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R E G U L A R  PA P E R S

Multi-Objective Design of a Lunar GNSS

Filipe Pereira1  Patrick M. Reed1  Daniel Selva2

1  INTRODUCTION

Recent direct and definitive evidence of surface-exposed water ice in the lunar 
polar regions (Li et al., 2018) has changed our perception of the Moon. The identi-
fication of these resource-rich locations has transformed the economics of Moon 
mining (Sommariva et al., 2020) and established Earth’s satellite as an interesting 
destination for the private space sector. As a consequence, this decade has seen a 
plethora of planned lunar missions and the establishment of new public-private 
partnerships. 

This article analyzes the case for a lunar GNSS by exploring the design space 
in a high-fidelity lunar environment and evaluating design trade-offs in terms of 
performance, cost, and robustness objectives. The investment in a dedicated GNSS 
in lunar orbit can be justified by the need to execute complex maneuvers—rendez-
vous, docking, and precise landing—that depend on the supporting positioning, 
navigation, and timing (PNT) infrastructure. 

According to the International Space Exploration Coordination Group (ISECG) 
Global Exploration Roadmap (ISECG Technology Working Group, 2019) the 
future mission PNT performance targets are: a) absolute and relative position 
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accuracy of less than 0.4 m; b) timekeeping accuracy down to nanosecond level; 
and c)  inter-element time synchronization without dependence on Earth-based 
systems.

These targets are beyond what can be achieved with present autonomous 
deep-space navigation systems (e.g., simulations using optical navigation measure-
ments and JPL’s AutoNAV filter show that lunar landings are only possible to within 
20 m [Riedel et al., 2010]). Thus, current deep-space missions rely on Earth-based 
communication links (e.g., via two-way Doppler and range or delta-differential 
one-way range). Yet, the Deep Space Network (DSN) is operating close to capacity 
(Abraham et al., 2018), which poses concerns in terms of availability of service for 
future missions.

This level of absolute navigation accuracy (< 0.4 m) can currently be met in 
low Earth orbit (LEO) using dual-frequency pseudorange and carrier-phase 
GNSS observations even without external augmentation data, thanks to precise 
GNSS broadcast ephemerides as reported in Hauschild and Montenbruck (2021). 
Relative navigation in LEO at millimeter levels can be achieved using GPS carrier 
phase measurements with fixed integer ambiguities, as demonstrated in recent 
formation flying missions such as GRACE and TanDEM-X (Allende-Alba & 
Montenbruck, 2016).

1.1  Weak GNSS Signal Tracking

One approach to improve the PNT performance in cis-lunar space is to track weak 
Earth GNSS signals as studied in Capuano et al. (2015), Impresario et al. (2018), 
and Palmerini et al. (2009). This approach relies on the exploitation of antenna 
main lobe overspill and sidelobe tracking. Recent results from the Magnetospheric 
Multiscale Mission (MMS) show that a high-sensitivity GPS receiver (~23dB-Hz 
acquisition/tracking threshold) equipped with a 7-dB gain antenna can track 
the L1 C/A code of one GPS satellite on average at half the Earth-lunar distance 
(Parker et al., 2019). 

Informed by these results, simulations show that it is possible to acquire GPS sig-
nals as far away as the moon using an antenna with a peak gain of 14 dB (Winternitz 
et al., 2019). Besides, it is reasonable to expect significant performance improve-
ments from the adoption of the United Nations’ International Committee on GNSS 
Recommendations (United Nations, 2018). These recommendations include sup-
port for an interoperable multi-GNSS space service volume and the development 
of interoperable multi-frequency space-borne GNSS receivers.

This approach suffers from two limitations. First, geometric diversity (i.e., dilu-
tion of precision [DOP]) would be poor at lunar distance. Simulations of the Deep 
Space Gateway’s Near Rectilinear Halo Orbit (NRHO) about the Moon show that 
the position dilution of precision (considering GPS, GLONASS, GALILEO, and 
BeiDou) is greater than 250 (Delépaut et al., 2020). Thus, the problems that geom-
etry poses limits the achievable accuracy. 

The use of an onboard navigation filter and an atomic clock has effectively been 
able to decorrelate clock from range errors (Lopes et al., 2014). Yet, simulation 
results of an uncrewed mission to the Gateway NRHO considering an extended 
Kalman filter and a rubidium atomic clock show that the GPS-based navigation 
error is approximately 8.5 m (3-RMS) radially and 30 m (RSS) laterally (Winternitz 
et al., 2019). These figures are still far from the performance requirements identi-
fied before for cislunar navigation.
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Second, there would be no coverage on the far side of the Moon. Though largely 
unexplored, this region contains the Aitken basin, which is one of the most scien-
tifically interesting impact craters and a target for future missions (Kring & Durda, 
2014). 

Given these limitations, Earth GNSS signals are likely to be used mainly in sup-
port of orbit determination and time synchronization operations in lunar orbit, 
hence our focus on a dedicated GNSS in lunar orbit. 

1.2  Challenges in Lunar GNSS Design

The problem of designing a stable GNSS constellation in lunar orbit is challeng-
ing due to third-body perturbations caused by the Earth’s gravitational field. This 
type of perturbation is dominant at orbit altitudes greater than 1,500 km (Nie & 
Gurfil, 2018), which is a reasonable target for a global GNSS constellation (a sat-
ellite at 1,500 km will cover no more than 19% of the lunar surface assuming an 
elevation cut-off angle of 5 degrees). 

Orbital perturbations require station-keeping maneuvers which can become 
prohibitive in terms of ∆V and propellant requirements. It is generally desirable 
that the magnitude and frequency of station-keeping maneuvers be minimized. 
A low frequency of maneuvers would improve satellite availability (assuming the 
satellites are declared unhealthy during burn executions as it is done today with 
GPS) and keep operational costs down—especially if communication with Earth 
stations is necessary. 

Savings in propellant fuel also cause reduced satellite mass and launch costs. 
On the other hand, a higher frequency of maneuvers could potentially improve 
GDOP performance, which motivates further exploration of these trades. This 
design problem has conflicting performance objectives that must capture perfor-
mance in a complex dynamic environment, making it well-suited to the use of 
multi-objective optimization algorithms, since they eliminate the need for subjec-
tive preference elicitation. 

1.3  Literature Review

The design space of a GDOP-optimizing GNSS constellation in a high-fidelity 
lunar environment remains largely unexplored, given the high computational 
costs involved. There have been few studies considering the design of lunar nav-
igation satellite constellations, and the analysis has been limited to a small num-
ber of pre-defined constellations based on expert intuition. For example, Sands 
et al. (2006) used a generalized GDOP formulation to study the performance—in 
terms of the latency to achieve a performance target when integrating range and 
range-rate measurements—of seven sparse constellations with less than 12 satel-
lites each. 

The results highlight the improvements in performance brought by augmenta-
tions such as user altitude knowledge and highly stable user clocks. Ely and Lieb 
(2006) presented designs for satellite constellations in a linked-chain configuration 
that could achieve global coverage over a period of 10 years without station-keeping 
maneuvers. However, these constellations were not able to achieve global coverage 
with GDOP values of six or less—which are characteristic of Earth’s GNSS and 
would allow instantaneous 3D positioning and timing services. 
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Finally, there are ongoing initiatives that attempt to address stakeholder needs 
for PNT, networking, and scientific services (LunaNet [Israel & Mauldin, 2020]) 
using a combination of small satellites, lunar surface beacons, and existing GNSS 
signals, but to the best of our knowledge, no studies resulting from these initiatives 
have been published yet. 

The studies mentioned above are based on the evaluation of a few 
expert-selected constellations. There are many constellation design studies 
based on optimization but none for a lunar GNSS. Finally, we note the prev-
alence of evolutionary algorithms in the constellation design literature (Buzzi 
et al., 2019; Ferringer et al., 2007; Ferringer & Spencer, 2006; Singh et al., 2020; 
Whittecar & Ferringer, 2014).

1.4  Research Objective

In a preliminary study (Pereira & Selva, 2020), we analyzed the performance of 
lunar GNSS constellations obeying frozen orbit conditions (including J2, C22, and 
third-body perturbations), existing when the argument of periapsis (ω) equals 90° 
or 270°—assuming the Earth was in a circular equatorial orbit around the Moon. 
It was found that the optimal constellations resulted in poor performance at the 
poles, which was undesirable given that many future missions have been target-
ing these resource-rich regions. This article greatly expands the scope of the pre-
liminary study by re-formulating the problem (allowing for hybrid constellations 
mixing satellites at various altitudes and inclinations), and removing the frozen 
orbit constraints. Thus, it explores a much larger portion of the design space than 
previously done in the literature. 

More specifically, this study attempts to find lunar GNSS constellation designs 
that minimize GDOP on the lunar surface, maximize GDOP availability (percent-
age of time where GDOP < 6.0, a typical mask value in DOP analysis), minimize 
space segment cost, minimize station-keeping ∆V, and maximize robustness to 
single-satellite failure. The GDOP, cost, and robustness objectives are often con-
sidered in GNSS constellation design. The station-keeping ∆V objective is justified 
given the magnitude of third-body perturbations in lunar orbit and the need to 
identify ∆V-efficient, as well as operationally feasible, designs.

Variance-based sensitivity analysis is conducted for every design decision and 
objective metric to capture first-order effects and important design variable interac-
tions. Finally, we identify design rules that characterize common features of opti-
mal solutions and analyze the main design trade-offs. In particular, in the context 
of a no-maneuver scenario, we investigated if the lack of a propulsion system could 
lead to mass and cost savings.

The rest of this article has the following structure. Section 2 describes the meth-
odological approach and algorithms used to explore the design space of the prob-
lem and interpret the results. First, the complete multi-objective optimization 
formulation is introduced with a brief discussion on how the design space is con-
strained based on the underlying assumptions. Second, the performance, cost, and 
robustness metrics are derived. Third, the Multi-Objective Evolutionary Algorithm 
framework (Borg MOEA [Hadka & Reed, 2013]) is succinctly described along with 
its parameterization and indicator for search performance. Finally, the approach 
to sensitivity analysis and design rule mining is discussed. Section 3 presents 
and examines the results obtained in scenarios with and without station-keeping 
maneuvers. Section 4 reports the results from the sensitivity analysis and rule 
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mining studies. Finally, Section 5 provides the conclusions, limitations, and sug-
gestions for future work.

2  METHODS

The research method used in this article is shown in Figure 1. First, the problem 
formulation is introduced by defining the design decisions and their range of valid-
ity. Second, the multi-objective optimization algorithm evaluates and ranks each 
design in terms of five figures of merit. 

In particular, Borg MOEA is used to explore the objective space based on the inputs 
from high-fidelity orbit simulations—done in NASA’s General Mission Analysis 
Toolbox (GMAT [NASA, 2019]). This software setup runs in a high-performance 
computer cluster with hybrid parallelization (OpenMP and Message Passing 
Interface [MPI]). Finally, we map the sensitivity of results to design decisions and 
key model parameters and identify frequent data patterns in the form of design 
rules.

2.1  Problem Formulation

Informed by the results obtained in our previous work (Pereira & Selva, 2020), 
we adopted a more general problem formulation that allowed for the consideration 
of hybrid constellations. In this study, hybrid constellations are assumed to con-
sist of two different Walker constellations, which allowed for an interesting mix of 
orbital patterns (e.g., polar and equatorial orbits).

To have a manageable number of design variables and reduce the size of 
the design space, the following conditions are imposed: First, the argument of 

FIGURE 1 Research methods and software setup
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periapsis (ω) is restricted to 90 or 270 degrees. This choice of values allows the 
consideration of frozen orbits existing at a wide range of orbit altitudes (as long as 
the periapsis altitude is greater than the Moon radius); frozen orbits conditions at 
ω = 0°, 180° exist only up to a maximum altitude of ~1,600 km (Nie & Gurfil, 2018).  
Second, the number of planes (P) must be a factor of the number of satel-
lites  (T). Third, satellites in the same orbital plane are equally spaced in that 
plane. Fourth, the relative phasing of satellites in adjacent orbital planes (F) can 
only take integer values between 0 and P-1 as defined in a Walker delta pattern 
(Walker, 1977). 

The design space is defined by a combined 14 continuous and discrete vari-
ables as shown in Table 1. Borg MOEA is configured to return real design vari-
ables in the 0–1 range. The continuous variables are scaled according to the 
range of values shown in Table 1. The continuous-to-discrete conversion is 
shown in Table 2. 

The range of semi-major axis values is between two and 10 times the mean 
lunar radius (1,737 km), which seems reasonable given that existing GNSSs are 
characterized by nearly circular orbits at an altitude of ~3 Earth radii. The range 
of eccentricity values is in the interval [0–0.7] to allow for the consideration of 
frozen elliptical inclined lunar orbits (Ely, 2005). The number of satellites of the 
second constellation (variable T2) could be used to define hybrid constellations 
(T2 > 0), Walker constellations with more than 30 satellites (T2 > 0 & X = X2, 
where X represents any of the orbit parameters [SMA, P, F, e, i, ω]), and Walker 
constellations with up to 30 satellites (T2 = 0), in which case only the first seven 
variables would be considered for evaluation. At every generation, the offspring 
generated by Borg MOEA is evaluated in terms of five objectives, as described in 
the Section 2.2. 

To best appreciate the importance of station-keeping maneuvers in the overall 
performance, we considered a station-keeping maneuvers scenario (Scenario I) 
and a no-station-keeping maneuvers scenario (Scenario II). 

In scenario II, the station-keeping ∆V and robustness metrics were replaced by 
a minimizing objective metric: GDOP degradation. This metric was computed as 
the absolute slope of the linear least-squares fit on the monthly GDOP values (98th 
percentile) obtained over five years. This linear regression was sufficient to capture 
the overall GDOP trend. 

TABLE 1 
Architecture Design Decisions

Design decisions
 (constellation 1)

Value range
Design decisions
(constellation 2)

Value range

1 Semi-major axis 
(SMA)

[3474, 17370] km
8

Semi-major axis 
(SMA2)

[3474,17370] km

2 Number of 
satellites (T)

{8, 9, …, 30}
9

Number of 
satellites (T2)

{0, 1, …, 10}

3 Number of planes 
(P)

{1, …, T}
10

Number of planes 
(P2)

{1, …, T2}

4 Phasing (F) {0, …, P-1} 11 Phasing (F2) {0, …, P2-1}

5 Eccentricity (e) [0 – 0.7] 12 Eccentricity (e2) [0 – 0.7]

6 Inclination (i) [0 – 180] deg 13 Inclination (i2) [0 – 180] deg

7 Argument of 
periapsis (ω)

{90, 270} deg
14

Argument of 
periapsis (ω2)

{90, 270} deg
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Finally, in Scenario I, we analyzed the impact of weak GNSS signal tracking from 
Earth on GDOP levels at the lunar surface. Earth GNSS signals have proven desir-
able not only for improving GDOP but also for time transfer and synchronization 
of Earth and lunar GNSS time references.

2.2  Figures of Merit

Five figures of merit or metrics are used as objectives in the multi-objective opti-
mization, including three performance metrics (GDOP, GDOP availability, and 
station-keeping ΔV), space segment cost, and robustness to single-satellite failure. 

2.2.1  Performance

The performance metrics used in this study require detailed knowledge of satel-
lite orbit position around the Moon over a long period of time. Thus, a high-fidelity 

TABLE 2 
Continuous-to-Discrete Variable Conversion

variable continuous discrete example

T xT ∈[0,1] T = ⋅ +( )�round xT 22 8 xT = → =0 6 21. � T

T2 xT2
 ∈[0,1] T2 2

10= ⋅( )round xT xT2
0 5 52= → =. T

P xP ∈[0,1] 

Opt = int [1,T] AND factor (T)

N Optopt = # ; x x NP P opt
'
= ⋅

Divide [0, Nopt] in Nopt equal intervals 

P = interval where x fallsP
' �

xP = 0 6.

Opt = {1,3,5,15} 

N xopt P= =4 2 4�; .'

P = 3 ; {[0,1],]1,2],]2,3],]3,4]}

P2 xP2
 ∈[0,1] 

if then else� � �T P2 22 1< =

Opt = int ([1, T2]) AND factor (T2)

N Opt x x Nopt P P opt= = ⋅# �;� '
2 2

Divide [0, Nopt] in Nopt equal intervals 

P2 2
= interval where x fallsP

' �

xP2
0 7= .

Opt = {1,5} 

N xopt P= =2 1 4
2

�;� .'

P2 = 2 ; {[0,1],]1,2]}

F xF ∈[0,1] 

Opt = int [0, P − 1]

N Opt x x Nopt F F opt= = ⋅# �;� '

Divide [0, Nopt] in Nopt equal intervals 

F = interval where x fallsF
' �

xF = 0 2.

Opt = {0,1,2} 

N xopt F= =3 0 6�;� .'

F = 1 ; {[0,1],]1,2],]2,3]} 

F2 xF2
 ∈[0,1]

Opt = int [0, P2 − 1]

N Optopt = # �

x x NF F opt2 2

'
= ⋅

Divide [0, Nopt] in Nopt equal intervals 

F2 2
= interval where x fallsF

' �

xF = 0 5.

Opt = {0,1}

N xopt F= =2 1
2

�;� '

F2 = 1 ; {[0,1],]1,2]} 

ω xω ∈[0,1] if round x then�
ω( ) = 0 ω = 90

else ω = 270
xω = 0.4
ω = 90

ω2 xω2
 ∈[0,1] if round x then� � �

ω2
0( ) = ω2 = 90

else ω2 = 270
x
ω2

0 6= .
ω2 = 270
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orbit propagation software (GMAT) was used to define the inertial lunar frame, 
propagate the satellite orbits, and implement the station-keeping maneuver strat-
egy. The adaptive step Prince Dormand 78 integrator (eighth order Runge-Kutta) 
was used to propagate the orbits under the following force model: a) Lunar LP-165-P 
gravity field model with spherical harmonics up to degree and order 10; b) Earth’s 
third-body perturbations; and c) solar radiation pressure using the default spher-
ical shape and reflectivity. The orbits were defined in an inertial frame centered 
at the Moon and referenced to the lunar equator at the J2000 epoch. The orienta-
tion of the Moon was defined by Euler angles given in the DE-421 JPL planetary 
ephemeris.

GDOP
GDOP is used to provide a measure of satellite geometric diversity on the lunar 

surface. GDOP is important because this geometry factor is multiplied by the user 
equivalent range error (UERE) to produce an estimate of the user 3D position/time 
solution. Thus, we sought satellite constellations that could consistently produce 
low GDOP values. In this article, we make no assumptions in terms of the UERE, 
but the error budget is likely to be driven by satellite clock and ephemerides errors, 
especially if ground and control segment operations are made solely from Earth. 

The range error component due to the Moon’s ionosphere is expected to be 
small but not negligible (Stubbs et al., 2011). Investigations from Luna 19 and 22 
spacecraft radio occultation measurements indicated that a high concentration 
of electrons could result from photoemission and secondary emission from exo-
spheric dust (Stubbs et al., 2011). The same study showed that despite its highly 
variable nature, these electron concentrations could be ~103 cm−3 at altitudes of up 
to 10 km, which is similar to the values present in Earth’s Ionospheric D region.

In this study, GDOP was computed assuming a 5o elevation angle and a user 
grid formed by 500 equidistant points on a sphere with radius equal to 1,737 km 
(mean lunar radius). Despite the effort to correct for orbit perturbations, GDOP 
degradation over time is to be expected if station-keeping maneuvers prove to be 
ineffective. Therefore, the GDOP was computed at 480 points in time (obtained 
with Latin Hypercube Sampling [LHS]) over one year—long enough to capture the 
eventual GDOP degradation. 

The GDOP metric is defined as the 98th percentile of all GDOP samples (in space 
and time) with a value less than six. This metric is particularly useful in identi-
fying the designs with the best geometric diversity among the global constella-
tions (GDOP availability ≅ 100%). The C++ implementation used a closed-form 
equation for GDOP computation that used less operation counts than a typical LU 
matrix inversion (Doong, 2009). Finally, orbit designs that would have led to sat-
ellite collision with the lunar surface or to satellites escaping the lunar’s sphere of 
influence were penalized with a GDOP equal to 10.

GDOP Availability
The GDOP availability metric is an indication of the systems’ ability to provide 

usable service as defined by a minimum acceptable target value (GDOP = 6.0). This 
metric is used to identify global designs, which are characterized by a GDOP avail-
ability ≅ 100% and thus can achieve GDOP ≤ 6 at any time and location on the lunar 
surface. The GDOP availability metric was computed as the percentage of GDOP 
samples—out of a total of 240,000 GDOP samples generated (500 grid locations at 
480 points in time)—with a value equal or less than six.
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Station-Keeping ∆V
This metric provides an indication of the operational feasibility of different 

orbit designs. Station-keeping ∆V magnitudes were computed analytically using 
equations from Schaub and Alfriend (2001) that were based on mean Keplerian 
orbit parameter errors. These equations were incorporated in the orbit propaga-
tion script and executed as part of the mission sequence in GMAT. The simplicity 
of this method is suitable for implementation in autonomous systems and can be 
executed with inter-satellite links and little ground support. 

Additionally, we found this impulse firing strategy to be computationally faster 
and more robust than GMAT’s numerical approach to maneuver estimation. The 
drawbacks of this approach are the sensitivity to orbit parameter errors, which 
must remain low. Since the maneuvers are computed for a specific orbit position 
(e.g., the periapsis), it is important to choose a small maximum orbit propagator 
step size (e.g., 300 s which is ~0.5% of the orbital period at 6,000-km altitude). 

The control strategy—implemented in GMAT as a sequence of impulsive maneu-
vers—used the mean orbit element errors. These errors were measured every 24 
hours at an arbitrary point in the orbit and averaged over a period of seven days—
the sensitivity analysis presented below considers variations in the period used to 
compute the mean errors. 

The control vector, u, is defined in a local-vertical–local-horizon (LVLH) frame 
with components in the radial direction, ur, orbit normal direction, uh, and in 
a direction perpendicular to the preceding two, uθ. The sequence starts with a 
maneuver in the orbit normal direction at the equator crossing (ascending node) to 
correct for orbit inclination errors (δ i) and with magnitude given by Equation (1):

			      ∆ =
⋅

⋅ ( )
v i h

requatorh
δ

θcos
� (1)

where r is the scalar orbit radius, h is the orbit angular momentum, and θ is the 
true latitude angle defined as the sum of the argument of periapsis and the true 
anomaly.

Second, a maneuver in the orbit normal direction at the pole—after 25% of the 
orbit period has elapsed—is executed to control the right ascension of the ascending 
node (RAAN) error (δ Ω) with magnitude given by Equation (2):
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Third, at periapsis and apoapsis, maneuvers in the uθ direction are executed to 
control semi-major axis error (δa) and eccentricity (ECC) error (δe) with magni-
tudes given by equations (3) and (4):
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where n is the mean motion and η = −1 2e  is the non-singular eccentricity. 
Finally, the argument of periapsis (AOP) error (δω) control maneuver is done in 
the radial direction with magnitudes given by Equations (5) and (6): 
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Equations (1)–(6) have been taken from Schaub and Alfriend (2001). 
Equations (5) and (6) have been excluded from the maneuver sequence for orbit 
designs with an eccentricity value less than 0.1, given that there were no noticeable 
improvements in station-keeping performance. Finally, the objective metric is the 
average of the station-keeping ∆V calculated over one year across all satellites in 
the constellation.

2.2.2  Space Segment Cost

The costs associated with the deployment of a GNSS are typically comprised of 
space segment costs and control segment costs. Depending on the design assump-
tions, the control segment costs—including ground infrastructure and operations—
could dominate the overall budget in the timeframe of the satellite’s lifetime. 

However, given the scope of this article, the cost metric analysis was limited to 
space segment costs that were based on architecture-distinguishing parameters—
in other words, control segment cost (and a significant portion of launch costs) 
would be the same for all architectures considered and thus would just be a con-
stant added to all cost values. 

Two key variables driving space segment cost are the number of satellites in the 
constellation, N, and the satellite dry mass, mdry. Satellite dry mass is derived from 
propellant mass and power consumption, which are estimated from first princi-
ples. Once satellite dry mass is determined, the final satellite development and pro-
duction costs can be estimated based on the USCM8 cost estimating relationships 
(CER) as presented in Wertz and Everett (2011). 

The first term in Equation (7) provides an estimate of non-recurring costs (devel-
opment plus one qualification unit). The Standard Error of the Estimate (SEE) is 
47% inside an mdry range of validity of 114–5,127 kg. The second term corresponds 
to the total recurring costs for the N flight units adjusted by a learning factor (S), 
which is assumed to be 95%. The recurring cost CER has a SEE of 21% inside an 
mdry range of validity of 288–7,398 kg.

 Cost FY k m mspace segment dry dry�
.�$ . � .2010 110 2 289 5 0 716






= ⋅ + ⋅(( ) ⋅

+( )N S1 2�log /log � (7)

Costs obtained from Equation (7) were converted to FY2020 dollars by applying 
a conversion ratio of 1.1905—the consumer price index inflation between January 
2010 and January 2020 as reported by the U.S. Bureau of Labor Statistics.

The dry mass estimate that was obtained from an empirical model—derived from 
data about past communication and navigation satellites—is a function of payload 
power, PPL and propellant mass, mprop (Springmann & De Weck, 2004), as shown 
in Equation (8). This model is valid for cases where propellant mass is at most 45% 
of the spacecraft’s wet mass, which, given our assumptions, can be achieved if ∆V 
does not exceed ~1 km/s per satellite/year (architectures that exceed this value are 
considered infeasible). 

The final satellite dry mass estimate (mdry) was obtained through an iterative 
process that started with an initial mass estimate (mdry

init ) based on payload power 
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consumption (PPL) alone (Equation [10]). The propellant mass was obtained via the 
rocket equation (Equation [9]) with the mass estimate from the previous iteration, 
which was then used to calculate an updated mdry value. This method typically 
converges in less than eight iterations to the third decimal digit and produces rea-
sonable estimates of actual lunar mission data—with an estimate error of 12.6% for 
the Lunar Reconnaissance Orbiter (LRO) and 10.2% for the Chang’e 2 probe. 

		  m P m mdry PL prop prop= ⋅ +( ) −38 0 14
0 51

.
.

� (8)

Propellant mass is then calculated based on the station-keeping ∆V values 
obtained from GMAT simulations over one year and assuming hydrazine mono-
propellant with a specific impulse (Isp) of 227 s. Chemical propulsion is preferable 
to electric propulsion (despite the higher Isp) in this case since the burn duration 
is significantly shorter and satellite availability can be maximized—GNSS control 
segments typically declare satellites unhealthy during such maneuvers.

		  m m V
Ipropellant dry

init

sp
=

∆












−
















exp

.9 8
1 � (9)

			   m Pdry
init

PL= ⋅7 5 0 65. . � (10)

Link budget equations were used to estimate the transmit power level required to 
achieve a minimum received signal power of -150 dBW (similar to the performance 
level of the modern GPS L5 signal). The transmit power was computed assuming 
a frequency of 1,575.42 MHz (L1), a satellite antenna gain of 13 dBi and the maxi-
mum satellite-user range for a user on the lunar surface. Data from the Galileo Full 
Operational Capability (FOC) satellite payload components were used as a refer-
ence in obtaining PPL, which is a function of the transmitter power (see Pereira and 
Selva [2020] for details). The entire cost estimation process can be seen in Figure 2.

As per the International Telecommunication Union (ITU) recommendations 
(2003), the choice of signal frequency in a more detailed lunar GNSS design 

FIGURE 2 Satellite development and production cost estimation
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requires careful consideration of the impact of interference on radioastronomi-
cal measurements on the shielded zone of the Moon. In particular, the 300 MHz 
to 2 GHz range—heavily used by satellite navigation in Earth orbit—should be 
reserved for radio astronomy observations in view of the great astrophysical impor-
tance of red shifted neutral hydrogen (HI) and hydroxyl radical (OH) observations 
(International Telecommunication Union, 2003). 

In the present model, changing the transmit frequency from L1 to GNSS S-band 
(e.g., 2,485 MHz) only affects the space segment cost metric. Link budget calcula-
tions show a 4-dB larger free space loss in S-band with regard to L-band at an alti-
tude of two lunar radii. Considering the S-band, the results show a ~ 2–3% increase 
in space segment costs across all designs—well within the cost uncertainty range—
and identical Pareto optimal solutions. Thus, the findings in this article remain 
valid for L- and S-band.

2.2.3  Robustness to Single-Satellite Failure

GNSS performance is dependent on the user ability to track various, geo-
metrically dispersed satellite signals simultaneously—as measured by GDOP. 
A single-satellite failure (SSF) can have a big impact on GDOP at a certain user 
location, and the magnitude of the impact depends on the constellation design. 
Robustness to satellite failure is, therefore, a desirable characteristic in GNSS 
constellation design. To quantify the overall impact of SSFs on GDOP availability 
(GDOPAvail), we use Equation (11). Thus, smaller values of ImpactSSF lead to more 
robust architectures. 

		  Impact
GDOP GDOP

GDOPSSF
Avail Avail

worst SSF

Avail
=

−
� (11)

2.3  Borg MOEA Framework

Our approach to this problem can be framed in the context of a-posteriori 
decision-making techniques in which the decision maker’s preferences are articu-
lated following the search for Pareto optimal solutions and the discovery of design 
trade-offs (Coello Coello et al., 2007). In this context, the Borg MOEA framework 
eliminates the need for subjective preference elicitation and allows the consider-
ation of discontinuous and nonlinear characteristics of the environment, which 
are subject to strong simplification in direct method formulations.

Borg MOEA is a hyper-heuristic framework designed to study many-objective, 
multimodal search problems. To overcome the challenges of multi-objective search, 
Borg MOEA features auto-adaptive operator selection, ε-box dominance archiving, 
auto-detection of search stagnation, and randomized restarts. Since the search per-
formance depends on the crossover operator strategy, the algorithm starts by apply-
ing the following operators with equal probability: a) differential evolution (DE; 
Storn & Price, 1997); b) simulated binary crossover (SBX; Deb & Agrawal, 1995); c) 
parent centric crossover (PCX; Deb et al., 2002); d) simplex crossover (SPX; Tsutsui 
et al., 1999); e) unimodal normal distribution crossover (UNDX; Kita et al., 1999); 
and f) uniform mutation (UM). 

As the search progresses, these probabilities are then updated to reflect the ratio 
of the number of solutions in the ε-box dominance archive contributed by each 
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operator over the total number of archived solutions. Additionally, polynomial 
mutation is used to mutate the offspring generated by these operators. 

Offspring is generated by one of the crossover operators after the algorithm ran-
domly selects one parent from the archive and the remaining from the population 
using tournament selection. The new solutions are evaluated and added to the pop-
ulation if they dominate at least one member. Offspring is included in the archive 
if it dominates other solutions in a portion of objective space given by a hyper-box 
with side length epsilon, ε, (ε-box dominance). 

A high-performance computer cluster with 32 compute nodes was used to 
leverage the large-scale parallelization features of Borg MOEA in the standard 
master-worker configuration (Hadka & Reed, 2015). The head node assigns func-
tion evaluations to the available compute nodes via the message passing interface 
(MPI) standard and each compute node distributes time-intensive tasks, such as 
orbit propagation, over the available cores (OpenMP). 

Since the algorithm is stochastic and dependent on pseudorandom processes in 
its initial population and search operators, we exploited five replicate runs of the 
design optimization run with different starting seeds. The objective values were 
scaled to fall in the [0–1] interval and the ε-values—important to determine the 
search resolution in Borg MOEA—chosen for the unscaled objective variables 
were: εGDOP = 0 06. , εAvail = 0 2. %, εCost = $30M FY20, εGDOP = 1 m/s r sat/yearpe ,  
and εImpact SSF = 1%. 

These epsilon values provided a high level of resolution for performance and 
robustness metrics. The relatively high value of εCost was justified by the large 
uncertainty associated with the cost estimate as described previously. Borg MOEA 
was initialized by a population of 100 candidates using an LHS initialization strat-
egy. Parameters associated with the crossover, mutation, and archive configuration 
were set to default values. For more details on the Borg MOEA, see Hadka and 
Reed (2013).

2.3.1  Search Performance

In this article, the hypervolume indicator (Zitzler & Thiele, 1998) is used to 
evaluate search performance and judge whether the algorithm is converging with 
sufficient solution diversity, while preserving non-dominated solutions. Given a 
point set in S d  R⊂ , where d is the number of objectives, the hypervolume indi-
cator maps S to the measure of the region dominated by S and bounded above 
(assuming minimization) by a given reference point, r d  R∈  (Guerreiro et al., 
2022). 

Thus, the hypervolume indicator is a scale-independent and intuitive indica-
tor that reflects a combination of convergence and diversity—an example of the 
hypervolume indicator in 2D is given in Figure 3. Its main weakness is the high 
computational cost of calculating hypervolumes on high-dimensional problems. In 
this study, we use a recursive, dimension-sweep algorithm with a time complexity 
of O n nd−( )2 log . (Fonseca et al., 2006). 

2.3.2  Data Mining

Data mining algorithms allow for the discovery of relationships and patterns in 
data. The understanding of these relationships and patterns enables more credi-
ble and informed design decisions. In this article, first, variance-based sensitivity 
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analysis is used to uncover relationships between figures of merit and design 
decisions. The robustness of results is also assessed by introducing variations in 
key model parameters. Second, a complementary association rule mining tech-
nique is used to reveal data patterns associated with interesting regions in objec-
tive space. 

2.3.3  Sensitivity Analysis 

Sensitivity analysis is performed to a) shed some light into the most important 
design decisions, and b) assess the robustness of results to variations in two key 
model parameters. For the latter, we first consider the impact of the frequency of 
station-keeping maneuver corrections. In particular, we vary the number of days 
used to compute the average of the accumulated daily orbit element errors. This 
period is important since it can effectively eliminate high-frequency oscillations 
and avoid unnecessary orbit corrections. 

The actual maneuver frequency depends on the orbit propagation time from the 
point in the orbit where the mean value is calculated until the satellite achieves 
the intended maneuver location. We then start to consider the impact of increas-
ing the degree and order of the lunar gravity model. GMAT is configured to use 
degree/order 10 in the LP165P gravity model, which is justified by the important 
savings in computational time and because the minimum orbit altitude considered 
is 3,474 km—at this altitude the Earth’s third-body perturbations are greater than 
J2. Nevertheless, it is important to assess the impact of the simplified model on the 
results.

To identify the most important design decisions, we assessed the sensitivity of 
the figures of merit (Y) to the input design decisions (X) by computing Sobol’s 
first-order and total-effect indices (Sobol, 2001). The first-order index (Si) represents 
the main effect contribution of each input factor (design decision) to the variance 
in the output variable (figure of merit) and the total-effect index ( )STi  measures 
first-order plus all higher-order effects. The difference between total-effect and 
first-order indices captures the effects of interactions and provides information on 

FIGURE 3 Example of hypervolume result in 2D: The region dominated by the point set 
(p1–p5) and bounded above by reference point r (green area) 
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the nonadditive features of the model. It can be shown that the total-effect index 
can be efficiently computed by conditioning the output variable with respect to 
all factors but one (i), X~i (Saltelli, 2002). The indices are computed based on the 
variance of the conditional expectation V [E(Y |Xi)] and the unconditional variance 
V (Y), as shown in Equations (12) and (13):

			      S
V E Y X

V Yi
i

=
[ ( | )]

( )
� (12)

			     S
V E Y X

V YT
i

i
= −1

[ ( | )]
( )

~ � (13)

Input samples for these calculations are generated with Monte Carlo sampling 
and evaluated with the models described earlier in this section. The error quan-
tification of Sobol indices’ estimates is done via the bootstrap method (Efron, 
1979). This statistical technique consists of resampling with replacements from 
the original data set and, thus, provides a simple way of obtaining empirical con-
fidence intervals without the need for additional (expensive) model evaluations. 
Variance-based sensitivity analysis results are produced in MATLAB with the 
UQLab framework for uncertainty quantification (Marelli et al., 2019; Marelli & 
Sudret, 2014).

2.3.4  Rule Mining

Association rule mining is an unsupervised learning method that seeks to extract 
statistical dependencies between binary variables from a database consisting of var-
ious examples (Agrawal et al., 1993). For example, a rule A → C would suggest that 
examples from the database that exhibit property A also tend to exhibit property C. 
In the context of tradespace exploration, these rules typically map portions of the 
design space (e.g., pure Walker constellations with 20+ satellites) to a user-defined 
region of interest in objective space (e.g., high GDOP performance; Bang & Selva, 
2016). 

In this study, we define a reasonable region of interest characterized by the fol-
lowing levels of cost and performance: a) GDOP availability > 98%; b) ∆V < 250 m/s 
per sat/year; and c) the total number of satellites is equal or less than 30. The GDOP 
availability threshold is consistent with modern GNSS performance metrics. Based 
on preliminary analysis of the results, the ∆V limit was chosen to favor efficient 
designs (and longer design lifetimes) and the threshold on the number of satellites 
was chosen to eliminate constellations that were considered too large and costly. 
Features involving being close to the approximate Pareto front and data quartiles—
which express no subjective preference in the definition of the region of interest—
are also presented. 

The first and most important step in association rule mining is finding frequent 
patterns (FP). Given the large size of the present data set and the number of pos-
sible patterns of various lengths, it is important to use computationally efficient 
algorithms. Thus, we use the FP-growth algorithm (Han et al., 2000) since it oper-
ates on a highly compact FP-tree data structure and avoids the need for candi-
date generation (FP-growth outperforms the standard a-priori algorithm by several 
orders of magnitude [Tan et al., 2018]). The results were produced in Python using 
the Mlxtend library (Raschka, 2018) and are reported in terms of typical associa-
tion rule mining metrics: confidence and lift (Agrawal et al., 1993), as shown in 
Equations (14) and (15):
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		  confidence A C
support A C
support A

( )
( � )

( )
�,� : [ , ]→ =

Λ

range �0 1 � (14)

		  lift A C confidence A C
support C

( ) ( )
( )

�,� : [ , ]→ =
→ range �0 ∞ � (15)

where A represents the antecedent of a rule; C, the consequent. Support of an item-
set represents the proportion of that itemset in the database. The confidence of a 
rule A → C is the fraction of elements in the antecedent that are also in the conse-
quent. The lift of a rule A → C measures how many times more often A and C occur 
together than expected if they were statistically independent. 

3  RESULTS

This section presents the results obtained, using the formulation shown in 
Table 1, for two scenarios: Scenario I with station-keeping maneuvers and Scenario 
II without station-keeping maneuvers. In Scenario I, we consider the minimization 
of station-keeping maneuver ∆V as one of the five objectives. In Scenario II, we seek 
to identify quasi-frozen orbit designs that could produce good long-term (five-year) 
satellite geometric diversity without the need for station-keeping maneuvers. Thus, 
GDOP degradation replaces station-keeping ∆V as a minimizing objective. Results 
from both scenarios are contrasted and design trade-offs are evaluated in terms of 
GDOP performance and overall space segment cost. 

3.1  Scenario I: Station-Keeping Maneuvers

Results produced by five different seeds of the Borg MOEA are presented in this 
section—representing an exploration of approximately 250,000 architecture evalu-
ations. Figure 4 shows the aggregate hypervolume indicator mean (line) and mean 
+/– 1 standard deviation (shade) values across the five seeds as a function of the 
number of function evaluations. 

FIGURE 4 Aggregate Hypervolume indicator results across five seeds; line (shade) indicates 
the mean (+/– 1 standard deviation) values across five different seeds.
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The number of function evaluations (NFE) required for the algorithm to achieve 
40% of the maximum hypervolume on average is approximately 40,000. The mono-
tonically increasing nature of the plot demonstrates the algorithm’s theoretical 
guarantee of not losing non-dominated solutions over the duration of its search.

Figure 5 presents the solutions in a four-objective subspace (cost, GDOP, GDOP 
availability, and station-keeping ∆V) for architectures with GDOP availabil-
ity metric greater than 50%. Every design is marked by a dot that is color-coded 
by station-keeping ∆V values in the interval [0 – 400] m/s per satellite/year. The 
desired solutions are located in the portion of the Pareto-front (larger dots) closer 
to the ideal point (*) and shown in lighter color. Design solutions characterized by 
a GDOP availability larger than 98% exhibit GDOP values in the range [1.85–5.39] 
and costs in the range $400-$800M FY20 with lower (better) GDOP values being 
associated with higher costs. 

While choosing among non-dominated architectures requires expressing a sub-
jective preference (e.g., marginal rates of substitution among the objectives), for 
the purposes of the analysis, we focus on the shaded region shown in Figure 6, 
an area of high availability (greater than 98%) where interesting trade-offs exist 
between constellation size (cost), GDOP performance, and station-keeping ∆V. The 
architectures in this shaded region with at most 27 satellites are shown in detail in 
Figure 7.

Figure 7 shows the fuzzy Pareto front architectures with ranking less or equal 
than three (a solution with rank I is dominated by i-1 other solutions) that produce 
a GDOP availability greater than 98% and station-keeping ΔV less than or equal to 
250 m/s per satellite/year. The marker size is inversely proportional to the required 

FIGURE 5 Solutions in four-objective space (cost, GDOP, availability in three axes, and 
color-coded by station-keeping ΔV) for architectures with a GDOP availability metric greater than 
50%. The robustness metric values are not shown. Every dot represents a distinct architecture. 
Pareto-front architectures are shown in larger dots. The ideal point is shown as a black asterisk in 
the front, lower-right corner.
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FIGURE 6 Solutions in the fuzzy Pareto front (Pareto ranking ≤ 3) shown in three-objective 
space (color-coded by space segment cost) with a GDOP availability metric greater than 50%. 
Marker shape indicates whether the architecture is hybrid (circle) or pure Walker (cross). The 
shaded rectangular area, shown in detail in Figure 7, contains all constellations with at most 
27  satellites and producing a GDOP availability > 98%. Highlighted architectures are those in 
Table 3 with more than 27 satellites.

FIGURE 7 Solutions in the fuzzy Pareto front (ranking ≤ 3) with a GDOP availability greater 
than 98%, station-keeping ΔV < 250 m/s/sat/year, and a total constellation size of less than or 
equal to 27 satellites; the marker color corresponds to the total number of satellites while the 
marker type indicates whether the architecture is hybrid (circle) or pure Walker (cross). The 
marker size is proportional to station-keeping ΔV. Highlighted architectures are those in Table 3 
with up to 27 satellites.
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station-keeping ΔV (grouped in bins with a resolution of 25 m/s). The marker color 
differentiates the total number of satellites, and the marker type is used to distin-
guish between hybrid (circle) and pure Walker (cross) constellations. 

From Figure 7, it is apparent that most architectures in this region are hybrid 
and that, as expected, there is a trade-off between the number of satellites (and 
thus space segment cost) and GDOP performance, with best-performing solutions 
on the top-right corner requiring the highest number of satellites. The best GDOP 
performing solution (GDOP = 1.85 and GDOP availability = 100%) and one of the 
most expensive is a hybrid constellation with a total of 40 satellites (Arch ID 15). 

Additionally, more ∆V-efficient designs are located predominantly on the 
left side (larger GDOP), which indicates a trade-off between ∆V-efficiency and 
GDOP performance. In particular, satellites in retrograde near-equatorial (orbit 
inclination ~178 deg) orbit are the most ∆V-efficient. Thus, hybrid designs with 
a few satellites in these orbits (and the remainder in polar orbit) tend to be more 
∆V-efficient but exhibit worse GDOP than polar Walker designs for the same con-
stellation size.

Pure Walker constellations shown with a cross mark are among the best solu-
tions. The architectures highlighted with a green cross are composed of 24 satel-
lites and constitute a reasonable compromise between constellation size (cost) and 
performance—although this judgment depends on the decision-maker’s willing-
ness to pay for additional performance. Also shown are architectures with 27 sat-
ellites (blue cross), which are sufficient to achieve close to 100% GDOP availability. 
A common feature that emerges among the pure Walker constellations depicted in 
this plot is that they contain three orbital planes—eight satellites per plane (green); 
nine satellites per plane (blue). This feature is captured in one of the rules identi-
fied in the rule mining section.

Table 3 presents fuzzy (ranking 3) Pareto-front architectures that achieve GDOP 
availability 98% and a station-keeping ΔV ≤ 250 m/s per satellite/year. For ref-
erence, Architecture ID 14 is the best GDOP performing the 30-satellite Walker 
constellation and Architecture ID 15 is the best GDOP performing architecture 
overall—both of these reference designs produce a station-keeping ΔV > 250 m/s 
per satellite/year. Since many architectures satisfy the requirements stated above 
(as seen in Figure 7), Table 3 presents the solutions with best GDOP performance 
for different total number of satellites.

Figure 8 shows a visualization of the satellite constellation of Architecture ID 5 
with 24 satellites in near-circular polar orbit and distributed among three orbital 
planes—a common characteristic among optimal designs.

The visualization of orbital design parameters for pure Walker constellation 
solutions (~40,000) in design space, as shown in Figure 9, provides additional 
insights—hybrid solutions are excluded from the plot because different constel-
lations in the architecture have different orbital parameters, so it is impossible to 
assign a single set of orbital parameters to the architecture. 

First, the algorithm converges to solutions with very small (median = 4.6 × 10−3) 
orbit eccentricity—20% of solutions have ECC < 0.01 in the first 100 function eval-
uations; 62% in the first 600 evaluations—which means that the optimal orbits 
tend to be nearly circular. Second, near-circular orbits at polar (i ≈ 90°) and equa-
torial (i ≈ 0°, 180°) regions are characterized by low values of station-keeping 
∆V (< 300 m/s per satellite/year), especially when the semi-major axis is below 
10,000 km. These observations help interpret the results and characteristics of opti-
mal Pareto-front architectures in Table 3. 

The right ascension of the ascending node (RAAN) plays a non-negligible role 
in the overall station-keeping ∆V budget as seen in Figure 10. For example, for 
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Architecture ID 5, the ∆V component attributed to ∆v
poleh  (from Equation [2]) that 

is used in RAAN corrections can vary from an annual 122 m/s at 90 degrees to 
just 10 m/s at 210 degrees RAAN. Thus, constellations with multiple orbital planes 
(and thus different RAANs) likely have satellites with different ∆V requirements, 
depending on their particular spatial orientation.

FIGURE 9 Pure Walker solutions in design subspace (color-coded by station-keeping ΔV). 
Every dot represents a distinct architecture.

FIGURE 8 Visualization of Arch ID 5 satellite constellation (GMAT)
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As mentioned in the previous section, all GDOP calculations were done for a 
one-year simulation period due to computational reasons, since the total number 
of function evaluations was very high (250,000). Figure 11 presents a map of the 
98th percentile of GDOP for a few selected designs over a period of five years—and 
six months for comparison. 

The GDOP performance is similar in six-month and five-year periods, which 
means that the station-keeping maneuver sequence is able to maintain satellite 
geometry over a long period of time. In particular, we looked at Architecture IDs 4 
and 5 (Table 3), which had the same overall number of satellites (i.e., 24 satellites), 
but were hybrid and pure Walker constellations, respectively. 

Additionally, we looked at Architecture ID 8 (best 27-satellite Walker), 
Architecture ID 11 (best 30-satellite hybrid), and Architecture ID 14 (best 
30-satellite Walker) to determine the impact on GDOP performance of additional 
satellites. The six-month plot is generated with 240 samples per grid point obtained 
with the LHS method, while the five-year plot contains 2,400 samples per grid 
point. Natural neighbor interpolation (without extrapolation) of the scattered data 
is used to plot the GDOP values over a plate carrée projection of the lunar surface. 

The GDOP plots in Figure 11 also reveal how GDOP performance varies as a 
function of latitude. For example, it shows that designs containing polar orbits 
with at least 24 satellites tend to have great performance (GDOP ≈ 3.0) at the poles 
and mid-latitude regions, but exhibit poorer performance at the equator. However, 
hybrid designs (mixes of equatorial and polar orbits) with a limited number of sat-
ellites in polar orbit can exhibit poorer performance at the poles (e.g., Architecture 
ID 4’s performance over five years). 

The plots in Figure 11 fail to capture the highly dynamic nature of GDOP evolu-
tion over time, which is better appreciated in video format. To quantify long-term 
performance more accurately, the maximum GDOP outage (GDOP > 6.0) duration 
is computed with a five-minute time step over one sidereal lunar month after prop-
agating the orbit for five years. 

The maximum GDOP outages experienced on the lunar surface for Architecture 
IDs 4, 5, and 8 are shown in Figure 12. The designs with 30 satellites (Architecture 
IDs 11 and 14) experienced no outage over the simulation period and are therefore 
not shown in Figure 12. 

Based on the results presented in Figures 11–12 and Table 3, hybrid constella-
tions (e.g., Architecture IDs 4 and 11) have proven to be more efficient in terms of 

FIGURE 10 Variation of station-keeping ΔV versus orbit inclination and RAAN for a design 
with SMA = 5,730 km, ecc. = 5.7e-3, and AOP = 90 deg (as in Arch ID 5 in Table 3).
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FIGURE 11 The GDOP (98th percentile) plot over the lunar surface obtained for a period of 
six months (240 samples) and five years (2,400 samples) for Architecture IDs 4, 5, 8, 11, and 14. 
Similarities between the six-month and five-year plots are an indication of effective station-
keeping maneuvers.
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overall station-keeping ∆V—these efficiency gains can be attributed to satellites 
in equatorial orbits—but do not offer benefits in terms of overall GDOP perfor-
mance when compared to pure Walker constellations (Architecture IDs 5 and 14). 
A 24-satellite Walker constellation (Architecture ID 5) exhibits worse GDOP per-
formance at the equatorial regions with maximum outages of 20 minutes, while 
the hybrid design (Architecture ID 4) has poorer performance at the poles with 
maximum outages of 35 minutes.

The impact of worst-case single-satellite failure objectives can be used to com-
pare the robustness of the candidate constellation IDs 4, 5, 8, 11, and 14. When 
comparing Figure 13 with Figure 12, it is clear that the equatorial regions are the 
most impacted by satellite failure. Architecture ID 14 is an interesting 30-satellite 
Walker design since it produces no GDOP outage. 

Finally, as an example, Table 4 shows two 27-satellite Walker constellations that 
exhibit the best robustness to single-satellite failure objective values. These are 
architectures at lower inclinations—58 degrees (Architecture ID 16), which is typ-
ical of Earth GNSS constellations—or polar constellations at much higher altitude 
(e.g., Architecture ID 17) when compared to the best overall Walker constellation 
(Architecture ID 8). In the case of satellite failure, the impact on GDOP would be 
negligible for Architecture IDs 16 and 17. On the other hand, both of these designs 
required a roughly twofold increase in station-keeping ∆V. 

An incoming navigation signal in the Earth-Moon direction was used in the 
GDOP computation to simulate an Earth GNSS signal. The impact can be assessed 
by comparing Figure 11 and Figure 14 for Architecture ID 8. The largest improve-
ment (decrease) in GDOP is seen in the regions where the signal was most geomet-
rically diverse in relation to the available lunar GNSS signals. These regions are 
located at the equator at 0 degrees longitude—signal at zenith—and near the lunar 
surface periphery, as seen from Earth (low elevation signals).

FIGURE 12 Maximum GDOP outage (GDOP > 6.0) plot over the lunar surface obtained 
over a one-month period after propagating orbits for five years for Architecture IDs 4, 5, and 8
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TABLE 4 
Example of robust architectures to single-satellite failure

ID
SMA
[km]

T P F e
i

[deg]
ω

[deg]
SMA2

[km]
T2 P2 F2 e2

i2

[deg]
ω2

[deg]

GDOP
[98th 

PCTL]

GDOP
Availability

[%]

Space
segment 

cost
[FY20 
$M]

Station-
keeping
ΔV[m/s]

Impact 
of SSF 

[%]

16 5423.1 27 3 2 4.8E-3 58.2 270 — — — — — — — 3.07 100 575.07 583.61 0.02

17 12808 27 3 0 1.6E-2 91.19 270 — — — — — — — 2.57 100 588.56 505.88 0.04

FIGURE 14 Left: GDOP (98th percentile) plot over the lunar surface obtained for a period 
of five years (2,400 samples) for Architecture ID 8 with an additional Earth GNSS signal; right: 
Percentage decrease in GDOP (98th percentile)

FIGURE 13 Maximum GDOP outage (GDOP > 6.0) plot over the lunar surface obtained 
over a one-month period after propagating orbits for five years and considering the worst-case 
single satellite failure
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TABLE 5 
Example of Pareto-front architectures

ID
SMA
[km]

T P F e
i

[deg]
ω

[deg]
SMA2

[km]
T2 P2 F2 e2

i2

[deg]
ω2

[deg]

GDOP
[98th 

PCTL]

GDOP
Availability

[%]

Space
segment 

cost
[FY20 
$M]

GDOP  
degradation[%]

20 9704 26 13 9 1.2E-04 120.4 270 — — — — — — — 4.3 99.1 491 0.17

21 11656 22 11 7 1.0E-04 43.9 90 15557 2 2 1 6.0E-02 16.6 90 4.8 98.0 441 0.19

3.2  Scenario II – No Station-Keeping Maneuvers

Without station-keeping maneuvers, satellites are subject to periodic changes in 
eccentricity that result in large variations in orbit altitude, as seen in Figure 15. 

Out of 35,000 architectures, the best GDOP-performing architectures (GDOP 
degradation < 1%, GDOP availability > 98%) with the lowest number of satellites 
are characterized by higher design SMA values when compared to the optimal 
designs identified in the previous scenario (see Table 5). 

GMAT simulation results show that satellites in an initial circular orbit at an 
SMA lower than ~9,000 km eventually crash into the lunar surface within five 
years. Consequently, the payload power necessary to achieve a received signal 
power level of at least -150 dB anywhere on the lunar surface—computed at the 
maximum orbit altitude observed in a five-year period—is estimated to be 557 W 
per satellite on average for Architecture ID 20 and 421 W for Architecture ID 21. 
These values are significantly higher than the required payload power for satellites 
in Architecture IDs 1–15, which are in the range 316–344 W.

This increase in power requirement drives up satellite mass/size and space 
segment costs. Therefore, savings in fuel mass are offset by payload mass in the 
no-maneuver optimal designs and the resulting space segment costs are equivalent 
(to within 2–3%) to those obtained in optimal designs in the station-keeping maneu-
ver scenario. The GDOP performance of Architecture ID 20 is considerably worse 
than Architecture ID 7 containing the same number of satellites, and the GDOP 
outage can amount to four hours in some locations as seen in Figure 16. These 
findings highlight the important role of station-keeping maneuvers in long-term 
GDOP performance. 

FIGURE 15 Magnitude of the position vector (left), orbit eccentricity (center), and orbit 
inclination (right) evolution over five years for Architecture ID 20
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Figure 17 shows the improvement in GDOP obtained by including Earth GNSS 
signals, in the context of Architecture ID 20. Similarly to the results in Scenario I, 
users in equatorial (+/- 20 degrees longitude) and near-polar regions with an unob-
structed view of the Earth can greatly benefit from such signals, provided that they 
can overcome the problems associated with near-far effects.

4  SENSITIVITY ANALYSIS

This section presents results from sensitivity analysis to both model parameters 
and design decisions that provide a deeper insight into the model. Rule mining 
results showing support for data patterns identified previously in optimal architec-
tures are also presented.

4.1  Sensitivity to Model Parameters

Results from a sensitivity analysis for two important model parameters are 
shown below. First, sensitivity to the approximate maneuver period is assessed. 

FIGURE 16 Left: GDOP (98th percentile) plot over the lunar surface obtained for a period of 
five years; right: Maximum GDOP outage (GDOP > 6.0) time plot over the lunar surface obtained 
over a one-month period after propagating orbits for five years for Architecture ID 20

FIGURE 17 Left: GDOP (98th percentile) plot over the lunar surface obtained for a period 
of 5 years (2,400 samples) for architectures ID 20 with an additional Earth GNSS signal. Right: 
Percentage decrease in GDOP (98th percentile)
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To be precise, we introduced variation in the time interval (days) used to com-
pute the average of the accumulated daily orbit errors. Since the maneuvers were 
not instantaneous and occurred only at specific orbital locations, the maneuver 
period includes the orbit propagation time to these locations. Second, the impact 
of increasing the degree of the lunar gravity model is assessed.

4.1.1  Sensitivity to the Satellite Maneuver Period 

The performance of the station-keeping maneuver sequence depends on the 
magnitude of orbit parameter errors. The time evolution of these errors can be 
seen in Figure 18 for Architecture ID 14. 

As discussed previously, the mean orbit error values are used directly in the 
computation of ∆V magnitudes and, therefore, the time period (number of days) 
chosen to collect the error measurements and compute the mean is an import-
ant operational parameter. Table 6 shows how the performance is affected by this 
parameter and its implications in terms of propellant mass, space segment cost, 
and design lifetime. 

A station-keeping maneuver period increase from seven to 27 days resulted in a 
significant reduction in the required ∆V. If we assume a fuel mass of at most 45% 
of the satellite wet mass (range of validity for the satellite wet mass model presented 
above), the maximum satellite operational lifetime—when the satellite runs out 
of fuel—would be limited to six years in the seven-day period and 17 years in the 
27-day period case (average values for Architecture IDs 4, 5, 8, 11, and 14). Table 6 
presents satellite mass and cost figures associated with a 15-year design lifetime 
that are feasible under the 27-day period case. 

There is, therefore, an interesting trade-off between GDOP performance (seen 
when comparing Figures 12 and 19) and satellite mass, cost, and design lifetime. 
A weekly maneuver frequency is able to better maintain the satellite geometry in 
the long-term and thus produce better GDOP performance compared to a monthly 
scheme. On the other hand, this strategy resulted in a significant increase in satel-
lite mass and reduction of design lifetime. This is assuming the absence of in-orbit 
refueling missions that could potentially extend the operational satellite lifetime. 
The results in Table 6 also show that for Architecture ID 14, despite the GDOP 

FIGURE 18 Time evolution of orbit parameter errors for Architecture ID 14 without station-
keeping maneuvers
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TABLE 6 
Effect of station-keeping maneuver frequency on station-keeping ∆V, max outage time, satellite 
mass, and cost for Architecture IDs 4, 5, 8, 11, and 14
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27 101 145 97 477 428 443 893 486

5
7 248 20 337 788 486 - - -

27 71 35 60 407 400 271 715 481

8
7 231 10 305 754 534 - - -

27 61 30 50 386 431 223 657 521

11
7 249 0 338 790 587 - - -

27 79 25 69 426 494 315 765 586

14
7 288 0 413 866 588 - - -

27 78 0 69 428 496 315 766 587

FIGURE 19 Maximum GDOP outage (GDOP > 6.0) plot for Architecture IDs 4, 5, 8, and 11, 
with station-keeping maneuvers every 27 days
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degradation experienced in the 27-day maneuver scheme, the GDOP outages 
(GDOP > 6.0) remain negligible. This is a consequence of the large number of 
satellites (30) in this design.

Finally, while the strategy used in this study is able to maintain the satellite 
geometry over a long period of time, it is certainly possible to optimize the maneu-
ver scheme to better exploit the periodicity of the dynamic environment for a spe-
cific constellation design.

4.1.2  Sensitivity to the Degree/Order of the Lunar  
Gravity Model 

The sensitivity to the degree of the lunar gravity model was analyzed for 
Architecture ID 4—in this solution, the satellites orbited the Moon at an altitude 
of 3,776 km, which is representative of optimal designs. The initial settings in the 
LP165P gravity model were degree/order 10 of the underlying spherical harmonic 
expansion. Compared to the maximum degree/order (i.e., 165), we found that the 
maximum difference obtained in the magnitude of the satellite position vector over 
a period of five years was 6.3 meters. Thus, the differences in GDOP were, again, 
negligible. 

4.2  Sensitivity to Design Decisions

The Sobol indices were computed based on 45,000 model evaluations. Figure 20 
shows the first-order index and the effect of interactions (among design decisions) 
with the associated 95% bootstrap confidence intervals. 

The first order Sobol index plot shows that space segment cost is well-approximated 
by a linear function of the number of satellites, which is expected given 
Equation  (7). Additionally, approximately 40% of the variance of GDOP perfor-
mance objectives (GDOP, GDOP availability, and impact to SSF) can be attributed 
to variations in the number of satellites, alone. However, there are significant inter-
actions between decision variables, which is to be expected given the complexity 
of the dynamic environment—this also highlights the significance of high-fidelity 
simulations. Finally, Figure 20 shows the relative importance of orbit eccentricity 

FIGURE 20 First-order Sobol index (left) and effect of interactions (right) shown for every 
design variable and objective metric with 95% confidence interval
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and inclination in determining station-keeping ∆V, which is consistent with the 
observations made previously in relation to Figure 9.

4.3  Rule Mining

This subsection presents a set of rules derived from the data set that charac-
terizes architectures in a desired region of objective space. This region of inter-
est is specified in terms of GDOP availability larger than 98%, station-keeping ∆V 
less or equal than 250 m/s per satellite/year, and a constellation size of at most 30 
satellites. Furthermore, rules mined without subjective preference (involving data 
quartiles) are also presented. 

To improve the interpretability of the rule mining results, the analysis focuses on 
pure Walker architectures only (design variables 1–7, as shown in Table 1). This is 
because aggregated objective metrics are produced in hybrid designs and the map-
ping between decision variables and objectives is less clear. Table 7 shows mined 
rules that involve antecedent design variables and consequent objective metrics 
with high confidence (max C A( ( ), ( )) . ).conf conf A C→ → > 0 8  

TABLE 7 
Association rule mining results obtained for pure Walker architectures—SMA is reported in km, 
inclination in deg, station-keeping (SK) ∆V in m/s/sat/year, and cost in $M FY20.

ID Antecedent (A) Consequent (C)
Conf. 
(A→C)

Conf. 
(C→A)

Lift 
(A→C)

1

SMA = [3825−5730] 
# satellites = {24 − 30}
ecc. = [1.68E-3 − 0.028]
incl. = [86.1 − 93.6] 

AvailGDOP ≥ 98%
SK ΔV ≤ 250
# satellites ≤ 30 

0.32 1.00 52.29

2

SMA = [4272 − 5730] 
# satellites = {24 − 30}
# planes = 3
Phasing = {0,1,2}
ecc. = [1.68E-3 − 0.019]
incl. = [87.3 − 90.7] 

AvailGDOP ≥ 98% 
SK ΔV ≤ 250
# satellites ≤ 30
Fuzzy Pareto-front

0.19 1.00 101.85

3
# satellites = {21 − 30}
incl. = [18.8 − 91.2]

(Q4)
(Q2)

75.5% ≤ AvailGDOP ≤ 100% (Q4) 0.26 0.92 3.67

4 incl. = [170.64 − 180] (Q4) 108.4 ≤ SK ΔV ≤ 206.15 (Q1) 0.82 0.82 3.28

5 # satellites = {21 − 30} (Q4) 392 ≤ Cost ≤ 659 (Q4) 0.87 0.87 3.47

6
# satellites = {21 − 30}
# planes = {2,3}
incl. = [18.8 − 91.2]

(Q4) 
(Q1) 
(Q2)

2.0 ≤ GDOP ≤ 5.4 (Q1) 0.13 0.89 3.60

7

SMA = [3474 − 4917]
# satellites = {14 − 17}
Phasing = {0,1}
ecc. = [4.4E-3 − 8.4E-3]
incl. = [170.64 − 180]

(Q1) 
(Q2) 
(Q1) 
(Q3) 
(Q4)

5.86 ≤ GDOP ≤ 5.99
46.8% ≤ AvailGDOP ≤ 63%
182 ≤ Cost ≤ 295
108.4 ≤ SK ΔV ≤ 206.15 

(Q1)
(Q2)
(Q4)
(Q1)

0.61 0.89 466.02
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As expected, more specific rules (with a higher number of conditions in the 
antecedent) such as Rules 1 and 2 tend to achieve higher conf (C → A) but lower 
conf (A → C), whereas the opposite is true for more general rules such as Rules 4 
and 5. Rules 1 and 2 are the most general rules that fully explain the region of inter-
est (which includes the fuzzy Pareto front in Rule 2) with conf (C → A) = 1. In other 
words, the range of values shown for the decision variables are the largest (least 
constraining) that still contain all solutions in the region of interest. 

The high lift values for Rules 1 and 2 indicate that there is high degree of statis-
tical dependency between A and the region of interest. The small confidence of 
rule (A → C) can be interpreted as A being a necessary but not sufficient condition 
for a solution to be in the region of interest. These results are consistent with the 
previous GDOP analysis and indicate that constellations with at least 24 satellites 
in near circular polar orbit at ~2 lunar radii are good solutions.

Rules 3–7 were chosen based on their high conf (C → A) values. Some of the 
rules are expected (e.g., 3, 5, and 6) but others provide additional insights. Rule 
4 shows that the most SK-∆V efficient designs are those containing satellites in 
a retrograde near equatorial orbit with inclination between 170 and 180 degrees. 
This explains the lower SK-∆V budget of hybrid designs with satellites in these 
orbits when compared to same size Walker constellations (e.g., Architecture 
ID 4 vs Architecture ID 5). Interestingly, Rule 7 shows that a sparser constel-
lation with 14 to 17 satellites in a near-circular near-equatorial orbit provides a 
relatively inexpensive and SK-∆V efficient solution if GDOP availability is not 
required globally (GDOP performance at the poles would likely be very poor in 
this design). 

5  CONCLUSION 

The design space of lunar orbiting GNSS constellations has been thoroughly 
explored in this paper. The Borg MOEA framework was used to explore ~250,000 
architectures and identify optimal designs that minimized GDOP, maximized 
GDOP availability, as well as minimized space segment cost, station-keeping ∆V, 
and impact from worst-case single-satellite failure. Results showed that a satel-
lite constellation with at least 24 satellites distributed among three planes in a 
near-circular polar orbit at an altitude of ~2 lunar radii could achieve a global 
GDOP of six or less 98% of the time. The impact of single-satellite failure on GDOP 
was lower both for constellations at higher altitudes and with orbit inclinations 
typical of Earth GNSS (i≅58 deg), however these designs were penalized with a 
twofold increase in station-keeping ∆V when compared with the multi-objective 
optimal solutions. 

Trade-offs are evident between overall GDOP performance and space segment 
cost/station-keeping ∆V. Also, it is shown that a 24-satellite Walker constellation 
(Architecture ID 5) could produce great GDOP performance (GDOP < 3) at the 
poles—where scientifically important sites, such as the South Pole Atkins Basin, 
are located—with minimal outages even in case of SSF. However, for this constel-
lation, users at equatorial regions would see GDOP outages (GDOP > 6.0) of up to 
20 minutes (40 minutes in case of SSF). A sensitivity analysis showed that the main 
factor in GDOP performance (including availability and robustness) was the num-
ber of satellites. Architectures with 30 satellites (e.g., Architecture ID 14) could 
effectively eliminate GDOP outages globally. 

The optimal hybrid constellations consisted of a mix of equatorial and polar 
orbits; however, no significant advantages were observed compared to pure Walker 
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constellations with the same number of satellites—in part due to the worsening 
performance at polar regions.

The importance of the station-keeping maneuver strategy in long-term perfor-
mance is highlighted. In particular, trade-offs between station-keeping maneu-
ver periods of one week and 27 days (approximately one sidereal lunar month) 
were presented for several alternative architectures. In the seven-day case, the best 
designs required a ∆V of ~250 m/s per satellite/year. On the other hand, the 27-day 
case resulted in a degradation of GDOP (especially for constellations with less 
than 30 satellites) but allowed for a threefold decrease in fuel mass and threefold 
increase in design lifetime—under the assumptions that fuel mass does not exceed 
45% of satellite wet mass and that the satellite may not be re-fueled in orbit.

Under a no-station-keeping maneuver scenario, optimal solutions showed a ~25% 
degradation in overall GDOP performance (with GDOP outages up to four hours) 
and did not result in significant mass or cost savings compared to the case with 
station-keeping maneuvers. These solutions undergo large periodic variations in 
eccentricity over a five-year period and, therefore, require more radiative power at 
apoapsis to guarantee the same signal power level on the lunar surface. The mass 
gains due to fuel savings are thus offset by mass penalties caused by the additional 
payload mass (assuming payload power generation drives payload mass estimates). 

The final positioning accuracy achieved with the proposed lunar GNSS depends 
on the signal-in-space range error (SISRE), instantaneous GDOP at the user loca-
tion, and quality of the signal processing techniques. Yet, based on recent results 
(Hauschild & Montenbruck, 2021), we believe that to achieve the target position 
accuracy (< 0.4 m), a SISRE of 0.5 m (RMS) is an appropriate goal for lunar GNSS 
ground segment design.

5.1  Limitations

There are several limitations in this article. First, the ∆V computation neglects 
satellite orbit insertion and ADCS maneuvers (e.g., antenna pointing, reaction 
wheel off-loading). Second, parametric models for mass and cost were based on 
historical data from communication and navigation satellites in Earth orbit. The 
cost model ignored sources of cost such as control segment and operational costs. 

Third, satellite phasing and constellation symmetry were constrained to a 
Walker delta pattern, which despite its widespread use in Earth orbiting constella-
tion design, effectively excludes other potential interesting designs. It may be valu-
able to consider using RAAN as a design variable given the observed variations 
in station-keeping ∆V as a function of this orbit parameter orientation. Fourth, a 
spherical satellite body was assumed for determining the effects of solar radiation 
pressure, which is only valid as a first approximation. Finally, we do not consider 
more than two constellations in hybrid designs.

5.2  Future Work

It would be interesting to complement the findings in this work with control 
segment design and analyze the trade-offs between signal-in-space error (orbit 
and clock synchronization errors) and overall system cost. Important consid-
erations exist regarding the implementation of system time and how to best 
synchronize the master clock with other time references on Earth. This work 
could be used toward the definition of a lunar GNSS service over a period of time 
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(e.g., 30 years) to effectively extend the GNSS space service volume to the Moon’s 
vicinity. 

Thus, the proposed constellations would constitute the target configurations at 
full operation capability. The optimization of service quality over time could be 
achieved by analyzing trade-offs in the gradual deployment of space and control 
segment elements. In this context, it would make sense to conduct an epoch-era 
analysis (Ross & Rhodes, 2008) including strategies for orbit determination, 
Earth-lunar GNSS time transfer, satellite launch timeline, orbit evolution policies, 
and the integration of new technology. 

a c k n o w l e d g m e n t s
The authors would like to thank Jean-Luc Issler for useful comments regarding 

ITU regulations as well as the ITU and SFCG recommendations in the shielded 
zone of the Moon.

r e f e r e n c e s
Abraham, D. S., MacNeal, B. E., Heckman, D. P., Chen, Y., Wu, J. P., Tran, K., Kwok, A., & Lee, C.-

A. (2018). Recommendations emerging from an analysis of NASA’s deep space communications 
capacity. 2018 SpaceOps Conference. https://doi.org/10.2514/6.2018-2528

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in 
large databases. ACM SIGMOD Record, 22(2), 207–216. https://doi.org/10.1145/170036.170072

Allende-Alba, G., & Montenbruck, O. (2016). Robust and precise baseline determination 
of distributed spacecraft in LEO. Advances in Space Research, 57(1), 46–63. https://doi.
org/10.1016/j.asr.2015.09.034

Bang, H., & Selva, D. (2016). IFEED: Interactive feature extraction for engineering design. ASME 
2016 International Design Engineering Technical Conference and Computers and Information in 
Engineering Conference, Charlotte, NC. https://doi.org/10.1115/DETC2016-60077

Buzzi, P. G., Selva, D., Hitomi, N., & Blackwell, W. J. (2019). Assessment of constellation designs 
for Earth observation: Application to the TROPICS mission. Acta Astronautica, 161, 166–182. 
https://doi.org/10.1016/j.actaastro.2019.05.007

Capuano, V., Botteron, C., Leclère, J., Tian, J., Wang, Y., & Farine, P.-A. (2015). Feasibility study 
of GNSS as navigation system to reach the Moon. Acta Astronautica, 116, 186–201. https://doi.
org/10.1016/j.actaastro.2015.06.007

Coello Coello, C. A., Lamont, G. B., & van Veldhuizen, D. A. (2007). Evolutionary algorithms for 
solving multi-objective problems (2nd Ed.). Springer. https://doi.org/10.1007/978-0-387-36797-2

Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex 
Systems, 9(2). https://doi.org/10.1.1.26.8485Cached

Deb, K., Joshi, D., & Anand, A. (2002). Real-coded evolutionary algorithms with parent-centric 
recombination. Proc. of the 2002 Congress on Evolutionary Computation (CEC'02), Honolulu, 
HI. https://doi.org/10.1109/CEC.2002.1006210

Delépaut, A., Giordano, P., Ventura-Traveset, J., Blonski, D., Schönfeldt, M., Schoonejans, P., Aziz, 
S., & Walker, R. (2020). Use of GNSS for lunar missions and plans for lunar in-orbit development. 
Advances in Space Research, 66(12), 2739–2756. https://doi.org/10.1016/j.asr.2020.05.018

Doong, S. H. (2009). A closed-form formula for GPS GDOP computation. GPS Solutions, 13, 183–
190. https://doi.org/10.1007/s10291-008-0111-2

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1), 
1–26. https://doi.org/10.1214/aos/1176344552

Ely, T. A. (2005). Stable constellations of frozen elliptical inclined lunar orbits. The Journal of the 
Astronautical Sciences, 53, 301–316. https://doi.org/10.1007/bf03546355

Ely, T. A., & Lieb, E. (2006). Constellations of elliptical inclined lunar orbits providing polar and 
global coverage. The Journal of the Astronautical Sciences, 54, 53–67. https://doi.org/10.1007/
BF03256476

Ferringer, M. P., Clifton, R. S., & Thompson, T. G. (2007). Efficient and accurate evolutionary 
multi-objective optimization paradigms for satellite constellation design. Journal of Spacecraft 
and Rockets, 44(3). https://doi.org/10.2514/1.26747

Ferringer, M. P., & Spencer, D. B. (2006). Satellite constellation design tradeoffs using multiple-
objective evolutionary computation. Journal of Spacecraft and Rockets, 43(6). https://doi.
org/10.2514/1.18788

Fonseca, C. M., Paquete, L., & López-Ibáñez, M. (2006). An improved dimension-sweep algorithm 
for the hypervolume indicator. 2006 IEEE Congress on Evolutionary Computation, Vancouver, 
BC. https://doi.org/10.1109/cec.2006.1688440

https://doi.org/10.2514/6.2018-2528
https://doi.org/10.1145/170036.170072
https://doi.org/10.1016/j.asr.2015.09.034
https://doi.org/10.1016/j.asr.2015.09.034
https://doi.org/10.1115/DETC2016-60077
https://doi.org/10.1016/j.actaastro.2019.05.007
https://doi.org/10.1016/j.actaastro.2015.06.007
https://doi.org/10.1016/j.actaastro.2015.06.007
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1.1.26.8485Cached
https://doi.org/10.1109/CEC.2002.1006210
https://doi.org/10.1016/j.asr.2020.05.018
https://doi.org/10.1007/s10291-008-0111-2
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1007/bf03546355
https://doi.org/10.1007/BF03256476
https://doi.org/10.1007/BF03256476
https://doi.org/10.2514/1.26747
https://doi.org/10.2514/1.18788
https://doi.org/10.2514/1.18788
https://doi.org/10.1109/cec.2006.1688440


    PEREIRA et al.

International Space Exploration Coordination Group (ISECG) Technology Working Group (2019).
Global exploration roadmap critical technology needs. https://www.globalspaceexploration.org/
wp-content/uploads/2019/12/2019_GER_Technologies_Portfolio_ver.IR-2019.12.13.pdf

Guerreiro, A. P., Fonseca, C. M., & Paquete, L. (2022). The hypervolume indicator: Computational 
problems and algorithms. ACM Computing Surveys, 54(6), 1–42. https://doi.org/10.1145/3453474

Hadka, D., & Reed, P. (2013). Borg: An auto-adaptive many-objective evolutionary computing 
framework. Evolutionary Computation, 21(2), 231–259. https://doi.org/10.1162/EVCO_a_00075

Hadka, D., & Reed, P. (2015). Large-scale parallelization of the Borg multiobjective evolutionary 
algorithm to enhance the management of complex environmental systems. Environmental 
Modelling & Software, 69, 353–369. https://doi.org/10.1016/j.envsoft.2014.10.014

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. SIGMOD 
Record, 29(2), 1–12. https://doi.org/10.1145/335191.335372

Hauschild, A., & Montenbruck, O. (2021). Precise real-time navigation of LEO satellites using 
GNSS broadcast ephemerides. NAVIGATION, 68(2), 419–432. https://doi.org/10.1002/navi.416

Impresario, G., D’Amore, G., Stallo, C., Ansalone, L., & Tuozzi, A. (2018). GNSS and GALILEO for 
CIS-lunar and moon navigation. 2018 IEEE 4th International Forum on Research and Technology 
for Society and Industry (RTSI), Palermo, Italy. https://doi.org/10.1109/RTSI.2018.8548504

International Telecommunication Union (ITU). (2003). Protection of frequencies for 
radioastronomical measurements in the shielded zone of the Moon [Rec. ITU-R RA.479-5].

Israel, D. J., Mauldin, K. D., Roberts, C. J., Mitchell, J. W., Pulkkinen, A. A., Cooper, L. V. D., 
Johnson, M. A., Christe, S. D., & Gramling, C. J. (2020). LunaNet: a flexible and extensible lunar 
exploration communications and navigation infrastructure. 2020 IEEE Aerospace Conference, 
Big Sky, MT. https://www.doi.org/10.1109/AERO47225.2020.9172509

Kita, H., Ono, I., & Kobayashi, S. (1999). Multi-parental extension of the unimodal normal 
distribution crossover for real-coded genetic algorithms. Proc. of the 1999 Congress 
on Evolutionary Computation (CEC 1999), Washington, DC. https://doi.org/10.1109/
CEC.1999.782672

Kring, D. A., & Durda, D. D. (2014). Feasibility assessment of all science concepts within South Pole-
Aitken Basin [online pdf]. https://www.lpi.usra.edu/exploration/CLSE-landing-site-study/
SouthPoleAitkenBasin/

Li, S., Lucey, P. G., Milliken, R. E., Hayne, P. O., Fisher, E., Williams, J.-P., Hurley, D. M., & 
Elphic, R. C. (2018). Direct evidence of surface exposed water ice in the lunar polar regions. 
Proc. of the National Academy of Sciences, 115(36), 8907–8912. https://doi.org/10.1073/
pnas.1802345115

Lopes, H. D., Silva, J. S., Silva, P. F., Musumeci, L., Dovis, F., Serant, D., Calmettes, T., Challamel, 
R., Ospina, J. A., Pessina, I., & Perello, J. V. (2014). GNSS-based navigation for lunar missions. 
Proc. of the 27th International Technical Meeting of the Satellite Division of the Institute of 
Navigation (ION GNSS+ 2014), Tampa, FL, 1536–1553. https://www.ion.org/publications/
abstract.cfm?articleID=12471

Marelli, S., Lamas, C., Konakli, K., Mylonas, C., Wiederkehr, P., & Sudret, B. (2019). UQLab user 
manual: Sensitivity analysis. Chair of Risk, Safety and Uncertainty Quantification. https://
www.uqlab.com/sensitivity-user-manual

Marelli, S., & Sudret, B. (2014). UQLab: A framework for uncertainty quantification in Matlab. 
2nd International Conference on Vulnerability, Uncertainty, and Risk Analysis and Management 
(ICVRAM) and the 6th International Symposium on Uncertainty, Modelling, and Analysis 
(ISUMA), Liverpool, UK. https://doi.org/10.1061/9780784413609.257

National Aeronautics and Space Administration (NASA). (2019). General Mission Analysis Tool 
(GMAT). https://opensource.gsfc.nasa.gov/projects/GMAT/

Nie, T., & Gurfil, P. (2018). Lunar frozen orbits revisited. Celestial Mechanics and Dynamical 
Astronomy, 130(61). https://doi.org/10.1007/s10569-018-9858-0

Palmerini, G. B., Sabatini, M., & Perrotta, G. (2009). En route to the Moon using GNSS signals. 
Acta Astronautica, 64(4), 467–483. https://doi.org/10.1016/j.actaastro.2008.07.022

Parker, J., Ashman, B., & Miller, J. J. (2019). NASA GNSS Space User Update. ICG-14 Working 
Group B. https://www.unoosa.org/documents/pdf/icg/2019/icg14/WGB/icg14_wgb_S3_4.
pdfhttp://www.unoosa.org/documents/pdf/icg/2019/icg14/WGB/icg14_wgb_S3_4.pdf

Pereira, F., & Selva, D. (2020). Exploring the design space of lunar GNSS in frozen orbit conditions. 
2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR. https://
doi.org/10.1109/PLANS46316.2020.9110202

Raschka, S. (2018). MLxtend: Providing machine learning and data science utilities and extensions 
to Python’s scientific computing stack. Journal of Open Source Software, 3(24). https://doi.
org/10.21105/joss.00638

Riedel, J. E., Vaughan, A. T., Werner, R. A., Wang, T.-C., Nolet, S., Myers, D. M., Mastrodemos, 
N., Lee, A. Y., Grasso, C., Ely, T. A., & Bayard, D. S. (2010). Optical navigation plan and 
strategy for the lunar lander Altair: OpNav for lunar and other crewed and robotic exploration 
applications. AIAA Guidance, Navigation, and Control Conference, Toronto, ON. https://doi.
org/10.2514/6.2010-7719

https://www.globalspaceexploration.org/wp-content/uploads/2019/12/2019_GER_Technologies_Portfolio_ver.IR-2019.12.13.pdf
https://www.globalspaceexploration.org/wp-content/uploads/2019/12/2019_GER_Technologies_Portfolio_ver.IR-2019.12.13.pdf
https://doi.org/10.1145/3453474
https://doi.org/10.1162/EVCO_a_00075
https://doi.org/10.1016/j.envsoft.2014.10.014
https://doi.org/10.1145/335191.335372
https://doi.org/10.1002/navi.416
https://doi.org/10.1109/RTSI.2018.8548504
https://www.doi.org/10.1109/AERO47225.2020.9172509
https://doi.org/10.1109/CEC.1999.782672
https://doi.org/10.1109/CEC.1999.782672
https://www.lpi.usra.edu/exploration/CLSE-landing-site-study/SouthPoleAitkenBasin/
https://www.lpi.usra.edu/exploration/CLSE-landing-site-study/SouthPoleAitkenBasin/
https://doi.org/10.1073/pnas.1802345115
https://doi.org/10.1073/pnas.1802345115
https://www.ion.org/publications/abstract.cfm?articleID=12471
https://www.ion.org/publications/abstract.cfm?articleID=12471
https://www.uqlab.com/sensitivity-user-manual
https://www.uqlab.com/sensitivity-user-manual
https://doi.org/10.1061/9780784413609.257
https://opensource.gsfc.nasa.gov/projects/GMAT/
https://doi.org/10.1007/s10569-018-9858-0
https://doi.org/10.1016/j.actaastro.2008.07.022
https://www.unoosa.org/documents/pdf/icg/2019/icg14/WGB/icg14_wgb_S3_4.pdfhttp
https://www.unoosa.org/documents/pdf/icg/2019/icg14/WGB/icg14_wgb_S3_4.pdfhttp
http://www.unoosa.org/documents/pdf/icg/2019/icg14/WGB/icg14_wgb_S3_4.pdf
https://doi.org/10.1109/PLANS46316.2020.9110202
https://doi.org/10.1109/PLANS46316.2020.9110202
https://doi.org/10.21105/joss.00638
https://doi.org/10.21105/joss.00638
https://doi.org/10.2514/6.2010-7719
https://doi.org/10.2514/6.2010-7719


PEREIRA et al.    

Ross, A. M., & Rhodes, D. H. (2008). Using natural value-centric time scales for conceptualizing 
system timelines through epoch-era analysis. 18th Annual International Symposium of 
the International Council on Systems Engineering (INCOSE, 18(1), 1186–1201. https://doi.
org/10.1002/j.2334-5837.2008.tb00871.x

Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer 
Physics Communications, 145(2), 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1

Sands, O. S., Connolly, J. W., Welch, B. W., Carpenter, J. R., Ely, T. A., & Berry, K. (2006). Dilution 
of precision-based lunar navigation assessment for dynamic position fixing. Proc. of the 2006 
National Technical Meeting of the Institute of Navigation, Monterey, CA, 260–268. https://www.
ion.org/publications/abstract.cfm?articleID=6532

Schaub, H., & Alfriend, K. T. (2001). Impulsive feedback control to establish specific mean orbit 
elements of spacecraft formations. Journal of Guidance, Control, and Dynamics, 24(4). https://
doi.org/10.2514/2.4774

Singh, L. A., Whittecar, W. R., DiPrinzio, M. D., Herman, J. D., Ferringer, M. P., & Reed, P. M. 
(2020). Low cost satellite constellations for nearly continuous global coverage. Nature 
Communications, 11(200). https://doi.org/10.1038/s41467-019-13865-0

Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte 
Carlo estimates. Mathematics and Computers in Simulation, 55(1–3), 271–280. https://doi.
org/10.1016/S0378-4754(00)00270-6

Sommariva, A., Gori, L., Chizzolini, B., & Pianorsi, M. (2020). The economics of moon mining. 
Acta Astronautica, 170, 712–718. https://doi.org/10.1016/j.actaastro.2020.01.042

Springmann, P. N., & de Weck, O. L. (2004). Parametric scaling model for nongeosynchronous 
communications satellites. Journal of Spacecraft and Rockets, 41(3), 472–477. https://doi.
org/10.2514/1.6220

Storn, R., & Price, K. (1997). Differential evolution - A simple and efficient heuristic for global 
optimization over continuous spaces. Journal of Global Optimization, 11, 341–359. https://doi.
org/10.1023/A:1008202821328

Stubbs, T. J., Glenar, D. A., Farrell, W. M., Vondrak, R. R., Collier, M. R., Halekas, J. S., & Delory, 
G. T. (2011). On the role of dust in the lunar ionosphere. Planetary and Space Science, 59(13), 
1659–1664. https://doi.org/10.1016/j.pss.2011.05.011

Tan, P.-N., Steinbach, M., Karpatne, A., & Kumar, V. (2018). Introduction to Data Mining (2nd 
Ed.). Pearson.

Tsutsui, S., Yamamura, M., & Higuchi, T. (1999). Multi-parent recombination with simplex 
crossover in real coded genetic algorithms. Proc. of the 1st Annual Conference on Genetic and 
Evolutionary Computation (GECCO’99), 657–664.

United Nations. (2018). The interoperable global navigation satellite systems space service volume. 
Office for Outer Space Affairs. https://www.unoosa.org/res/oosadoc/data/documents/2018/
stspace/stspace75_0_html/st_space_75E.pdf

Walker, J. G. (1977). Continuous whole Earth coverage by circular-orbit satellite patterns.
Wertz, J. R., Everett D. F., & Puschell. J. J. (Eds.). (2011). Space mission engineering: The new 

SMAD. Microcosm Press.
Whittecar, W. R., & Ferringer, M. P. (2014). Global coverage constellation design exploration using 

evolutionary algorithms. AIAA/AAS Astrodynamics Specialist Conference, San Diego, CA. 
https://doi.org/10.2514/6.2014-4159

Winternitz, L. B., Bamford, W. A., Long, A. C., & Hassouneh, M. (2019). GPS based autonomous 
navigation study for the lunar gateway. https://ntrs.nasa.gov/citations/20190002311 

Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms - A 
comparative case study. In A. E. Eiben, T. Bäck, M. Schoenauer, & H.-P. Schwefel (Eds.), Parallel 
Problem Solving from Nature (5th ed., pp. 292–301). https://doi.org/10.1007/bfb0056872

How to cite this article: Pereira, F., Reed, P. M., & Selva, D. (2022) 
Multi-objective design of a lunar GNSS. NAVIGATION, 69(1). https://doi.
org/10.33012/navi.504

https://doi.org/10.1002/j.2334-5837.2008.tb00871.x
https://doi.org/10.1002/j.2334-5837.2008.tb00871.x
https://doi.org/10.1016/S0010-4655(02)00280-1
https://www.ion.org/publications/abstract.cfm?articleID=6532
https://www.ion.org/publications/abstract.cfm?articleID=6532
https://doi.org/10.2514/2.4774
https://doi.org/10.2514/2.4774
https://doi.org/10.1038/s41467-019-13865-0
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/j.actaastro.2020.01.042
https://doi.org/10.2514/1.6220
https://doi.org/10.2514/1.6220
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/j.pss.2011.05.011
https://www.unoosa.org/res/oosadoc/data/documents/2018/stspace/stspace75_0_html/st_space_75E.pdf
https://www.unoosa.org/res/oosadoc/data/documents/2018/stspace/stspace75_0_html/st_space_75E.pdf
https://doi.org/10.2514/6.2014-4159
https://ntrs.nasa.gov/citations/20190002311
https://doi.org/10.1007/bfb0056872
https://doi.org/10.33012/navi.504
https://doi.org/10.33012/navi.504

	Multi-Objective Design of a Lunar GNSS
	Abstract
	Keywords
	1  Introduction 
	1.1  Weak GNSS Signal Tracking 
	1.2  Challenges in Lunar GNSS Design 
	1.3  Literature Review 
	1.4  Research objective 

	2  Methods 
	2.1  Problem Formulation 
	2.2  Figures of Merit 
	2.2.1  Performance 
	GDOP
	GDOP Availability 
	Station-Keeping ∆V 

	2.2.2  Space Segment Cost 
	2.2.3  Robustness to Single-Satellite Failure 

	2.3  Borg MOEA Framework 
	2.3.1  Search Performance 
	2.3.2  Data Mining 
	2.3.3  Sensitivity Analysis  
	2.3.4  Rule Mining 


	3  Results 
	3.1  SCENARIO I: Station-Keeping Maneuvers 
	3.2  SCENARIO II - No Station-Keeping Maneuvers 

	4  Sensitivity analysis 
	4.1  Sensitivity to Model Parameters 
	4.1.1  Sensitivity to the Satellite Maneuver Period  
	4.1.2  Sensitivity to the Degree/Order of the Lunar  Gravity Model  

	4.2  Sensitivity to Design Decisions 
	4.3  Rule Mining 

	5  Conclusions  
	5.1  Limitations 
	5.2  Future Work 

	Acknowledgments
	references 


