et al., 2018). In 
contrast, while visual odometry performs well in urban areas due to feature-rich 
surroundings, it suffers from data association errors due to similarities in building 
infrastructure, dynamic occlusions, and illumination variations (Gil et al., 2006). 
Furthermore, urban areas are susceptible to multiple measurement faults.

Recently, integrity is emerging as an important safety metric to assess urban 
navigation performance. Integrity is defined as the measure of trust that can be 
placed in the correctness of the computed position estimate (Tossaint et al., 2007). 
In particular, the measures of integrity that are of interest to us include position 
error bounds and system availability. The position error bound guarantees that the 
probability of absolute position error exceeding a certain value is smaller than or 
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Abstract
For robust GPS-vision navigation in urban areas, we propose an integrity-driven 
landmark attention (ILA) technique via stochastic reachability. Inspired by cog-
nitive attention in humans, we perform convex optimization to select a subset of 
landmarks from GPS and vision measurements that maximizes integrity-driven 
performance. Given known measurement error bounds in non-faulty condi-
tions, our ILA technique follows a unified approach to address both GPS and 
vision faults and is compatible with any off-the-shelf estimator. We analyze mea-
surement deviation to estimate the stochastic reachable set of positions asso-
ciated with each landmark, which is parameterized via probabilistic zonotope 
(p-zonotope). We apply set union to formulate a p-zonotopic cost that represents 
the size of position bounds based on landmark inclusion/exclusion. We jointly 
minimize the p-zonotopic cost and maximize the number of landmarks via con-
vex relaxation. For an urban data set, we demonstrate improved localization 
accuracy and robust predicted availability for a pre-defined risk and alert limit.
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equal to the pre-defined risk (Ochieng et al., 2003). The term position error bound 
is analogous to protection level, which is commonly used in the GNSS community 
as an integrity metric. The alert limit (AL) is the maximum tolerable position error 
beyond which the system is to be declared unavailable.

Traditionally, integrity is developed for GPS receivers operating in the avia-
tion sector (Tossaint et al., 2007; Ochieng et al., 2003). These techniques utilize 
the redundancy in number of GPS signals available under open-sky conditions to 
mitigate signal-in-space (SIS) anomalies in satellite broadcast navigation messages 
(Misra & Enge, 2006). However, given the presence of multiple measurement faults, 
which are time-varying, applying integrity to sensor-fusion-based urban navigation 
is not straightforward (Joerger & Spenko, 2017). This is because in urban areas, 
there exists major challenges to addressing multiple measurement faults in both 
GPS and vision, which are summarized as follows:

•	 Given the availability of a large number of measurements (from GPS and vision) 
and the potential for multiple faults, evaluating all multi-fault hypotheses to 
perform fault detection and exclusion (FDE) leads to a combinatorial explosion 
(Woeginger, 2003), and is therefore, impractical to solve. For instance, with 30 
available measurements, the number of multi-fault hypotheses to be evaluated 
already equals 30! ≈ 1e32, where the symbol ! denotes factorial. In reality, the 
number of measurements in GPS-vision localization is even higher (in the 
order of hundreds or thousands).

•	 The measurement fault distributions are unknown, unbounded, multi-
modal, and time-varying. Therefore, approximating the measurement faults 
by known distributions (Larson et al., 2019; Raboui et al., 2011; Gaussian-
Pareto, Rayleigh, mixture model, etc.) is not reliable enough for safety-critical 
applications. The need for tailored FDE approaches for each sensor, in this 
case GPS and vision, further limits their practical applicability.

•	 While FDE is important, exclusion solely based on the analysis in the 
measurement domain may lead to poor dilution of precision (DOP) and 
thereby, degrade accuracy in the position domain (Won et al., 2014).

1.1  Related Work

A few FDE approaches have been explored in the literature for addressing mea-
surement faults in urban areas. We divide the relevant literature into four broad 
categories as follows: a) FDE approaches for GNSS-only setup; b) FDE approaches 
for GNSS faults via aid from external sensors; c) FDE approaches for multiple fault 
modalities in sensor fusion; and d) feature selection techniques.

1.1.1  FDE Approaches for GNSS-only Setup

Prior works (Bhamidipati & Gao, 2018; Zhu et al., 2018; Ziebold et al., 2017) 
combined the global test, which is based on the normalized sum of squared mea-
surement residuals, and the local test, which leverages the normalized measure-
ment residuals of each satellite independently, to perform fault detection and fault 
exclusion, respectively. The authors of the Bayesian receiver autonomous integrity 
monitoring (RAIM) approach (Zhang & Gui, 2015) represented each GNSS satellite 
by a classification variable that indicated its faulty/non-faulty status, and thereaf-
ter, evaluated the posterior probabilities of the classification variable using Gibbs’ 



    BHAMIDIPATI and GAO

sampler. In the particle RAIM approach (Gupta & Gao, 2019), the authors utilized 
a particle filter to formulate the multi-modal probability distribution over the posi-
tion and updated the associated particle weights using a traditional residual-based 
RAIM (Angus, 2006; Joerger et al., 2014). However, these approaches approxi-
mated the GNSS faults with known distributions such as Gaussian and mixture 
model, thereby limiting the urban navigation performance.

Schroth et al. (2008) developed a range consensus approach that computed 
the position estimate from a subset of four satellites, and thereafter evaluated 
the pseudorange residuals of the GNSS satellites that did not contribute to this 
solution. The subset with the most inliers (i.e., the pseudorange residuals below 
a certain threshold) was consequently utilized for the detection of faulty GNSS 
measurements. Similarly, based on the fact that non-faulty measurements are 
consistent with each other and the faulty ones are inconsistent, Hsu et al. (2017) 
performed FDE by formulating this consistency check as a greedy optimization 
problem that minimized the weighted sum of squared pseudorange residuals. A 
major limitation of these works is that their FDE analysis was executed in the 
measurement domain, and therefore did not guarantee the localization perfor-
mance, which depends on the position error bound associated with the measure-
ments detected as non-faulty.

Another line of work (Zhang et al., 2017) addressed an interesting perspec-
tive that, given the restricted satellite geometry in urban areas, the influence of 
excluding a faulty satellite (which is detected via traditional residual-based RAIM 
[Angus,  2006; Joerger et al., 2014]), would be greater than the fault itself. The 
authors developed an exclusion accuracy filter that compared the position esti-
mates before and after exclusion to analyze the trade-off between the effect of fault 
magnitude and the influence of exclusion on the resulting DOP. However, this 
work is only designed to analyze the inclusion/exclusion of single faults at a time, 
and is therefore not scalable with an increase in the number of available measure-
ments (e.g., GPS-vision sensor fusion) and multiple measurement faults.

In Kaddour et al. (2015), the authors performed FDE by projecting the GNSS 
pseudoranges from the measurement space to the information space of a Kalman 
filter. This work performed fault exclusion by projecting the measurements into the 
position domain, and thereafter, clustering the ones most likely to be non-faulty. 
However, clustering point-valued estimates in the presence of multiple measure-
ment faults is quite challenging, and this work did not provide performance guar-
antees of their FDE technique.

In addition, there exists a plethora of FDE research (Joerger & Spenko, 2017; 
Zhu  et al., 2018) on line-of-sight (LOS)/non-line-of-sight (NLOS) classifications 
that include dual-polarization antennae, code discriminator design, carrier-to-noise 
density-based weighting models, and so on.

1.1.2  FDE Approaches for GNSS Faults via Aiding  
from External Sensors

Some existing works rely on external information sources to perform FDE for 
GNSS measurements in urban areas. Prior work (Binjammez et al., 2013) devel-
oped three phases of integrity checks that included assessing the position quality 
via traditional RAIM (Angus, 2006; Joerger et al., 2014), speed integrity via GPS 
Doppler, and map-matching accuracy via fuzzy inference systems. Another work 
(Zhang et al., 2018) developed a multipath detection algorithm that utilized a ref-
erence 3D map to predict and exclude the multipath signals using ray-tracing, and 
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thereafter, performed sensitivity analysis to estimate the confidence level of the 
estimated multipath prediction. However, these approaches have practical limita-
tions because the offline map database was not always available, and its accuracy 
could not be guaranteed due to the dynamic changes in the urban surroundings.

In Ghinamo et al. (2010), the authors performed FDE via additional information 
provided by the Public Land Mobile Network (PLMN). In particular, the pseudo-
range residuals were formulated using the coarse position estimate obtained by 
analyzing the received signal power from the known cell tower locations in the 
PLMN database. However, this framework required access to additional infrastruc-
ture. Furthermore, this framework required unobstructed LOS signals from a suf-
ficient number of cell towers, which is challenging in an urban setting given the 
surrounding tall buildings.

Shytermeja et al. (2014) utilized a fish-eye camera for isolating GPS faults with 
an assumption that the faults in vision were negligible. However, this approach 
did not account for the faults in fish-eye cameras that occur due to urban artifacts. 
Other research (El-Mowafy & Kubo, 2017; Li et al., 2017) performed FDE by uti-
lizing odometry data from other sensors, such as inertial measurement units and 
speedometers.

1.1.3  FDE Approaches for Multiple Fault Modalities  
in Sensor Fusion

Prior works (Al Hage et al., 2018, 2020) utilized an information filter for GNSS/
INS data fusion and thereby assessed the Kullback-Leibler (KL) divergence 
between the predicted and updated distributions for fault detection. Other works 
(Maaref & Kassas, 2019; Maaref et al., 2020) fused terrestrial signals of opportu-
nity (SOPs) with GPS signals to improve redundancy, and thereby performed FDE 
across GPS and SOP measurements using the traditional residual-based test sta-
tistic that considered the distribution to be centered chi-square in the absence of 
faults and non-centered chi-square otherwise.

Tmazirte et al. (2012) developed a distributed information filter for a multi-sensor 
framework, wherein faults were detected by examining the consistency through a 
log-likelihood ratio of the measurement residuals using a mutual information con-
cept. However, the main drawback of these FDE approaches is that they modeled 
the measurement faults as Gaussian distributions, and are thus, not suitable for 
GPS-vision sensor fusion.

While research on GPS-vision navigation (Heredia et al., 2009; Shepard & 
Humphreys, 2014) is gaining momentum in recent times, to the best of our knowl-
edge, there is only limited literature on FDE that accounts for multiple sensor fault 
modalities. Mohanty et al. (2020) proposed a GPS-vision sensor fusion via particle 
filter that accounted for vision faults by deriving a distribution of positions from 
camera images using map matching, and thereafter, formulated a KL-divergence 
metric to assess the consistency of GPS and vision measurements. However, ana-
lyzing vision faults requires access to a reference map database, and therefore, the 
reliability of this approach depends on the quality and accuracy of the map con-
sidered. In our prior works (Bhamidipati & Gao, 2019, 2020a), we performed FDE 
using analysis of temporal correlation across GPS measurement residuals and spa-
tial correlation across vision intensity residuals. While these methodologies tackled 
both GPS and vision faults, the FDE analysis was conducted in the measurement 
domain, and moreover, separate FDE approaches are still to be designed for GPS 
and vision.
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1.1.4  Feature Selection Techniques

The algorithm developed in Lerner et al. (2007) constructed a requirement matrix 
that pre-defined the relative importance of each state (based on the navigation 
task), and thereafter searched for the subset of the minimum required measure-
ments that collectively minimized the size of state covariance matrix. A prior work 
(Mousavi & Motee, 2020) developed a randomized algorithm for visual feature 
selection over a fixed-length moving time horizon by associating a sampling prob-
ability to each candidate feature, randomly sampling a subset of features according 
to these probabilities for a number of independent experiments, and selecting the 
outcome with the best estimation quality.

Considering the availability of only limited computational resources, 
Carlone and Karaman (2017) retained the most relevant visual cues that max-
imized the performance of visual-inertial navigation using a greedy optimiza-
tion objective. While these optimization algorithms demonstrate satisfactory 
performance in their convergence, the cost function is only based on the state 
covariance that does not account for multiple measurement faults (non-zero 
bias) in urban areas. 

In Joerger et al. (2017), the authors developed a multiple-hypothesis 
innovation-based data association for lidar-based navigation to select land-
mark data and detect unwanted obstacles. This was achieved by deriving a 
lower-bound on the mean innovation vector, which is used in the integrity risk 
equation to quantify the probability of correct association. While this analysis 
is one of the few prior works that account for measurement faults and integrity 
measures in their feature selection, their work is explicitly designed for detecting 
the data association errors in light detection and ranging (LiDAR) point-clouds 
across consecutive times and is therefore, not generalizable to a sensor-fusion 
framework. Another limitation is that they perform multiple-hypotheses solu-
tion separation for detecting unwanted obstacles that leads to computational 
intractability when a large number of measurements are considered (such as 
GPS and vision).

To address the earlier-described challenges of GPS-vision localization in urban 
areas and the gaps in existing literature, we formulate the following three research 
objectives for this work: a) to select a desirable subset of measurements from 
the available GPS and vision data that minimizes the position error bound; b) to 
design a unified approach that accounts for multiple faults in GPS and vision while 
ensuring computational tractability; and c) to predict integrity-driven measures of 
expected navigation performance for the measurement subset.

1.2  Overview and Key Features of the Proposed Work: 
Integrity-Driven Landmark Attention

Our current work is inspired by the cognitive processes in humans (Torralba 
et al., 2006). A human brain can seamlessly process large amounts of sensory cues, 
such as visual, auditory, olfactory, haptic, and environmental stimuli, to ensure 
robust navigation (Caduff & Timpf, 2008). For instance, to navigate from Point A to 
Point B, our brain focuses on distinctive features, such as street names, stop signs, 
lane markings, building facade(s), etc. Furthermore, our brain ignores other cues 
like clouds, dry leaves, malfunctioning road signs, and accessories of other people. 
Therefore, humans navigate by giving attention to certain aspects in the surround-
ings, while filtering out the irrelevant or faulty ones.
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We propose an integrity-driven landmark attention (ILA) technique for 
GPS-vision navigation in urban areas. This work is based on our ION GNSS+ 
2020 conference paper (Bhamidipati & Gao, 2020b). We define two terms: land-
mark and attention. Landmarks are the 3D features in urban surroundings that 
are used for navigation (Lerner et al., 2007). We consider two types of landmarks: 
GPS satellites, whose locations are known and calculated from broadcast ephem-
eris (Misra & Enge, 2006) and 3D visual features in urban infrastructure, whose 
locations are unknown and need to be triangulated via techniques such as simul-
taneous localization and mapping (SLAM; Cadena et al., 2016). Attention is the 
process of parsing a large number of measurements from GPS and vision to select 
landmarks that maximize the integrity-driven navigation performance in urban 
areas while ensuring computational tractability.

Figure 1 provides an intuitive understanding of maximizing integrity-driven 
navigation performance given the available landmarks. The subset of landmarks 
selected for localization in Figure 1(a) includes a high measurement fault mag-
nitude and poor DOP. This causes the estimated position error bound based on 
a pre-defined risk to violate the pre-defined AL, and therefore, system is unavail-
able. In contrast, Figure 1(b) shows a desirable subset of landmarks that exclude 
the faults necessary to minimize the position error bound, thereby ensuring 

�(a) 

�(b) 

FIGURE 1 Maximizing integrity-driven navigation performance 
by varying the selected landmarks as follows: (a) unavailable, as AL is 
violated; and (b) unavailable, as AL is satisfied. The blue translucent 
circle denotes the AL, which is pre-defined for a particular navigation 
task. The diamonds denote landmarks, and their measurement quality 
is indicated by the Parula colormap (Nunez et al., 2018) that ranges 
from blue to yellow, with blue representing low fault magnitude and 
yellow representing high faults.
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compliance with the pre-defined AL. Our proposed ILA technique is referred to as 
integrity-driven because we compute the landmark subset that minimizes the posi-
tion error bound for a pre-defined risk, wherein position error bound is analogous 
to an integrity measure called protection level that was described earlier.

Analyzing the position error bound accounts for multiple measurement faults 
in GPS and vision while ensuring statistical guarantees on the expected local-
ization accuracy in urban areas. Note that the proposed ILA technique empha-
sizes the notion of integrity-driven FDE and therefore does not perform integrity 
monitoring in the traditional sense that was developed for aviation-grade GNSS 
receivers (Ochieng et al., 2003; Tossaint et al., 2007). Nevertheless, this proposed 
work draws multiple parallels with the various integrity measures commonly 
used in the GNSS community, such as protection levels, integrity risk, and system 
availability which were described earlier.

Compared to the existing integrity works (Joerger et al., 2014; Ochieng et al., 
2003; Tossaint et al., 2007) that utilize probabilistic analysis, the formulation of 
position error bound in the proposed ILA technique is inspired by a set-valued 
approach known as stochastic reachability (SR; Althoff et al., 2009). SR, which is 
designed for stochastic processes, has been widely used in robotics for applications 
such as path planning and collision avoidance, but has not been applied to the field 
of fault resilience for sensor fusion.

As seen in Figure 2, SR computes a set of stochastic reachable states given an 
initial stochastic set of states, and the known stochastic sets of system disturbances 
and measurement errors. In this context, as seen in Figure 2, each state in the sto-
chastic reachable set is associated with a stochastic measure that indicates the like-
lihood of its occurrence. In our proposed work, we represent the system states as 
a stochastic reachable set, and thereafter estimate its size to compute the position 
error bound for a pre-defined risk.

The three key features of the proposed ILA technique that are designed to meet 
the research objectives listed earlier at the end of Section 1.1 are a) adaptive mea-
surement error bounds via probabilistic zonotopes (p-zonotopes); b) optimization 
framework; and c) SR-based cost function using p-zonotopes.

1.2.1  Adaptive Measurement Error Bounds via P-Zonotopes

Compared to the prior work discussed in Section  1.1 that approximates the 
unknown and multi-modal measurement faults via known distributions, the pro-
posed ILA technique only requires the known measurement error bounds of GPS 

FIGURE 2 Illustration of SR that computes a final set of stochastic reachable set of 
2D positions given an initial stochastic set and known error bounds, where blue represents 
the state with low likely occurrence and yellow indicates high likelihood.
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and vision landmarks in non-faulty conditions. Our SR-based ILA technique fol-
lows a unified set representation known as a p-zonotope to account for GPS and 
vision faults, and therefore does not require separate FDE approaches for each 
sensor. A p-zonotope is an enclosing probabilistic hull of all possible probability 
density functions (Althoff et al., 2009). A p-zonotope can enclose a variety of distri-
butions such as mixture models, distributions with uncertain or time-dependent 
means, and non-Gaussian or unknown distributions. More details regarding the 
properties of p-zonotopes and their mathematical notations are given later in 
Figure 3 and Section 2.

Among the existing set representations (Althoff & Dolan, 2014; zonotopes, ellip-
soids, polytopes, etc.) and well-studied probabilistic distributions (Larson et  al., 
2019; Raboui et al., 2011; Gaussian-Pareto, Gaussian mixture model, etc.), we 
choose one-dimensional (1D) p-zonotopes to independently represent the mea-
surement error bounds of each landmark (among GPS and vision). This is because 
p-zonotopes can efficiently enclose the measurement errors of GPS and vision in 
non-faulty conditions irrespective of the nature of their distribution.

Utilizing these p-zonotopes of measurement errors in non-faulty conditions (i.e., 
known measurement error bounds), the proposed ILA independently analyzes 
the deviation of the most recent history of measurement residuals at each land-
mark to adaptively scale the error bounds at each time iteration. Therefore, the 
proposed ILA technique utilizes SR formulation to account for the measurement 
faults (biases in measurements caused by urban artifacts). We pre-compute the 1D 
p-zonotopes of measurement error bounds in non-faulty conditions during initial-
ization, which is explained later in Section 4.2.

1.2.2  Optimization Framework

To maximize the integrity-driven navigation performance of GPS-vision local-
ization, we formulated an optimization framework that estimates a binary deci-
sion for each landmark indicating whether it is to be included or excluded during 
localization. Our optimization objective jointly maximizes the number of land-
marks to be included while minimizing the SR-based position error bound. 

Mathematically, we represent inclusion of a landmark by a binary value of 1 
and exclusion by 0. Our ILA technique works with any off-the-shelf GPS-vision 
estimator, and is thus, modular and add-on in nature. Details regarding the 
off-the-shelf GPS-vision estimator used to validate our ILA technique are given 
later in Section 4.1.

1.2.3  SR-Based Cost Function using P-Zonotopes

We designed an SR-based cost function for the optimization framework by 
parameterizing the stochastic reachable set of system states via p-zonotopes. As 
discussed in Section 1.1, the cost functions of existing feature selection techniques 
require computing the inverse of the state covariance matrix for each landmark. 
In contrast, our SR-based cost, termed p-zonotopic cost, leverages set properties 
(Althoff et al., 2009), such as Minkowski sums, unions, and convex hulls, to enable 
computationally tractable operations.

By using p-zonotopes to formulate our cost, we not only estimate a desirable sub-
set of landmarks, but also a predicted measure of integrity termed as system avail-
ability for a pre-defined AL. We mention the term predicted because the proposed 
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ILA technique provides a conservative estimate of system availability expected 
when its estimated subset of landmarks are used for localization (valid for any 
off-the-shelf GPS-vision estimator). Note that the exact system availability depends 
on the specifics of the off-the-shelf estimator and, thus, estimating this metric is 
beyond the scope of the current work.

For a pre-defined risk, the proposed ILA technique provides a conservative 
(or predicted) estimate of the position error bound by evaluating our cost func-
tion at the estimated subset of landmarks. If the predicted position error bound 
is within the predefined AL, the system is predicted to be available when the 
off-the-shelf GPS-vision estimator utilizes the estimated landmark subset for 
localization.

1.3  Key Contributions

The main contributions of this paper are listed as follows:

1.	 Landmark Attention via Optimization: We designed an optimization 
framework to select a desirable subset of landmarks from among available 
GPS and vision. We maximized the integrity-driven performance of GPS-
vision localization in urban areas by formulating a total cost that jointly 
maximized the number of included (or selected) landmarks while minimizing 
the associated position error bound.

2.	 P-zonotopic Cost via SR: Parameterizing the known measurement error 
bounds of landmarks in non-faulty conditions using p-zonotopes (Althoff et al., 
2009), we adaptively scaled these bounds based on a history of measurement 
residuals. By utilizing the set properties of SR, we computed the stochastic 
reachable set of expected states for each landmark via p-zonotopes (Althoff 
et al., 2009). We designed the p-zonotopic cost, which represents the position 
error bound, as a union function across landmarks, wherein each landmark 
was associated with a binary variable that indicated its inclusion or exclusion.

3.	 Optimization via Convex Relaxation: We formulated a convex optimization 
problem (Boyd & Vandenberghe, 2004) by relaxing the constraints on each 
landmark such that they layed in a continuous domain between [0, 1] instead 
of binary domain {0, 1}. We derived the sub-optimality gap that evaluated 
the convergence performance of convex relaxation. We also evaluated the 
p-zonotopic cost using the estimated desirable subset of landmarks to predict 
the system availability for a pre-defined risk and AL.

4.	 Experimental Validation: We have validated the performance of the proposed 
ILA technique on an urban sequence from a monocular visual odometry data set 
(Engel et al., 2016) that is combined with simulated GPS data. In the presence 
of multiple GPS and vision faults, the proposed ILA technique demonstrated an 
improved localization accuracy compared to the existing methods on landmark 
selection and FDE. For a quantitative analysis, we have also computed a robust 
measure of the predicted system availability across different pre-defined values 
of risk and AL.

The rest of the paper is organized as follows: Section 2 describes the prelimi-
naries of SR and p-zonotopes; Section  3 describes the proposed ILA technique; 
Section  4 experimentally demonstrates the improved localization accuracy and 
robust measure of predicted system availability; and Section 5 concludes the paper.
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2  PRELIMINARIES OF SR AND P-ZONOTOPES

A p-zonotope, as mentioned earlier in Section 1.2, is an enclosing probabilistic hull 
of all possible probability density functions (Althoff et al., 2009) that can enclose 
a variety of distributions such as mixture models, distributions with uncertain or 
time-dependent mean, and non-Gaussian or unknown distributions. A p-zonotope 
L,  as seen in Equation (1) and Figure 3(a), is characterized by three parameters 
(Althoff et al., 2009), namely: (a) the mean of its center, denoted by c∈�n ;  (b) the 
uncertainty in the center, represented by the generator matrix � ;G n e

∈
×�  and (c) 

the over-bounding covariance of the Gaussian tails, denoted by Σ∈ ×�n n:

				    L = ( , , )c G Σ � (1)

Intuitively, a p-zonotope with a certain center mean (i.e., zero center uncertainty 
G = 0), represents a Gaussian distribution that overbounds multiple probability 
density functions (PDFs) with the same center mean c. This is represented by Z  
in Equation (2):

		  Z N= ∈ = + =


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where {·} denotes the set representation and n i li � { , , }∀ ∈ 1�  denotes pairwise inde-
pendent Gaussian distributed random variables. gi n

∈�  denotes the associated 
generator vectors of Z, such that G g gl= [ , , ]1�  with [ , ]⋅ ⋅  as the horizontal con-
catenation operator. Note that, the covariance Σ of a p-zonotope defined earlier in 
Equation (1) is equivalent to Σ =GG� .

Similarly, a p-zonotope with zero covariance Σ = 0 simplifies to a zonotope 
(Althoff & Dolan, 2014) that encompasses all possible values of the center with 
the generator matrix of Z as  G g ge= [ , , ],1�  where g i ei n

∈ ∀ ∈� �� { , , }1  denotes 
the associated generator vectors. This case is mathematically represented by Z in 
Equation (3):
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where βi i e� { , , }∀ ∈ 1�  denotes independent random numbers. Note that the 
parameter G defined in Equations (1) and (3) is not the same as G  defined in 
Equation (2).

The p-zonotope is a combination of two sets Z0 0= ( , )G  and Z G= 〈 〉c, , 
such that L Z �= 0 Z,  where �  is a set-addition operator. In other words, 
L ZZ= ∈{ }sup f Z

0 0E[ ] ,  where fZ0
is the probability density function (PDF) of 

the distributions represented by Z0  and E[ ]⋅  denotes the expectation operator. 
From Equations (1)–(3), note that L  depends on both G and G. Additionally, note 
that unlike a PDF, the area enclosed by a p-zonotope does not equal one. The illus-
trations of 1D and 2D p-zonotopes are shown in Figures 3(a) and 3(b), respectively. 
More details regarding the characteristics of zonotopes and p-zonotopes can be 
found in the prior literature (Althoff et al., 2009).

To perform set operations on stochastic reachable sets using p-zonotopes, we 
require six important properties (Althoff et al., 2009; Le Guernic & Girard, 2010):

•	 Minkowski sum of addition: The addition of two p-zonotopes 
L1 1 1 1= ( )c , ,G Σ  and L2 2 2 2= ( )c , ,G Σ  is given by:
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	 L L L L1 2 1 2 1 1 2 2 1 2 1 2 1 2⊕ = + ∈ ∈{ } = + 





+( ) x x x x c c, , , ,G G Σ Σ � (4a)

where ⊕  is known as Minkowski sum operator.
•	 Linear map: Given a matrix A n n

∈
×�  and a p-zonotope L = ( , , ),c G Σ

			   A Ax A AG A AL L �
= ∈{ } =� � ( , , )|x c Σ � (4b)

•	 Translation: Given a vector µ∈�n  and a p-zonotope L = ( , , ),c G Σ

				    µ µ+ = +L ( , , )c G Σ � (4c)

•	 Union:  L L L L1 2 1 2 1 1 2 21 0 1∪ = + − ∈ ∈ ≤ ≤{ }κ κ κx x x x( ) , � �where � (4d)

•	 Intersection:  L L L L1 2 1 2∩ = ∈ ∈{ }x x x, � (4e)

•	 γ-confidence: For �L Z �= 0 Z  with Z0 0= ( ),G  and Z G= 〈 〉c, ,  transforming 
a p-zonotope L  to a confidence zonotope, which is denoted by � ,ZL  is given 
by:

				    Z Z GL �= 〈 〉0,γ � (4f)

where γ denotes the pre-defined parameter that thresholds the tail of a 
p-zonotope. This property is used in the proposed ILA technique to estimate the 

size of the p-zonotope for a given γ. Note that P − ≤ ≤[ ] =










γ γ
γ

N ( , )0 1
2

erf  is 

well known, where erf denotes the error function (Oldham et al., 2009). Given l 

probabilistic generators in G, the probability of lying outside the γ-confidence 

set is pR l
= −1

2
2erf( ) .γ  We consider this value pR  to be analogous to the 

term risk that is commonly used in the GNSS community as an integrity metric 

(Misra & Enge, 2006). As an example, for a pre-defined parameter γ = 3.5 and 
number of generators l = 2, the value of risk p eR =

−1 9 3. .

�(a) �(b)

FIGURE 3 Illustration of p-zonotopes: (a) shows an example of a 1D p-zonotope whose 
probability is indicated by the Parula colormap (Nunez et al., 2018) while (b) shows an example 
of a 2D p-zonotope and is indicated by the Parula colormap (Nunez et al., 2018).



BHAMIDIPATI and GAO    

3  PROPOSED ILA TECHNIQUE

The proposed ILA technique shown in Figure 4 consists of two modules: cost for-
mulation via SR and optimization via convex relaxation. We performed an offline 
empirical analysis to compute the measurement error bounds of GPS and vision 
under non-faulty conditions, which is explained later in Section 4.2. At each time 
iteration, the following steps were executed.

1.	 We considered measurements from GPS, vision, and a known motion model. 
We used the motion model input to facilitate global convergence of our ILA 
and to perform measurement fault analysis.

2.	 For each landmark, we independently analyzed the deviation of received 
measurements against their known error bounds to estimate the p-zonotope of 
expected states. Thereafter, we applied the set union property of p-zonotopes 
to compute an over-approximated p-zonotope of expected states that was a 
function of landmarks to be selected.

3.	 We jointly optimized the p-zonotopic cost, which represents the size of the 
over-approximated p-zonotope for a pre-defined risk, and the number of 
landmarks to be selected via convex relaxation, and then estimated a desirable 
subset of landmarks. Thereafter, given a pre-defined AL, we computed a 
predicted measure of system availability. Details regarding the need for over-
approximation in set unions and the size computation of a p-zonotope are 
explained later in Section 3.2.

4.	 The estimated desirable subset of landmarks using the proposed ILA technique 
are later given to any off-the-shelf GPS-vision estimator to perform localization. 
More details regarding the off-the-shelf estimator are given in Section 4.1.

Denoting the number of GPS landmarks by N and the number of vision land-
marks by L, we defined an attention set Q that consisted of binary variables to be 
estimated via convex optimization, such that Q q q q qN L

={ }gps gps vis vis
1 1, , , , , ,� �  where 

q i Ni
gps ∈ ∀ ∈{ , }� { , , }0 1 1�  and q j Lj

vis ∈ ∀ ∈{ , }� { , , }.0 1 1�

FIGURE 4 Architecture of the proposed ILA technique comprised of cost formulation via 
SR (Althoff et al., 2009) and optimization via convex relaxation (Boyd et al., 2004).
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As mentioned earlier, a binary value of one indicates that the landmark is 
included/selected and zero indicates it is excluded. Let’s consider the optimal solu-
tion of the attention set for this minimization problem as Q†. We formulated the 
total convex cost, as seen in Equation (5), by jointly minimizing the p-zonotopic 
cost and maximizing the number of landmarks to be selected. Furthermore, we 
defined inequality constraints to ensure that a sufficient number of landmarks 
were available for localization by the off-the-shelf GPS-vision estimator.

	 minimize
q q q q i

i
N j

j
LN L q qgps gps vis vis gps vis

1 1

1

1 1
, , , , ,� �

= =
∑ ∑+

















( )f q q q qN L
gps gps vis vis
1 1, , , , ,� � � (5)

subject to gps min

vis min

gps

�

�

� { , }� {

q N

q L

q i

i

i

N

j

j

L

i

=

=

∑

∑

>

>

∈ ∀ ∈

1

1

0 1 11

0 1 1

, , }

� { , }� { , , }

�

�

N

q j Lj
vis ∈ ∀ ∈

where f Q( )∈�  denotes the scalar p-zonotopic cost as a function of the attention 
set Q and is constructed to be convex later in Section 3.2. This p-zonotopic cost f  (Q) 
depends on the p-zonotope of expected states L( )Q  that represents the set union of 
landmarks to be included (or selected); Nmin and Lmin are the pre-defined constants 
that represent the minimum number of GPS and vision landmarks to be included 
and are set during initialization, which is explained later in Section 4.1.

A lower p-zonotopic cost f (Q) indicates better navigation performance as the 
position error bound is lower. Also, the larger the number of included/selected 
landmarks, the higher the confidence in the associated position error bound. In the 
proposed ILA technique, we computed the attention set Q* ,  which indicated the 
landmarks to be included, and the predicted system availability for a pre-defined 
risk and AL, which is associated with the p-zonotope � ( ).*L Q

3.1  Input Measurements

We considered the measurements from the GPS, vision, and motion model 
as inputs to the proposed ILA technique. As explained earlier, the positions of 
GPS satellite landmarks are known and calculated from the ephemeris (Misra & 
Enge, 2006), while the positions of visual landmarks (i.e., 3D urban features) are 
unknown and localized in the off-the-shelf GPS-vision estimator. 

We denote the state vector at the k-th time iteration by xk , such that xk = [x, 
ψ, cδt]k , where x and ψ denote the 3D position and 3D orientation of the system 
with respect to a global reference frame, respectively, and cδt denotes the clock 
bias of the GPS receiver. The global reference frame is set during initialization of 
the off-the-shelf GPS-vision estimator, which is explained later in Section 4.1. Note 
that the number of GPS and vision landmarks (i.e., N and L, respectively) are not 
required to be constant across time; we simply drop the subscript k for notational 
simplicity.

In the GPS module, given N visible satellite landmarks, the pseudorange mea-
surement received from the i-th satellite at the k-th time iteration is denoted  
by z k

i
gps, ,  such that:
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			   z h fk
i i

k k
i

k
i

gps gps gps, , ,= + +( )x η � (6)

where hi represents the GPS measurement model (Misra & Enge, 2006) associated 
with the i-th satellite, with h c t c ti

k
i i i( ) ;x = − + −( )y x yδ δ  and cδti denote the 

3D position in the global reference frame and clock corrections in the i-th satellite, 
respectively; f k

i
gps,  and ηgps,k

i  represent the measurement fault (due to multipath) 
and stochastic noise associated with the i-th satellite, respectively.

In the vision module, we performed direct image alignment (Engel et al., 2018; 
Forster et al., 2014) to formulate the photometric difference between pixels across 
two image frames. As seen in Equation (7), we projected a 2D pixel coordinate 
(denoted by u) from the keyframe to a current image frame at the k-th time itera-
tion. In this context, the keyframe denotes the reference image obtained from the 
monocular camera relative to which the position and orientation of the current 
image is calculated. In a keyframe, the selected pixels with high intensity gradient 
are termed key pixels. To compute the semi-dense depth map of key pixels, we exe-
cuted a short-temporal baseline matching of key pixels across images to replicate 
the notion of stereo-matching. Detailed explanations regarding the keyframe selec-
tion and estimation of semi-dense depth maps is given in prior literature (Engel 
et al., 2014, 2018; Forster et al., 2014).

	    � � , � ( ) , ( ) ( )For  kf kfu u u u u∈ = ( )( ) + +( )Π I I fk k I Iπ ω ξx � (7)

with

ω π( , ) , ( )x x x x xk k kdu R u u t kf kf kf= −( ) + −( )( )−1

π ( )p  =

















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






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
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


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


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z
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0
0

 from Forster et al. (2014)

where the subscript kf refers to keyframe (Engel et al., 2014):
•	 Πkf ⊂ �

2  and Π ⊂ �2  denote the domain of the keyframe and current image 
at the k-th time iteration, respectively. The image domain of the keyframe 
consists of only the key pixels;

•	 Ikf kf( ) :u Π →�  and Ik ( ) :u Π→�  denote the intensity of 2D pixel 
coordinates u in the keyframe and current image at the k-th time iteration, 
respectively;

•	 π :�3
→Π  is the projection function that maps the 3D coordinates of camera 

frame, denoted by p = [ , , ] ,p p px y z
�  to 2D pixels. The origin of the 3D camera 

frame is at its optical center and its x- and y-axis are parallel to the u- and v-axis 
of the 2D image plane, respectively. From existing literature (Engel  et  al., 
2014), we defined the projection function of the monocular camera via a 
pinhole model. We calibrated the intrinsic parameters, namely fx , fy , cx , and 
cy , and radial distortion parameters during initialization, which is explained 
later in Section 4.1;

•	 ω(xk , u) denotes the 3D warp function that unprojects the pixel coordinates u 
and transforms it by a relative change in the state vector. This relative change 
is the difference between the current state vector, given by xk with respect to 
that of the keyframe, given by xkf;
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•	 R( )⋅ ∈ ×�3 3  and t( )⋅ ∈�3  denote the rotation matrix and translation vector, 
respectively, of frame transformation from the global reference frame to 
current 3D camera frame;

•	 π − +
× →

1 3( , ( )) :u udkf kfΠ � �  denotes the unprojection function (Engel et al., 
2014) that maps the 2D pixel u to 3D camera coordinates via an inverse-depth, 
which is denoted by dkf (u); and

•	 fI (u) and ξI (u) indicate the measurement fault due to data association of pixel 
u and measurement noise, respectively. 

The number of visual landmarks is L = |Πkf|, where |Πkf| is the cardinality of 
image domain Πkf . From Equation (7), we formulate the non-linear vision mea-
surement model as:

			   z b fk
j j

k
j

k
j

k
j

vis vis vis, , ,,= + +( )x p ξ � (8)

where p j j L� { , , }∀ ∈ 1�  represents the 3D position of the j-th vision landmark in 
the global reference frame. The mapping from key pixels to the vision landmarks is 
bijective, i.e., p u u uj jd b= ∀ ∈( )−

π
1 , ( ) � ;kf kfΠ  represents the vision measurement 

model, such that b I fj
k k

j
k k

j
t

jx x, , ; ,p p( ) ( )= ( )( )( )π ω π vis  and ξvis,t
j  represent the 

measurement fault (due to data association errors) and intensity noise associated 
with the j-th vision landmark in keyframe and image frame at the k-th iteration, 
respectively.

In the motion model, we considered a linear state transition model to compute 
the state vector at the k-th time iteration, as seen in Equation (9). Note that the 
proposed ILA technique is generalizable to any motion model, both linear or 
non-linear. Given that the focus of the proposed ILA technique is on GPS and 
vision faults, we considered no measurement faults in the motion model. Refer to 
our prior work (Bhamidipati & Gao, 2018) for addressing faults in motion inputs.

			   z Fk k k kmm, = = +
−

x x1 νν � (9)

where zmm,k denotes the estimated state vector using a known motion model F; 
and νk represents the noise vector; xk−1 denotes the state vector computed at the 
previous time iteration via the off-the-shelf estimator, whose details are given later 
in Section 3.3.

3.2  Cost Formulation via SR

Utilizing the motion model, history of received measurements from GPS and 
vision, and their known error bounds in non-faulty conditions, we formulated the 
p-zonotopic cost f (Qk), defined earlier in Equation (5), as a function of the attention 
set Q q q q qk k k

N
k k

L
={ }gps gps vis vis, , , ,, , , , , .1 1� �  We denote the known error bounds as fol-

lows: GPS measurement noise � ,ηgps k
i  by a p-zonotope � ,,L

ηgps k
i  vision measurement 

noise � ,ξvis k
j  by a p-zonotope � ,,L

ξvis k
j  and noise associated with the motion model 

νk by a p-zonotope � .,L
ννmm k  The details regarding the estimation of measurement  

error bounds of GPS and vision in non-faulty conditions are given later in 
Section 4.2. We performed the following steps at the k-th iteration:

•	 Step 1: Using the properties of SR, we formulated the p-zonotope of 
expected states by considering non-faulty conditions for all landmarks 
(i.e., f i f jk

i
k

j
gps vis, ,� , � ).= ∀ = ∀0 0  For this, as seen in Equations (10a)–(10c), 

we linearize the non-linear measurement models of GPS and vision that 
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are given in Equations (6) and (8). Although some variants of SR explicitly 
handle non-linear state-space equations (August et al., 2012), we exclude 
them from the scope of the current work.

	 ∆ ∆z H i Nk
i

k
i

k k
i

gps gps, , � , ,= + ∀ ∈x η 1� � (10a)

		  ∆ ∆z B B j Lk
j

k
j

k k
j j

k
j

vis apriori vis, , , , � , ,= + + ∀ ∈x x p p ξ 1� � (10b)

	 ∆ ∆z k k kmm, = +x νν � (10c)

where ∆x x xk k= − apriori ,  such that xapriori is the a priori guess of the state 
vector used for linearization; papriori

j j L� { , , }∀ ∈ 1�  is the a priori estimate 
of 3D visual landmarks, such that papriori

j
k
j

=
−

p 1  (assuming the visual 
landmarks to be stationary), where pk

j
−1  is obtained from the off-the-shelf 

GPS-vision estimator; Hk
i  denotes the Jacobian matrix of GPS measurement 

model, such that H
dh
d

Bk
i

i
k

k
j

k
=

=

( )
;| ,

x
x x x xapriori

 and B k
j

p,  denote the Jacobian  

matrices for vision, such that B
db

dk
j k

j j

j jx
x x

x
x,

,�

( , )
=

= =

p

p papriori apriori

 and 

B
db

dk
j k

j j

j
j j

p
p p

p
p,

,�

( , )
,=

= =

x

x xapriori apriori

 respectively.

	 We applied set properties in Equations (4a)–(4c) to compute the 
p-zonotope of expected state estimation errors that are associated with the 
motion model, GPS landmarks for � { , , },i N∈ 1�  and vision landmarks for 
� { , , }.j L∈ 1�  These p-zonotopes of expected state estimation errors are defined 
as follows: L

∆xgps ,k
i  for the i-th GPS landmark in Equation (11a), L

∆xvis ,k
j  for the 

j-th 3D visual landmark in Equation (11b), and L
∆xmm ,k  for the motion model 

in Equation (11c). Note that during the non-faulty case, the errors in received 
landmark measurements lie within the known error bounds.

	 L L
� �

∆
∆xgps gpsgps, , ,k

i
k
i

k
i

k
i

k k
iH H H z= ( )( ) +( ) ( )

−1

η
� (11a)

∀i using Equation (4c)

	 L L L
� �

∆
∆x x x xvis vivis, , , , , , ,k

j
k

j
k

j
k

j
k

j
k

j
kB B B B z= ( )( ) +( )

−

⊕

1

p p ξ ss , �k
j

( )( ) � (11b)

∀j using Equations (4a)–(4c)

	 L L
∆

∆x z
mm mmmm, , ,k k k= +

νν
 using Equation (4c)� (11c)

where Lp,k
j  is the p-zonotope of the j-th visual landmark that is formulated 

from its estimated position and uncertainty using the off-the-shelf GPS-vision 
estimator. Observing Equations (11a)–(11b), note that compared to GPS 
landmarks, vision landmark formulation has an additional p-zonotope term 
indicating its localization uncertainty.

•	 Step 2: We utilized the set union property of p-zonotopes, which was defined 
earlier in Equation (4d), to combine the p-zonotopes of expected states 
from the motion model, as well as the included GPS and vision landmarks. 
Therefore, the set union of p-zonotopes, as seen in Equation (12), is a linear 
function of the attention set Qk. Note that the exact state estimation error in 
GPS-vision localization depends on the associated off-the-shelf estimator, 
which is described later in Section 4.1.
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For given GPS and vision measurement models at any k-th time iteration, the 
set union of p-zonotopes computes an over-approximated (or predicted) position 
error bound that is valid for any off-the-shelf estimator. Given that set union is 
not closed under p-zonotopes, we over-approximate the union of p-zonotopes via 
a p-zonotope (Girard & Le Guernic, 2010). Based on Equation (4d), we denote the 
over-approximated p-zonotope in Equation (12) by � ( ).L Q

For an intuitive understanding of set union, Figure 5(a) shows an example of 
p-zonotopes of expected 2D position from three landmarks #1 to #3, and Figure 5(b) 
demonstrates the set union of these three p-zonotopes that is over-approximated 
by another p-zonotope. During implementation, we utilized the enclose function of 
the MATLAB Continuous Reachability Analyzer (CORA) toolbox (Althoff, 2016) 
to perform set union operation on p-zonotopes. Note that Equation (12) considers 
the measurement errors to lie within the known error bounds, but, this assumption 
is invalid during the presence of faults.

		  L L L L( ) , , ,Q q qk k
i

i N
k

i j

j L
k

j
=

∈ ∈

∆ ∆ ∆x x xmm gps visgps vis∪ ∪ � (12)

•	 Step 3: We designed a unified approach to account for GPS and vision 
measurement faults by leveraging the stochastic nature of p-zonotopes. 
We utilized the received measurements and motion model to estimate 
the measurement innovation for GPS and vision landmarks as 
εgps gps mm
i i iH= −∆ ∆z x  and εvis vis mm apriori

j j j j jB B= − −∆ ∆z xx p p ,εvis vis mm apriori
j j j j jB B= − −∆ ∆z xx p p ,  respectively, 

with ∆x z xmm mm apriori= − .  Utilizing the p-zonotope of expected states 
from motion model �L

∆xmm
 defined earlier in Equation (11c), we applied the 

set properties of p-zonotopes in Equations (4a)–(4b) on the measurement 
innovation to compute the p-zonotope of expected measurement innovation 
for GPS and vision landmarks as follows:

		  L L L
εgps mm gps

i i iH= ⊕
∆x η

� (13)

	 L L L L
εvis mm apriori vis

j
k

j
k

j j jB B= ⊕ ⊕x x, ,∆ p p ξ
� (14)

	 For each landmark, we independently analyzed the deviation of estimated 
measurement innovation from the p-zonotope of expected measurement 
innovation that is indicative of non-faulty measurement errors. The 

�(a) �(b) 

FIGURE 5 An example illustrating the set union operation and over-approximation; (a) 
shows p-zonotopes of expected 2D position from three landmarks, and (b) shows the over-
approximated 2D p-zonotope that encloses the union of the p-zonotopes.
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p-zonotope of expected measurement innovation provides a probability value 
corresponding to each estimated measurement innovation and this probability 
is denoted by � � { , , }αgps

i i N∀ ∈ 1�  for GPS landmarks and � � { , , }αvis
j j L∀ ∈ 1�  for 

vision landmarks.
	 Based on this, for each available landmark, we independently computed 
the fault status of received measurements by normalizing the obtained 
probability value with the probability value corresponding to the center mean 
of the p-zonotope and subtracting it from one. Each measurement fault status 
� �� �αgps

i i∈ ∀  and � �αvis
j j∈ ∀�  lies between [0, 1].

	 In a non-faulty condition, the estimated measurement innovation and its 
p-zonotope of expected measurement innovation are in close agreement, and 
hence a low fault status ≈ 0 is obtained. However, in the presence of measurement 
faults, the estimated measurement innovation does not comply with this expected 
p-zonotope, and therefore a high value of fault status ≈ 1 is observed.
	 We utilized the history of past K measurements to compute a joint 
fault status that represented the temporal confidence in the landmark. This 
also satisfies the need for temporal measurements of a visual landmark to 
triangulate its unknown position. At the k-th time iteration, for each GPS 
landmark � { , , },i N∈ 1�  we utilized � , ,, , ,zgps gps gpsK

i
k K

i
k

i Kz z={ }∈−
� �� , ,, , ,zgps gps gpsK

i
k K

i
k

i Kz z={ }∈−
� �  to 

compute the corresponding joint fault status � ,,αgps k
i

∈�  and for each visual 

landmark � { , , },j N∈ 1�  we utilize zvis vis vis, , ,, ,K
j

k K
j

k
j Kz z={ }∈

−
� �zvis vis vis, , ,, ,K

j
k K

j
k

j Kz z={ }∈
−
� �  to compute 

the corresponding joint fault status � .,αvis k
j

∈�  We utilized the inverse of 
one minus estimated fault status for each landmark to adaptively scale the 
p-zonotope of measurement error bound in non-faulty conditions. Intuitively, 
to minimize the size of set union, we performed a trade-off between including 
the scaled measurement error bounds and analyzing the impact of its exclusion 
on the size of set union. Thereafter, we modified the union formulation of 
p-zonotopes in Equation (12) to adaptively account for measurement faults, as 
seen in Equation (15).
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•	 Step 4: We formulated the scalar p-zonotopic cost f (Qk) defined earlier in 
Equation (5) to denote the size of the over-approximated p-zonotope L(Qk). 
Based on Section 2, for computing a finite size of the p-zonotope, we threshold 
the over-approximated p-zonotope of expected states L(Qk) based on a 
γ-confidence, which was described earlier in Equation (4f). An example of this 
thresholding is seen in Figure 6.
	 Note that the value of γ is chosen based on the pre-defined risk pR for 
a navigation task. The relationship between γ and pR is described earlier in 
Equation (4f). The cut-off p-zonotope for a pre-defined risk is represented 
by a confidence zonotope, denoted by Z (Qk). From Equation (3), we defined 
Z Q c Q G Qk Z k Z k( ) ( ), ( ) ,= 〈 〉  where cZ (Qk) and GZ (Qk) denote the center and 
generator matrix of the confidence zonotope, respectively. From Althoff 
and Dolan (2014), the size of the confidence zonotope Z (Qk) is given by 
G Q G QZ k Z k
� ( ) ( ).

	 As seen in Equation (16), we defined the p-zonotopic cost as the weighted 
sum of eigenvalues of G Q G QZ k Z k

� ( ) ( )  along each axis. We perform a weighted 
sum to account for the perturbation sensitivity of the state estimation error 
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across each axis. The weights also account for the linearized approximation of 
measurement models considered for applying SR in Step 1.

	     f Q w G Q G Qk n
n

M

n Z k Z k( ) ( ) ( )= ( )
=

∑
1

λ
�  from Equation (4f)� (16)

where λn denotes the eigenvalue of � ( ) ( )G Q G QZ k Z k
�  and wn represents the 

associated weights, such that � wnn
M
=

∑ =1 1  and M denotes the number of 
states in the vector xk.

3.3  Optimization via Convex Relaxation

We utilized the p-zonotopic cost derived in Equation (16) to formulate the 
binary convex optimization problem represented earlier in Equation (5). However, 
given the binary constraints on the attention set Qk, computing the optimal solu-
tion, which is defined to be Qk

† earlier in Equation (5), is still a non-deterministic 
polynomial-time (NP) hard problem, and therefore, not computationally tractable. 
Therefore, we performed convex relaxation (Boyd et al., 2004; Carlone & Karaman, 
2017) in which the binary constraints of attention set {0, 1} were replaced by con-
vex constraints that lie in a continuous domain between [0, 1]. The modified opti-
mization problem of the proposed ILA technique via convex relaxation is:

   minimize
Q q q q q i

i N
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j L
N L q q={ }
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FIGURE 6 Illustration representing the top view of an over-approximated 
p-zonotope of expected 2D position, denoted by a Parula colormap (Nunez et al., 
2018). For a given pre-defined value of risk, the over-approximated p-zonotope is 
transformed to a confidence zonotope Z (Q), which is indicated by a translucent 
white box with a black border.
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We utilized the MATLAB CVX toolbox (Grant & Boyd, 2014) to perform the above 
convex optimization and estimate the relaxed attention set, which is denoted by � .Qk

∗  
Given that the solution was not binary, we performed a simple rounding procedure, 
such that the landmarks above a pre-defined threshold β were included while the oth-
ers were excluded. This pre-defined threshold β was set during initialization, which 
is explained later in Sections 3.4 and 4.1. This final rounded attention set is denoted 
by � .Qk

°  Note that other sophisticated methods to perform the rounding procedure 
are found in existing literature (Carlone & Karaman, 2017; Lerner et al., 2007).

From the rounded attention set � ,Q°  the landmarks to be included were iden-
tified (i.e., elements with binary value of 1), and were later used to estimate the 
over-approximated p-zonotope comprised of the set union of included landmarks, 
which is denoted by L( ).Qk

°

To compute the predicted system availability, we performed the following set oper-
ations: a) using the same γ-confidence considered earlier in Step 4, we computed 
a rounded attention zonotope, denoted by Z Qk( ),°  that was evaluated using the 
included landmarks identified from the rounded attention set � ;Qk

°  b) we transformed 
the rounded attention zonotope � ( )Z Qk

°  to a rounded attention polytope � ( ),P Qk
°  

which was an exact conversion (Althoff, 2016); and c) by representing the AL by a 
general vertex representation of a polytope PAL, we computed set intersection of the 
rounded attention polytope � ( )P Qk

°  and AL polytope PAL using Equation (4e).
We performed set intersection in polytope space for computational efficiency and 

also because polytopes can represent any arbitrary or non-regular sets, such as cir-
cles, in an exact manner. If the set intersection is the same as the rounded attention 
polytope (i.e., P P P( ) ( ),Q Qk AL k

° °
∩ =  then the position error bounds associated with 

the rounded attention polytope are within the AL, and therefore the predicted system 
availability is 1. If this condition fails, then the predicted system availability is 0. An 
intuitive understanding for this set intersection is provided earlier in Figure 1.

The output from the proposed ILA technique (i.e., rounded attention set) and 
predicted system availability are given to the off-the-shelf estimator for GPS-vision 
localization. More details regarding the off-the-shelf GPS-vision estimator chosen 
for validating the proposed ILA technique are described later in Section 4.1.

3.4  Performance Guarantees via Sub-Optimality Analysis

We derived the performance guarantees of the rounded attention set Qk
°, which 

was obtained by performing a rounding procedure on the relaxed attention set Qk
∗  

computed via convex relaxation in Equation (17). For our original minimization 
problem defined earlier in Equation (5), we represented the optimal solution of 
attention set as Qk

†. Similarly, for our modified minimization problem that performs 
optimization via convex relaxation, we represented the estimate of relaxed atten-
tion set as Qk

∗  and rounded attention set as Qk
°. We derived the performance guar-

antees of the rounded attention set Qk
° obtained by executing a rounding procedure 

on the relaxed attention set Qk
∗  computed via convex relaxation.

			    g (Q*) ≤ g (Q†) ≤ g (Q˚)� (18)
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1 1, , , , ,� �  based on Equations (5) and (17). Note that g (Q) is always strictly 

greater than zero. The first inequality was based on the theory of convex relaxation 
(Boyd et al., 2004; Carlone & Karaman, 2017) that states that the solution of our 
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modified minimization problem in Equation (17) is at most as large as the optimal 
solution (i.e., Q†) of the original problem in Equation (5). The second inequality 
followed from the optimality of Q† based on Equation (5), according to which no 
subset of landmarks can have a cost less than g (Q†).

We rearranged the chain of inequality defined in Equation (18) as Equation (19) 
to provide an a-posteriori performance guarantee on the quality of the solution 
estimated by rounding the solution from convex relaxation.

			   g (Q˚) − g (Q†) ≤ g (Q˚) − g (Q*)� (19)

where g Q( )° − g (Q†) denotes the sub-optimality gap (Chlamtac & Tulsiani, 2012; 
Joshi & Boyd, 2009) of the rounded attention subset � .Q°  The sub-optimality gap 
is upper-bound by the difference � ( ) ( )g Q g Q° ∗

−  that can be calculated in an 
a-posteriori sense.

This upper-bound serves as a criterion for choosing the pre-defined threshold 
β that is used to compute the rounded attention set Qk

° in our proposed ILA tech-
nique. By performing a heuristic analysis during initialization, which is explained 
in Section 4.1, we set a pre-defined value of β that ensures the upper-bound on the 
sub-optimality gap is small. Furthermore, this upper-bound could also be utilized 
for adaptively estimating the pre-defined threshold or for assessing other sophisti-
cated rounding procedures.

4  EXPERIMENTAL RESULTS

We validated the performance of the proposed ILA technique that accounts for 
multiple GPS and vision faults in a unified manner to estimate the desirable subset 
of landmarks. Furthermore, the proposed ILA technique also is proven to predict 
the expected navigation performance of GPS-vision localization (i.e., the predicted 
system availability for a pre-defined risk and AL).

4.1  Implementation and Initialization Details

We considered an urban sequence from the monocular visual odometry data 
set (Engel et al., 2016) that came with a high-fidelity reference ground truth and 
camera calibration files. Figure 7 shows the trajectory visualization for an exper-
imental duration of 60 s, wherein the surroundings include a narrow alleyway, 
open sky, and many tall buildings. As explained in Section 3.1, we pre-processed 
the image frames via direct image alignment to extract key pixels in each frame.

To adapt this urban data set to our input measurements, we simulated GPS data 
using the ground truth 3D position and online-available satellite ephemeris. In par-
ticular, we used a C++ language-based software-defined GPS simulator known as 
GPS-SIM-SDR (Bhamidipati et al., 2019; Ebinuma, 2020) to generate the raw GPS 
signals. Later, we post-processed the simulated GPS signals using a MATLAB-based 
software-defined radio known as SoftGNSS (Paul, 2020).

When navigating through a narrow alleyway (i.e., during t = 9 − 24 s), we induced 
simulated GPS faults (i.e., multipath and satellite blockage) based on the elevation 
and azimuth of the satellites with respect to the direction of travel. We added simu-
lated multipath effects in the low-elevation GPS satellites (i.e., 20° − 45°) and within 
the azimuth range of 45° − 135° and 225° − 315°. Similarly, for the same range of 
azimuth, we blocked the GPS satellites with elevation angles < 20°. Based on existing 
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literature (Phelts & Enge, 2000), we induced multipath errors that ranged between 
20 − 65 m.

We considered an off-the-shelf estimator from the existing literature (Bhamidipati 
& Gao, 2020a; Shepard & Humphreys, 2014) on GPS-vision localization in urban 
areas. The off-the-shelf GPS-vision estimator considers the same measurement 
models as that of the proposed ILA technique discussed earlier in Section  3.1. 
Utilizing the most recent history of input measurements from GPS and vision, we 
designed a cost function using the Huber M-estimator (Huber, 2004) that is com-
prised of a summation of the following residuals: GPS pseudoranges, pixel inten-
sities, and system motion dynamics. Thereafter, we executed graph optimization 
using the Levenberg Marquardt method (Laurakis, 2005) to simultaneously localize 
both the system and key image pixels. From heuristic analysis, we chose the Huber 
constant for the M-estimator as 4.32. To maintain uniformity, both the off-the-shelf 
estimator and the proposed ILA technique shared the same initialization procedure.

As seen in Figure 8, the initialization procedure of the proposed ILA technique 
was performed in two stages: camera calibration and GPS-vision calibration. 
Referring to the existing works (Bhamidipati & Gao, 2020a; Engel et al., 2018), we 
followed a standard calibration procedure for the camera comprised of intrinsic 
calibration, removal of radial distortion, and photometric calibration. Using sev-
eral images taken from different positions, we estimated the intrinsic parameters 
(i.e., fx , fy , cx , and cy ) that mapped the 2D image frame to the 3D coordinates of 
the camera frame, and vice-versa, which are denoted by π and π−1 in Equation (7), 
respectively.

During the camera calibration stage of initialization, we also estimated the 
radial distortion coefficients associated with the field-of-view (FOV) distor-
tion model (Li et al., 2015) that converts the 2D pixel coordinates of the image 
frame from a distorted space to an undistorted one. These undistorted 2D pixel 
coordinates are given to the vision measurement model described earlier in 
Equations (7) and (8). Furthermore, we performed a photometric calibration that 

FIGURE 7 Trajectory visualization for an experiment duration of 60 s. This utilizes camera 
images of an urban sequence from the monocular visual odometry data set (Engel et al., 2016) and 
simulated GPS data. The surroundings included a narrow alleyway, open sky, and tall buildings, 
and therefore, the GPS and vision measurements were susceptible to faults at multiple time 
iterations. Two scenarios of vision faults are highlighted: one is due to dynamic occlusions from 
moving obstacles (i.e., with non-zero relative velocity such as a car or cyclist); the other is due to 
repetitive urban features (such as archways, cycles, and windows) in the surroundings.
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mapped the real-world energy received by a pixel (irradiance) to the respective 
intensity value. This photometric camera calibration (Engel et al., 2018), which 
accounted for lens attenuation, gamma correction, and known exposure times, 
increased the accuracy and robustness of our vision measurement model that is 
based on pixel intensity analysis.

During the GPS-vision calibration step (the second stage of initialization), 
the system executes a random motion both in terms of rotation and translation 
for a couple of Kcalib time iterations, say from k = −Kcalib to k = −1. In this step, 
we performed an extrinsic calibration and scale factor estimation. This step is 
conducted in fairly open-sky settings (i.e., no simulated multipath in GPS mea-
surements) with the presence of feature-rich conditions for the camera, such 
as a fence, billboards, trees, etc. Referring to Bhamidipati and Gao (2020a) and 
Chen et al. (2018), we set the global reference frame to be the GPS frame at the 
start of the calibration step, which denoted the East-North-Up (ENU) coordi-
nate system whose center is fixed to the receiver location.

While the GPS and camera frames were fixed to the GPS receiver and monocu-
lar camera, respectively, and therefore, were able to change based on the system 
dynamics, the relative translation and rotation between the GPS receiver and cam-
era was still fixed and known. Using this information in extrinsic calibration, we 
estimated the frame transformation between the GPS frame and the camera frame.

To resolve the scale factor, we first independently estimated the system positions 
in the global reference frame of the executed random motion via two variants of 
the off-the-shelf GPS-vision estimator (Bhamidipati & Gao, 2020a; Engel et al., 
2018): one using GPS-only measurements, and the other using vision-only mea-
surements. For vision-only measurements, we estimated the system positions in 
the global reference frame by setting an initial scale factor of one and using the 
parameters computed from camera calibration, which is the first stage of initializa-
tion, and extrinsic calibration, which was explained earlier.

Referring to Chen et al. (2018), we updated the scale factor as the square root 
of the ratio between the weighted root-mean-square-error (RMSE) associated 
with the estimated system positions from GPS-only and vision-only. Note that 
the traditional monocular visual odometry techniques, which represent a relative 

FIGURE 8 Initialization of the proposed ILA via camera calibration and GPS-vision 
calibration. For the camera, we performed intrinsic calibration, removal of radial distortion, 
and photometric calibration. The global reference frame was set to the ENU coordinate system 
with the center fixed to be the GPS receiver location at the start of initialization. In GPS-vision 
calibration, we performed extrinsic calibration and scale factor estimation.
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localization setup, can estimate system translation only up to a scale that is later 
scaled correctly via methods (Engel et al., 2014, 2018; Forster et al., 2014) such as 
place recognition and loop closure.

While scale factor estimation is a major challenge in traditional visual odometry 
that uses only monocular cameras, our sensor fusion framework that combines the 
relative measurement source (vision) with an absolute localization source (GPS) is 
more robust against ambiguities in the scale factor. After initialization, we period-
ically updated the vision measurement model of the proposed ILA technique with 
the scale factor estimated by the mapping module of the off-the-shelf GPS-vision 
estimator. Note that accounting for the errors in scale factor estimated via mapping 
modules is beyond the scope of this current work.

We performed integrity-driven convex optimization to compute a desirable 
subset of landmarks using the open-source MATLAB CVX toolbox (Grant & 
Boyd, 2014). We then performed the set operations of SR and transformed across 
various set representations (such as polytopes, zonotopes, p-zonotopes, etc.) 
using the open-source MATLAB CORA toolbox (Althoff, 2016). We considered a 
history of past measurements, such that K = 8, for the proposed ILA technique. If 
the predicted system availability at (k − 1)-th time iteration is 1, then we update 
the motion model xk−1 seen in Equation (9) using the state vector estimated via 
the off-the-shelf GPS-vision estimator (Bhamidipati & Gao, 2020a), otherwise 
xk−1 = zmm,k−1. We pre-defined the following parameters based on heuristic anal-
ysis as follows: β = 0.75, Nmin = 5, Lmin = 600, and γ = 0.999.

4.2  Offline Empirical Analysis of Measurement Error 
Bounds in Non-Fault Conditions

As mentioned earlier, we pre-defined the measurement error bounds in 
non-faulty conditions using a naive offline empirical analysis of the openly avail-
able GPS and vision data sets. While we describe the analysis conducted for GPS 
and vision separately, notice that the underlying steps-to-execute remain the same 
irrespective of the sensor. This procedure is explained as follows:

1.	 For GPS, the measurement error bounds of simulated data in non-faulty 
conditions (i.e., no induced multipath effects) are inspired by the Monte 
Carlo runs performed using open-source data sets and their ground truths 
available from websites, such as Continuously Operating Reference Stations 
(CORS; Snay & Soler, 2008). In each Monte Carlo run, we estimated the 
measurement residuals by considering the GPS measurement model described 
in Equation (6) and the available ground truth 3D position. Figure 9 shows 
some example distributions of measurement errors in non-faulty conditions 
obtained from different Monte Carlo runs and are indicated in gray.

		  While the distribution from these different Monte Carlo runs exhibit 
Gaussian characteristics, in addition to the changes in variance, we also 
observed non-zero values of the mean. The mean depends on the LOS vector 
between receiver and GPS satellite, and its non-zero values can be attributed 
to the accuracy limitations in modeling the receiver clock bias, ionospheric 
corrections, and tropospheric corrections. Based on this, we defined the 
simulated measurement errors observed during non-faulty conditions, 
which are denoted by ηgps

i  in Equation (10a), to have time-varying Gaussian 
characteristics but with the following bounds: the mean and covariance lie 
between [−5 m, 5 m] and [0 m, 5  m], respectively. We efficiently enclosed 
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all the Gaussian distributions obtained from Monte Carlo runs using a 
p-zonotope, which is indicated by a Parula colormap (Nunez et al., 2018) 
in Figure 9. For any i-th satellite at k-th time iteration, this p-zonotope is 
represented by � .,L

ηgps k
i  Note that we assign the same p-zonotope, which 

represents the GPS measurement error bound in non-faulty conditions, to 
all the satellite landmarks so that this bound is valid, irrespective of the LOS 
vector considered.

2.	 For vision, similar to GPS, we performed Monte Carlo runs that utilized 
selected sequences (i.e., with no urban artifacts that cause data-association 
errors) from the monocular visual odometry data set (Engel et al., 2016) along 
with the available ground truth regarding the 3D position and orientation 
of the system. In each Monte Carlo run, we first selected a keyframe, and 
thereafter, considered a set of relevant image frames that were in a temporal 
sequence with the keyframe and exhibit a minimum spatial overlap with the 
keyframe.

		  Considering the ground truth and vision measurement model described in 
Equations (7) and (8), we stored the intensity residuals of the overlap region 
between the keyframe and each image frame in the set. The intensity residuals 
associated with an example Monte Carlo run are plotted as a histogram shown 
in Figure 10(a).

		  In addition, Figure 10(b) illustrates example histograms associated with 
the measurement error analysis of different keyframes (i.e., during different 
Monte Carlo runs). Note that all the plotted histograms have the same limits 
on the x- and y-axis, which denote bins and frequency, respectively. We 
demonstrated that fitting the data with a Gaussian distribution, which is 
indicated in red, is not always suitable for modeling the vision measurement 
errors in non-faulty conditions.

		  However, irrespective of the underlying distribution, we observed that 
the measurement errors, which are denoted by �ξvis

j  in Equation (10b), are 
bounded in non-faulty conditions. Therefore, we utilized a p-zonotope, which 
is described earlier in Section 2 and Figure 3(a), to efficiently enclose all the 
histograms obtained from Monte Carlo runs.

FIGURE 9 Illustration showing offline empirical analysis for estimating p-zonotopes that 
represents the GPS measurement error bound in non-faulty conditions and is indicated by 
the Parula colormap (Nunez et al., 2018). The p-zonotope encloses the time-varying Gaussian 
characteristics of all the measurement errors obtained during Monte Carlo runs, which are 
indicated in gray.
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		  For any j-th landmark at k-th time iteration, this p-zonotope is denoted 
by � .,L

ξvis k
j  This process of formulating the p-zonotope from histograms is 

similar to that executed for GPS measurement errors indicated earlier in 
Figure 9. Note that we assigned the same p-zonotope, which represents the 
vision measurement error bound in non-faulty conditions, to all the visual 
landmarks so that this bound was invariant to the surroundings.

These pre-defined measurement error bounds of GPS and vision in non-faulty 
conditions are later adaptively scaled in Step 3 of Section 3.2 to account for mea-
surement faults. This work demonstrates a naive implementation of the offline 
empirical analysis, wherein we assigned the same measurement error bound in 
non-faulty conditions to all the landmarks associated with a particular sensor. 
However, note that the framework of proposed ILA technique is flexible to account 
for more sophisticated procedures that assign different p-zonotopes of measure-
ment error bounds in non-faulty conditions to each landmark.

�(a) 

�(b) 

FIGURE 10 Illustration of offline empirical analysis for estimating the vision measurement 
error bounds in non-faulty conditions. (a) Procedure executed for vision during each Monte Carlo 
run where a keyframe and a set of relevant images were analyzed to compute the histogram of 
intensity residuals, which is indicated in blue. For reference, the histogram data is also fitted 
with a Gaussian distribution that is indicated in red; (b) Example histograms obtained from 
different Monte Carlo runs that depict the distribution of intensity residuals associated with each 
keyframe. All the plotted histograms have the same limits on the x- and y-axis, which denotes bins 
and frequency, respectively. P-zonotopes are apt for enclosing (i.e., upper-bound) these complex 
distributions of vision measurement errors that are bounded in nature but there the underlying 
distribution does not necessarily mimic a Gaussian distribution.
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In addition to p-zonotopes being apt for bounding complex distributions in 
non-faulty conditions, these set representations can also efficiently enclose various 
sensor measurement error profiles, including the ones inducing constant offsets 
and the ones following Gaussian distributions with fixed mean and covariance. 
More details regarding these preliminaries were explained earlier in Equations (2) 
and (3) of Section 2.

4.3  Results and Discussion

In Figure 11, we demonstrate an improved 2D position accuracy using the pro-
posed ILA technique compared to other subsets of landmarks that included only 
GPS, all available GPS and vision, and random selection. In the random selection 
option, while fixing the number of selected landmarks to be the same as that of 
the proposed ILA technique, we ran 300 Monte Carlo runs at each time iteration, 
wherein for each run, we randomly selected from among all the available GPS and 
vision landmarks.

Thereafter, we retained the minimum localization error from among the 
300 runs executed at each time iteration. Our reasoning for the random selection 
was to compare the performance of the proposed ILA technique against a com-
putationally tractable alternative to a conventional FDE (Joerger et al., 2014) that 
would evaluate all multi-fault hypotheses in a brute-force manner. More details 
regarding the conventional FDE via multi-fault hypotheses evaluation and their 
computational intractability when applied to a large number of measurements was 
described earlier in Section 1. Note that in a heuristic sense, for a case where none 
of the GPS and vision measurements are faulty, the minimum error from random 
selection converges to a case of uniformly distributed landmarks.

As mentioned earlier, we processed each of these landmark subsets using an 
off-the-shelf GPS-vision estimator that formulated a Huber M-estimator-based cost 
function (Huber, 2004). In this context, the M-estimator (Shepard & Humphreys, 
2014) represents a robust regression method that accounted for data containing out-
liers and extreme observations. Therefore, the off-the-shelf GPS-vision estimator 

FIGURE 11 Maximum position error achieved using the off-the-
shelf GPS-vision estimator (based on the Huber M-estimator) when the 
following landmark subsets are selected: the proposed ILA technique 
is denoted by blue; only GPS landmarks are indicated by magenta; all 
GPS and vision landmarks are represented by black; random selection is 
indicated in orange; and the proposed ILA technique with conventional 
LS-based off-the-shelf GPS-vision estimator is denoted by cyan. Our 
ILA (with both Huber and LS) shows a smaller localization error as 
compared to other methods.
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implemented another FDE approach (Bhamidipati & Gao, 2020a) by de-weighting 
the landmarks based on only the magnitude of their measurement residuals.

To compare the performance of the proposed ILA technique, we analyzed 
two variants of cost function used in the off-the-shelf GPS-vision estimator: one 
using the Huber M-estimator, where the selected landmarks are weighed based 
on their measurement residuals, and the other using a conventional least squares 
(LS), where all selected landmarks are given equal weight. These results are also 
included in Figure 11.

We identified two challenging segments in the experimental trajectory via 
post-processing that are labeled as Segment A and Segment B in Figure 11. Segment 
B corresponds to the region where vision landmarks satisfy the following heuristic 
condition (i.e., when compared against ground truth positions more than 50% of 
the available landmarks showcase large measurement residuals for at least 4 s time 
duration). Similarly, Segment A corresponds to the narrow alleyway region where 
both GPS and vision landmarks satisfy the above-stated condition.

As seen in Table 1, the proposed ILA technique demonstrates a maximum 2D 
position error of only 6.6 m and 9.3 m for the off-the-shelf GPS-vision estimator 
with the Huber and LS methods, respectively. Given that there are no standardized 
safety metrics as of September 2020, we set the pre-defined AL = 7.5 m based on the 
general street specifications.

We observed that while the proposed ILA technique (with the Huber estima-
tor) lies below the AL for the entire experiment duration, the proposed ILA tech-
nique (with the LS estimator) exceeded AL at times. This behavior is explained 
more in-depth later in Figure 13. The proposed ILA technique (via both the 
Huber and LS-based off-the-shelf GPS-vision estimators) validated the improved 
GPS-vision localization in urban areas compared to using other landmark subsets 
(i.e., GPS-only, all GPS and vision, and random) with maximum position errors 
exceeding >13 m.

On an Intel i7 processor, the processing times for different comparison 
methods are as follows: (a) for the proposed ILA technique, optimization via 
convex relaxation, which was described earlier in Section  3.3, takes 2.2 s and 
off-the-shelf GPS-vision estimator with Huber takes 1.6 s; and (b) for refer-
ence, executing 300 Monte Carlo runs of random selection takes around 453.2 s. 
Through these statistics, we demonstrate the computational tractability of the 
proposed ILA technique compared to directly evaluating the multi-fault hypoth-
eses to perform FDE.

At a time iteration k = 54 s, we compared the following statistics across the 
above-listed four techniques for landmark selection: position error and the number 
of selected landmarks. Unlike the other methods seen in Table 2, a low position 
error of 2.9 m (with 1.4 m along and 2.5 m perpendicular to the direction of motion) 
was achieved using our ILA technique (with the Huber estimator) that selected six 

TABLE 1 
Quantitative comparison of maximum position error for different 
subsets of landmarks.

Landmarks Selected Max Error

Proposed ILA (with Huber) 6.6 m 

Proposed ILA (with LS) 9.3 m 

Only GPS 20.2 m 

All GPS and vision 13.9 m

Random (300 runs) 25.2 m
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out of eight GPS landmarks and 956 out of 4,722 visual landmarks. Similarly, a posi-
tion error of 4.6 m was achieved using the ILA technique (with the LS estimator).

An illustration of the selected landmarks in GPS and vision (rounded attention 
set) at time iteration k = 54 s is shown in Figure 12. Note that the proposed work 
does not emphasize direct detection and exclusion of all measurement faults, but 
instead analyzes a trade-off between the effect of fault magnitude and the impact 
of its exclusion on the position error bound.

In addition to estimating the rounded attention set that comprised the desired 
subset of landmarks, for a pre-defined risk pR = 1.9e−3 (which is equivalent to 
γ-confidence = 3.5 based on Equation [4f]), the proposed ILA technique also esti-
mated the predicted 2D position error bound as 5.1 m with 2.7 m along and 4.3 m 
perpendicular to the direction of motion. Refer to Section 2 for more details regard-
ing the property of γ-confidence and risk.

We observed two takeaways from this snapshot analysis at k = 54 s. First, the pre-
dicted position error bound (where position error bound is analogous to a measure 
of integrity called protection levels, i.e., 5.1 m), successfully bounded the estimated 
position error (i.e., 2.9 m with the Huber and 4.6 m with the LS estimator). Second, 
since the predicted position error bound is less than the pre-defined AL = 7.5, the 
system that leverages the proposed ILA technique for landmark selection is pre-
dicted to be available.

Extending our earlier analysis regarding the predicted position error bounds and 
predicted system availability at k = 54 s, we plotted the predicted system availability 
for the entire time duration of 60 s in Figure 13. The predicted availability of one 
indicates that the predicted position error bounds via the proposed ILA technique 
are less than an AL = 7.5 m, and zero indicates otherwise. More details regarding 
the predicted system availability and how it is computed during the optimization 
via convex relaxation was given earlier in Section 3.3.

Note that the 2D position error shown earlier in Figure 11 is calculated by com-
paring the position estimate from the off-the-shelf GPS-vision estimator with 

FIGURE 12 Selected GPS and vision landmarks via the proposed ILA technique at k = 54 s.

TABLE 2 
Comparison of position error and number of landmarks at k = 54 s across different comparison 
methods with G : GPS landmarks, and V : vision landmarks.

Methods Position Error Landmarks

Proposed ILA (with Huber) 2.9 m 6 (G), 956 (V)

Proposed ILA (with LS) 4.6 m 6 (G), 956 (V)

Only GPS 6.9 m 6 (G), 0 (V) 

All GPS and vision 5.4 m 6 (G), 4722 (V) 

Random (300 runs) 9.1 m 962 (G + V)
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that of the ground truth position. In contrast, the predicted system availability is 
obtained as a by-product from the optimization by via convex relaxation step of 
the proposed ILA technique and does not depend on the off-the-shelf estimator 
utilized.

Given a pre-defined risk pR = 1.9e−3 (which is equivalent to γ-confidence = 3.5 
based on Equation [4f]) and AL = 7.5 m, we demonstrated that the proposed ILA 
technique provides a robust measure of predicted availability with the system being 
available for 98.2% of the entire experiment. In a narrow alleyway, the proposed 
ILA technique successfully detected degraded localization accuracy (i.e., predicted 
availability = 0) due to large faults in both GPS and vision, and is therefore reflec-
tive of the measurement quality in urban surroundings. In an intuitive sense, the 
predicted system availability serves as a performance metric of the proposed ILA 
technique, wherein a value of one indicates that the landmarks selected provide 
a position error less than AL = 7.5 m, irrespective of the off-the-shelf GPS-vision 
estimator utilized.

However, when the predicted system availability is zero, it implies that the asso-
ciated predicted position error bound estimated via the proposed ILA technique 
is greater than AL = 7.5 m, and therefore, by utilizing the associated landmarks, 
the position error estimated via the off-the-shelf GPS-vision estimator cannot be 
guaranteed to lie within an AL = 7.5 m. This was reflected earlier in Figure 11 by 
analyzing the position error of the proposed ILA technique with Huber compared 
to that with LS. At other time iterations, the proposed ILA technique performed a 
robust landmark selection (i.e., among GPS and vision) to ensure compliance with 
the pre-defined AL.

In Table 3, we showcase the predicted system availability for the entire time across 
different pre-defined values of risk and AL. Intuitively, we observed that as the 

TABLE 3 
Predicted system availability across the entire experiment duration of 60 s for different pre-
defined values of pR and AL.

	   AL  
  pR

6 m 7.5 m 10 m

1.9e−3 90.3% 98.2% 98.7%

2.6e−4 88.5% 92.3% 93.5%

FIGURE 13 The predicted system availability using the proposed ILA technique 
demonstrates that the system is available for 98.2% of the entire time for a pre-defined 
risk pR = 1.9e−3 and AL = 7.5 m.
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pre-defined AL increases for a fixed risk pR , the predicted system availability also 
increases, which is because a larger predicted position error bound is acceptable 
for achieving the expected navigation performance. Similarly, as the pre-defined pR 
increases (which increases the associated value of γ-confidence defined earlier in 
Equation [4f]) for a fixed AL, the system is available for a longer time duration as 
smaller estimates of the predicted position error bound is obtained.

5  CONCLUSION

In summary, we developed an integrity-driven landmark attention (ILA) tech-
nique for GPS-vision navigation that was inspired by cognitive attention in humans. 
We performed a two-tiered approach: cost formulation via stochastic reachability 
(SR) and optimization via convex relaxation to select the subset of desired landmark 
measurements from the available, namely GPS satellites and 3D visual features.

Given the known measurement error bounds for each landmark in non-faulty 
conditions, we independently analyzed the received measurements to estimate the 
stochastic reachable set of expected positions. By parameterizing the stochastic set 
using probabilistic zonotope (p-zonotope), we applied the set union property to 
compute the position error bound for a pre-defined risk as a function of included 
landmarks. Our ILA technique works with any off-the-shelf GPS-vision estimator 
and follows a unified approach to account for multiple faults in GPS and vision 
measurements.

We validated the proposed ILA technique using an urban data set with real-world 
camera images and simulated GPS data. We demonstrated the improved localiza-
tion accuracy of the proposed ILA technique with maximum position errors of only 
6.6 m compared to other techniques for landmark selection that showed maximum 
position errors of > 13 m, thereby violating the pre-defined alert limit AL = 7.5 m. 
We also showcased that our ILA technique provides a robust measure of predicted 
availability with the system being available for 98.24% of the entire duration. We 
also provided a quantitative comparison of the predicted system availability across 
the entire experiment for different pre-defined values of risk and AL.
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