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R E G U L A R  PA P E R S

Detecting Slowly Accumulating Faults Using a Bank of 
Cumulative Innovations Monitors in Kalman Filters

John D. Quartararo*  Steven E. Langel

1  INTRODUCTION

Modern navigation systems are increasingly utilizing multiple sensors for posi-
tioning, navigation, and timing (PNT), most often beginning with an inertial mea-
surement unit (IMU) and a global navigation satellite system (GNSS) receiver. The 
extended Kalman filter (EKF) remains the most widely used filter for multisensor 
fusion, and much effort has been devoted to designing EKFs for operation under 
nominal conditions. However, additional sensors provide more than improved 
accuracy and availability of navigation. They can also be cross-checked against 
each other to detect the presence of, and exclude, faulty measurements. This paper 
focuses on quantifying the ability of an IMU to detect slowly accumulating Global 
Positioning System (GPS) measurement faults. We use the GPS/inertial sensor 
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Summary
Extended Kalman filters (EKFs) that monitor innovations over time have been 
demonstrated to be effective at detecting slowly accumulating measurement 
faults (Quartararo & Langel, 2020; Tanil et al., 2018). This paper first demon-
strates that a single cumulative monitor becomes increasingly sensitive to mea-
surement error model uncertainty as the accumulation interval increases, leading 
to false alarm and detection rates that can differ significantly from predefined 
design parameters. In response, a bank of finite-length cumulative innovations 
monitors is explored for fault detection in multisensor navigation systems. A 
novel extension to traditional covariance analysis (Covariance Analysis Including 
Expected Values or CAIEV) is developed to accommodate measurement faults 
and is used in addition to Monte Carlo simulations to present detection results 
for a variety of GPS fault profiles and inertial measurement unit (IMU) grades. 
Data for time-to-detect is presented alongside the position-domain bias induced 
by the fault at the time of detection. We show that the monitor bank can reliably 
detect the presence of faulty measurements after the position-domain bias has 
reached only tens of meters using tactical and aviation-grade IMUs for the cases 
considered, an improvement over other innovations-based techniques.
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suite for demonstrative purposes, but the techniques developed in the paper extend 
naturally to EKFs that utilize any number and type of sensors.

Numerous methods have been developed for fault detection and exclusion in 
navigation systems. Autonomous integrity monitoring methods are developed in 
Lee (1988) and Sturza (1988) that can detect a single satellite fault by leveraging 
the redundancy of measurements from multiple GNSS satellites. Innovations and 
residuals-based fault detection algorithms are commonly used in navigation for 
detecting multiple satellite faults and have been studied extensively (see Mehra 
and Peschon [1971], Joerger and Pervan [2013], and Crespillo et al., [2017]). 
However, the previous references only considered snapshot implementations, in 
which detection test statistics were defined solely based on current measurements. 
While snapshot approaches are effective at detecting abrupt faults, they have dif-
ficulty detecting persistent faults that are small at any one epoch but eventually 
accumulate to a large magnitude. For robust protection against slowly accumu-
lating faults that could be present on multiple satellite signals, cumulative fault 
detection methods offer a promising solution.

Some examples of slowly accumulating measurement faults may include GPS 
satellite clock anomalies and incorrect orbit ephemeris parameters (Bhatti & 
Ochieng, 2007). Because it can be difficult to model the behavior of these faults 
over time, detection algorithms that make no assumptions regarding the tempo-
ral behavior of measurement faults are often employed. In Tanil et al. (2018) and 
Diesel and Luu (1995), monitors were developed that accumulated innovations 
over time to provide the capability of detecting slowly growing GPS measurement 
faults. Innovations monitors are attractive because they can naturally leverage 
sensor and input information that is not necessarily a complete position estimate 
(barometric altimeter measurements, a partial [two-axis] IMU, fewer than four 
GNSS pseudorange measurements from a different constellation, etc.).

Solution separation is a different but related technique that can also be used for 
fault detection. Advanced Receiver Autonomous Integrity Monitoring (ARAIM; 
Blanch et al., 2007; WG-C ARAIM Subgroup, 2016) is one example where faults are 
detected by comparing solutions from different subsets of available GNSS signals. 
Recently, Kujur et al. (2020) used the discrepancy between a GPS/IMU fused posi-
tion estimate and an IMU-only position as a test statistic to detect faults. However, 
dead-reckoning solutions (e.g., inertial-only) become less accurate with time and 
therefore there is a certain time window beyond which absolute measurements 
must be used to correct the otherwise unbounded error growth. Solution separa-
tion implementations that address faults in non-GNSS sensor measurement and in 
Kalman filter dynamic models are sparse.

A practical but often overlooked aspect of innovation-based fault detection is the 
impact of real-world model uncertainty. A main contribution of this work is the 
conclusion that the cumulative innovations monitor becomes increasingly sensi-
tive to model uncertainty as the accumulation interval increases, a topic which was 
recently explored in Kujur et al. (2019). In response, this work proposes a novel 
implementation of innovations monitoring that uses a bank of finite-length cumu-
lative monitors to mitigate the adverse effects of real-world model uncertainty. 
These effects become important for longer-duration runtimes which may last for 
tens of minutes or hours and the monitor bank provides a practical solution to this 
problem.

A complicating factor in the analysis of EKF fault detection performance is that 
undetected faults can induce biases in the estimate error that produce a signifi-
cant discrepancy between the true and estimated state vectors. It is not obvious 
how to account for this effect in EKF covariance analysis. Traditional methods are 
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generally not sufficient because they linearize the measurement and state dynamic 
models about the true state. A large discrepancy between the true and estimated 
states means that several terms in the Taylor series could be required to form an 
accurate approximation. In response, we derived a novel extension of traditional 
covariance analysis called Covariance Analysis Including Expected Values (CAIEV) 
that makes it possible to analyze EKFs in the presence of measurement faults. We 
used this approach together with a high-fidelity Monte Carlo simulation testbed to 
demonstrate the fault detection performance of the monitor bank.

2  MOTIVATION FOR MULTI-MONITOR APPROACH

This section motivates the use of multiple monitors for fault detection by first 
exploring the practical issues associated with a single cumulative monitor. The 
cumulative monitor falls in the class of chi-square monitors, meaning that its test 
statistic under fault-free conditions is a chi-square random variable. It will be shown 
later that the test statistic is formed by accumulating inner products of Gaussian 
random vectors weighted by the inverse of their covariance matrix. In an EKF, the 
covariance matrix is determined based on models of the underlying system, which 
are never precisely accurate. As a result, the test statistic is not truly chi-square 
distributed under fault-free conditions. Rife (2013) provides a general treatment 
of how chi-square monitors are impacted by covariance matrix uncertainty. This 
section uses a simple model where uncertainty is defined by a single parameter a 
to show that the cumulative monitor becomes more sensitive to uncertainty as the 
accumulation interval increases.

Let xk ∈ Rm be a vector of independent zero-mean Gaussian random variables 
at time index k with covariance matrix P I=σ 2

m ,  where Im is the m-dimensional 
identity matrix. Assume that P is the same for all k. Then the cumulative monitor 
test statistic at time index k can be written as:
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When σ 2  is known precisely, sk is nominally chi-square distributed with mk 
degrees of freedom. Now suppose that the covariance matrix P I=ασ 2

m  is used 
instead of P, where α  is a scalar. Then the resulting test statistic can be written as 
s sk k= −α 1 .  For α ≠ 1, sk  is a scalar multiple of a central chi-square random vari-
able, which is known to follow a gamma distribution (Coelho, 2020). Of course, the 
fact that α  is likely not equal to one cannot be exploited because α  is unknown. 
Therefore, a monitor threshold Tk can only be determined for a desired false alarm 
probability under the assumption that sk  is chi-square distributed. Nevertheless, 
it is possible to use the gamma distribution to assess the impact that α ≠ 1  has 
on the monitor’s true probability of false alarm Pfa,k. From the gamma cumulative 
distribution function (CDF; Abramowitz et al., 1988):
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where Γ
Γ

( , ) ( )x a t e dta x
t= −∞ −∫1 1α  is the upper incomplete gamma function. Suppose 

that m = 8 and that Tk is determined based on a desired false alarm probability of 
10–4. Figure 1 shows Pfa,k as a function of the time index k for different values of α.

There is no uncertainty when α  = 1, and the probability of false alarm is equal 
to its desired value of 10–4. Notice how the sensitivity to uncertainty increases with 
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the number of accumulations. Even for modest values like α  = 1.04 and α  = 0.96, 
compared to its desired value, the probability of false alarm is three orders of mag-
nitude less in the former case and two orders of magnitude greater in the latter 
case. The discrepancy will continue to grow with the number of accumulations. 
Given this behavior for small levels of uncertainty likely to be encountered in prac-
tice, one should expect a monitor that accumulates indefinitely to either far exceed 
its desired performance or fall drastically short. Therefore, from a practical per-
spective, it is desirable to limit the number of accumulations in the monitor.

It is also worth pointing out the detection behavior of the cumulative monitor. 
Faulty measurements induce a bias kµ  in xk, resulting in a test statistic that is 
non-centrally chi-square distributed with noncentrality parameter λ −= 1 .T

k k kPµ µ  
To assess the effect that accumulation can have on the detectability of faults, we 
focus on the specific case where a Kalman filter, applied to a time invariant lin-
ear system, has reached steady state. Under these conditions, a sequence of faulty 
measurements produces the same sequence of noncentrality parameters, regard-
less of when faulty measurements first appear. While this is not true in general 
for a transient filter or one operating on a time-varying system, considering this 
special case will highlight the additional adverse effect accumulation can have on 
fault detection.

In detection analysis, it is common to quantify the instantaneous minimum 
detectable error (MDE), which for us is the smallest value of λ  at a given epoch 
that can be detected with a specified probability. Consider the same monitor 
described earlier where m = 8 and the threshold is set based on a desired false 
alarm probability of 10–4. Figure 2 depicts MDE as a function of the time index 
k for a detection probability of 0.999. The MDE increases with the accumulation 
interval (i.e., the monitor becomes less sensitive to faults over time). Depending on 
when a sequence of faulty measurements begins, the cumulative monitor may or 
may not be able to detect its presence. For example, suppose that faulty measure-
ments begin appearing at time index k = 50 that result in a noncentrality parameter 

FIGURE 1 Effect of model uncertainty on the true probability of false alarm for a cumulative 
chi-square monitor
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λ  = 250. Figure 2 shows that the cumulative monitor would be able to detect the 
presence of faulty measurements with a probability greater than 0.999. However, 
if the faulty sequence instead began appearing at time index k = 200, the monitor 
would not be able to detect the faults with high probability. It would therefore be 
beneficial to allow the start time of the monitor to vary.

Figures 1 and 2 demonstrate that: a) it is desirable to limit the accumulation 
interval of the monitor, and b) it is advantageous to consider monitors with varying 
start times to increase the probability of detection. One way to achieve these two 
goals is to utilize a bank of chi-square monitors, each with its own unique accumu-
lation interval and start time. This paper explores the design, implementation, and 
performance of such an approach for fault detection in EKFs.

3  ALGORITHM DESCRIPTIONS

3.1  Problem Setup

This paper is concerned with the nonlinear estimation problem:

    
x f x u w
z h x

k k k k

k k k

+ =
=

1 ( , , )
( , )νν

 (3)

where xk is the state vector, uk is a known input vector, zk ∈ Rm is the measurement 
vector and wk, ννk  are zero-mean process and measurement noise vectors, respec-
tively. An estimate of the state vector is obtained using an EKF, which is defined by 
the recursion shown in Table 1 (Brown & Hwang, 2012).

TABLE 1 
Extended Kalman filter algorithm
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FIGURE 2 Minimum detectable error for a cumulative chi-square monitor
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Fk and Gk are the Jacobians of f (xk, uk, wk) with respect to xk and wk, and Hk, Jk 
are the Jacobians of h (xk, ννk) with respect to xk and ννk. The matrices Wk and Vk are 
the process and measurement noise covariance matrices, respectively.

A reality in most estimation applications is that, at times, the measurement vec-
tor zk does not conform to its predefined model. That is, the measurement pres-
ents as zk = h (xk, ννk) + dk, with dk being an unknown fault vector. Assimilating 
a faulty measurement in the EKF induces a bias in the state vector estimate that 
is generally not captured by the covariance matrix. Therefore, it is critical to 
detect when a measurement is faulty so that the EKF does not incorporate the 
measurement.

3.2  Snapshot Innovations Monitor

The innovations vector ˆ( , )k k k
−= − 0y z h x  in Table 1 can be used for fault detec-

tion. It is shown in Todling (2000) and Grewal and Andrews (2014) that the 
covariance matrix of yk is S H P H J V Jk k k k

T
k k k

T= +− .  The snapshot innovations 
monitor forms the test statistic sk k

T
k k= −y yS 1  at each measurement epoch, which 

is chi-square distributed with m degrees of freedom (DOF) under fault-free condi-
tions. For a given Pfa, the detection threshold Tk is set using the inverse chi-square 
CDF where the number of DOFs m can vary with the number of measurements at 
each time step (e.g., number of GNSS satellites in view). That is:

      T F Pk
m

= −−
χ 2

1 1( )fa  (4)

Normally, the EKF is an unbiased estimator to first order, meaning that the esti-
mate error vector εεk

−  is zero-mean. When measurement faults are incorporated 
into the filter, εεk

−  is biased. Therefore, the mean of yk under faulted conditions 
can be expressed as −= +[ ]k k k kEH dεµ  and the test statistic becomes noncentrally 
chi-square distributed with m degrees of freedom and noncentrality parameter 
λ −= 1 .T

k k k kSµ µ  In this case, the probability of missed detection is P F T
m

kmd =
−
χ λ2

1
; ( ),  

such that F
mχ λ2
1

;
−  is the noncentral chi-square inverse CDF.

3.3  Infinite Horizon (IH) Innovations Monitor

To protect a navigation system from slowly growing faults, it is necessary to 
observe the behavior of the measurements over time. A natural way to do this in 
the context of innovations monitoring is to accumulate normalized innovations. 
We consider the approach in Tanil et al. (2018) in which the cumulative test sta-
tistic is defined as the sum of normalized innovations from time index one to time 
index k. That is, a summation of normalized test statistics over the last k measure-
ment update epochs:

       sk i
T

i

k

i i=
=

−∑ y y
1

1S  (5)

The innovations vector is uncorrelated through time (Todling, 2000; Stengel, 
2012), meaning that sk is also a chi-square random variable. Therefore, design and 
analysis of the infinite horizon (IH) monitor (i.e., setting thresholds and predicting 
Pmd) is analogous to the design and analysis of a snapshot monitor. The number 
of degrees of freedom that define the threshold is now mk and the noncentrality 
parameter that governs detection performance is λ −

=
=∑ 1

1 .k T
k i i ii Sµ µ  Given that the 
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degrees of freedom increase ad infinitum, we expect the IH monitor’s performance 
to become increasingly sensitive to model uncertainty with time (see Figure 1).

3.4  FIND Algorithm

In Section 2, we suggested that a bank of finite length cumulative innovations 
monitors could circumvent the practical deficiencies of the IH monitor. Another 
practical benefit of a bank of differently sized windows would be the ability to 
detect accumulating fault profiles that occur over different time scales. From this 
point on the paper refers to the bank of finite cumulative monitors as the Faulty 
Innovations Detector or the FIND algorithm. Let the integer N denote the num-
ber of cumulative monitors, in addition to the snapshot monitor which is always 
included to catch abrupt faults. Figure 3 shows one example of a monitor bank, 
which consists of four cumulative monitors and one snapshot monitor. The first 
step of the FIND algorithm is to store the weighted norm of the innovations vec-
tors over N B measurement epochs, where B is an integer configuration parameter. 
Next, we break up this time interval into N intervals, each spanning an integer mul-
tiple of B measurement epochs. Lastly, we form the triangular N-monitor structure 
shown in Figure 3.

Referring to the example in Figure 3, the normalized innovations at the current 
time (m0) are subjected to a standard snapshot innovations-based fault detector. 
The current (m0) and most recent previous normalized innovations (m–1) are 
summed into the first cumulative monitor (the most recent two since B = 2). The 
second cumulative monitor in the bank sums the four (i.e., 2 B) most recent mea-
surements (m–3:0), the next the six (i.e., 3 B) most recent measurements (m–5:0), and 
so on. Each constituent monitor’s threshold is derived from its allocated Pfa (which 
we will discuss shortly) and the number of degrees of freedom in its test statistic, 
which can vary if the number of measurements varies at each time step (e.g., due 
to a varying number of GNSS satellites over time).

A larger product N B leads to a monitor bank that covers a longer span of mea-
surement time history, and smaller values of the step size B produce a set of mon-
itors with finer granularity from the short to long durations. Selection of N and B 
are application dependent. Longer time histories allow for the detection of slower, 
more pernicious fault accumulations and, while smaller step sizes can increase the 
computation load (i.e., more monitors), they may provide better coverage across 
a wider variety of fault time scales. These are trade-offs that would have to be 
analyzed in the context of a specific use case, such as the detection performance 

FIGURE 3 One example of a FIND configuration
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against a specific set of faults given the choice of design parameters N, B, and Pfa. 
A use case would include any relevant quantities such as the sensor suite, Kalman 
filter design, fault detection algorithm design parameters, fault models, environ-
ment conditions such as the radiofrequency (RF) environment, GNSS signals, tra-
jectory, mission duration, etc.

In addition to reducing sensitivity to error model uncertainty, the FIND algo-
rithm addresses the fact that the onset of faulty measurements is unknown and 
ensures that a test statistic with minimal fault-free noise accumulation will capture 
a faulty measurement sequence. Figures 5 and 6 in Section 6 show that both aspects 
increase the likelihood that the FIND algorithm can detect slowly accumulating 
persistent faults compared to the IH monitor considered in Tanil et al. (2018).

The detection scheme for the FIND algorithm is simple. If the test statistic for 
any monitor exceeds its threshold, the FIND algorithm declares that faulty mea-
surements are present. Given a minimum acceptable probability of false alarm 
Pfa,req that applies to the entire monitor bank, we allocate a portion of Pfa,req to 
each monitor that is used to set a detection threshold according to Equation (4). It 
is clear from Figure 3 that the monitors are correlated, and ideally the FIND algo-
rithm would account for this when allocating Pfa,req. Developing a sound approach 
for exploiting monitor cross-correlation is difficult and is left as a topic for future 
work.

Here, we take a conservative approach and use the fact that for events A1,... An 
with P (A1) + ··· + P (An) ≤ 1, (Hailperin, 1965):

     P A A P A P An n( ) ( ) ( )1 1∪…∪ ≤ +…+  (6)

Associating Ai with the event that the i-th monitor false alarms, the left-hand 
side of Equation (6) is the probability of false alarm for the FIND algorithm. Thus, 
Equation (6) shows that if we allocate the false alarm budget equally across all 
monitors, the actual probability of false alarm for the bank would be less than the 
required value. In other words, equal allocation is conservative.

Using this result, the i-th FIND algorithm monitor is given the allocation:

     P P N i Nfa i fa req   for  , , / ( ) , ,= + = … +1 1 1  (7)

in which we remind the reader that there are N + 1 monitors in the bank including 
the snapshot monitor (see Figure 3). Note that the FIND algorithm can be repre-
sented by a single test statistic. Denoting the test statistic and threshold of the i-th 
monitor as si and Ti, respectively, the FIND test statistic is given by:

     s
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max , , , ,1

1

2

2
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and has a threshold of one. This follows by observing that if sFIND exceeds one, then 
it must be that at least one of the si values is larger than its threshold.

For certain instantiations of the monitor bank, equal allocation of Pfa,req does 
not appear to be overly conservative (see Appendix A for Monte Carlo simulation 
results). However, it is important to point out that a conservative false alarm rate 
comes at the expense of a higher missed detection rate, a trade-off that should be 
considered in practice. As is usually the case, whether an attempt is made to take 
advantage of monitor cross-correlation will depend on the application.
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4  IMPLEMENTATION DETAILS

4.1  Tightly-Coupled GPS/Inertial EKF

The GPS/inertial tightly-coupled filter (TCF) implementation used in this study 
is very similar to the TCF algorithm described in Groves (2015), which estimates 
the receiver kinematic state as an Earth-centered, Earth-fixed (ECEF) position 
( ,rebe  in m), ECEF velocity ( ,veb

e  in m/s), and nav-to-body rotation matrix (atti-
tude) Cn

b .  The nav frame is the local North-East-Down (NED) coordinate frame 
(Groves, 2015). Attitude is implemented as an error-state formulation where the 
state vector contains a three-element attitude error tilt vector ΨΨn

b  that is periodi-
cally used to correct the full attitude estimate, and is maintained separately from 
the state vector (a standard approach to attitude estimation, due to fundamental 
challenges with the estimation of 3D attitude [Markley, 2003]). The filter also esti-
mates clock bias and clock frequency error states which are modeled as a two-state 
clock process (Brown & Hwang, 2012).

Several augmented states are also included: IMU biases are estimated with both 
a constant (turn-on) and first-order Gauss-Markov process (in-run) component for 
each of the three accelerometers and three gyroscopes. The IMU bias estimates are 
used to compensate the raw IMU measurements during the time update (inertial 
navigation equations). During the EKF’s time update, the position, velocity, and 
attitude are propagated forward by solving a system of differential equations (given 
by equations 5.37, 5.35, and 5.24 of Groves [2015]) with a Runge-Kutta 4(5)-based 
ordinary differential equation (ODE) solver. The turn-on and in-run bias states are 
propagated according to their differential equations (either a constant or first-order 
Gauss-Markov process).

Pseudorange and pseudorange-rate measurements were incorporated from the 
GNSS tracking loops and modeled as only having white noise. Typically, satel-
lite clock/ephemeris and pseudorange bias states are estimated as two separate 
first-order Gauss-Markov processes for each satellite, although those processes 
were disabled for this testing since those errors were not present in the synthetic 
measurements for processing.

4.2  Scenario Configuration

All testing used a single simulated airborne trajectory, in which an aircraft moves 
at a constant speed of 100 m/s about a racetrack shape with a 15-km semi-major 
axis, resulting in a lap period of about 13 minutes. The aircraft banks turn up to a 
maximum roll angle of 10°. The altitude is nearly constant at about 10 km although 
there are some slight deviations on the order of 10 meters as the racetrack shape 
does not wrap with the WGS-84 Earth ellipsoid. The true trajectory is used to gener-
ate ideal inertial measurements before random noise and biases are added to form 
synthetic measurements for processing. Each fault profile is defined as a position 
and velocity offset relative to this truth trajectory and is used to derive the synthetic 
GPS measurements.

Simulated pseudorange and Doppler measurements from GPS coarse acquisition 
(C/A) signals (transmitted at L1 = 1,575.42 MHz) were used as the GNSS observa-
tions. A two-state clock (Brown and Hwang, 2012) tuned as an oven-controlled 
crystal oscillator (OCXO) was used both by the simulation to drive the generation 
of synthetic measurements and by the filter for its dynamics model and process 
noise tuning. From Brown and Hwang (2012), the clock parameters for an OCXO 
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were h0 = 2e-25 sec–1 and h–2 = 5e-25 sec. This study explored two grades of IMU: 
an aviation grade and a lower-quality tactical grade. The various characteristics 
and tunings for a variety of IMU grades were obtained from Groves (2015) and are 
summarized in Table 2. The time constants for the IMU in-run biases were set to 
3,600 seconds.

This study examined a single class of GNSS fault profiles that implemented an accu-
mulated position drift in the vertical channel. These were not necessarily worst-case 
fault profiles, and more complete coverage is a topic for future work. We chose a 
quadratic pulloff of vertical position as it is believed to be a particularly challenging 
case to detect, specifically when utilizing IMUs. For the first 20 minutes (1,200 sec-
onds), no faults were present. The profiles are referenced/named in later sections by 
the fault magnitude according to the total position pulloff at the 1,800 second mark 
(10 minutes since fault onset; 250, 1,000, 4,000 meters, etc.). All GPS C/A signals were 
consistent with the true trajectory up to the 20-minute mark. After the 20-minute 
mark, signals were nominally consistent with the vertical drift fault. The inertial 
measurements were always consistent with the true trajectory.

5  ANALYSIS METHODS

This section discusses the analysis methods used to predict and quantify the 
performance of the FIND algorithm relative to the snapshot and IH innovations 
monitors. Covariance analysis and Monte Carlo simulations are both used for this 
purpose. To the best of our knowledge, a clear justification for using covariance 
analysis to analyze EKF behavior in the presence of faults has not been given. This 
section fills that gap by deriving a new, generalized approach to EKF covariance 
analysis capable of accommodating measurement faults.

5.1  Covariance-Based Fault Analysis

Covariance analysis is a common technique for assessing the performance of a 
Kalman filter. The theory is well established for linear KFs and can also be applied 
relatively easily to EKFs under fault-free conditions. However, it is not obvious 
how one would (or could) use covariance analysis to predict EKF behavior under 
faulted measurement conditions. This subsection shows how such an analysis can 
be conducted, and its role in assessing the performance of the FIND algorithm.

To begin, let’s take a slightly different approach to EKF analysis and view the 
propagation equations in Table 1 as the noise-free propagation of the nonlinear 
system:

   
x f x u w
x x z h x

k k k k

k k k k k k

+
′

′

=

= + −
1 ( , , )

[ ( , )]K νν
 (9)

TABLE 2 
IMU model parameters

Accelerometers (per-axis) Gyroscopes (per-axis)

Bias (m/s2) Noise Root PSD 
( )/m s

Hz

2
Bias (rad/s) Noise Root PSD 

( )/rad s
HzTurn-On In-Run Turn-On In-Run

Tactical 0.9 × 1e-2 0.1 × 1e-2 1e-6 0.9 × 5e-5 0.1 × 5e-5 1e-9

Aviation 0.9 × 1e-3 0.1 × 1e-3 1e-7 0.9 × 5e-8 0.1 × 5e-8 1e-12
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In other words, 1 1ˆk k
−
+ +=x x  when wk = 0 and ˆk k

+ ′=x x  when ννk = 0.  The esti-
mate error vectors 1 1 1ˆk k k

− −
+ + += −e x x  and ˆk k k

+ ′ += −e x x  evolve according to:

      1 ˆ( , , ) ( , , )
ˆ[ ( , ) ( , )]

k k k k k k

k k k k k k

− ′ +
+
+ − −

= −

= + − +

0
K 0

e f x u w f x u
e e h x h xν

 (10)

Assuming that ˆk
+x  is close to xk

′  and that ˆk
−x  is close to xk, the first-order 

approximations:

  
ˆ( , , ) ( , , )
ˆ( , ) ( , )

k k k k k k k k k

k k k k k k k

′ + +

− −

≈ + +

≈ + +

0 F G
0 H J

f x u w f x u e w
h x h x eν ν

 (11)

are used to obtain the linear propagation equations:

	 	 	   
e e w
e e

k k k k k

k k k k k

+
− +

+ −

≈ +

≈ −
1 F G

H J νν
 (12)

Equation (12) is the familiar estimate error propagation for the Kalman filter, 
with the one caveat that the matrices require the specification of the estimate vec-
tor ˆ .kx  For EKF covariance analysis, ˆkx  is never actually constructed. That would 
require simulating the random processes wk and ννk  and running the EKF, which 
is more in line with Monte Carlo simulation than covariance analysis. Instead, we 
eliminate the need to simulate random sequences by linearizing about the expected 
value of the trajectory in Equation (9).

Using the first order approximation that for any nonlinear random function f (x), 
E [f (x)] ≈ f (E [x]):

  
E E
E E E E
k k k

k k k k k

[ ] ( [ ], , )
[ ] [ ] { [ ] ( [ ], ])}
x f x u
x x z h x
+

′

′

≈

≈ + −
1 0

K 0
 (13)

Thus, EKF covariance analysis is a combination of propagating the trajectory in 
Equation (13) and using it to form the matrices in Equation (12) that ultimately 
enable propagation of the estimate error covariance matrix.

No assumptions were made in the earlier analysis regarding whether zk was 
fault-free or contained measurement faults. The only assumption was that ˆk

+x  was 
close to xk

′  and that ˆk
−x  is close to xk, which we assume to be valid under both 

fault-free and faulted measurement conditions. Therefore, simultaneously propa-
gating the expected state trajectory and the covariance matrix is justified to analyze 
the performance of EKFs under faulted measurement conditions. We will subse-
quently refer to this analysis method as Covariance Analysis Including Expected 
Values, or CAIEV.

The last item to clarify is how to compute the expected value E [zk] in Equation (13). 
Under the assumed faulty measurement model z h x dk k k k= +( , ) ,νν  where we 
now use xk  to denote the true state trajectory, E [zk] can be approximated to first 
order as:

  E E Ek k k k k k[ ] [ ( , ) ] ( [ ], )z h x d h x d= + ≈ +νν 0  (14)

The true trajectory evolves according to x x u wk k k kf+ =1 ( , , ).  Thus, E k[ ]x  prop-
agates as E Ek k k[ ] ( [ ], , ),x f x u+ ≈1 0  to the first order.
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From the standpoint of fault detection, the expected values propagated using 
CAIEV enable prediction of the mean of the EKF innovations vector, denoted as 

.kµ  Specifically:

  = + −( [ ], ) ( [ ], )k k k kE E0 0h x d h xµ  (15)

Figure 4 summarizes the CAIEV approach and its use in predicting the perfor-
mance of a cumulative innovations monitor. For the FIND algorithm, the steps in 
the box labeled Innovations Monitor are conducted for each monitor in the bank.

5.2  Monte Carlo Simulation

We used a high-fidelity simulation testbed for the Monte Carlo analysis, the 
Global Navigation Satellite System Test Architecture (GNSSTA; Quartararo et al., 
2016). High-fidelity semi-analytic models for tracking channels generate synthetic 
complex correlations which include the effects of code phase mismatch between 
the replica being driven by the tracking loops and true signal(s) in the simulated 
environment. They account for effects of the autocorrelation function specific to 
that signal type (Doppler, power, noise, carrier phase, data symbols, etc.). These 
are described as semi-analytic because the tracking model does not actually pro-
cess baseband data as in a software receiver mode, but instead uses descriptions 
of the receiver clock and the Doppler, data symbols, power, and noise profiles of 
the signals in the environment as a function of time to create a synthetic correla-
tion result to be passed downstream to the rest of the receiver processing chain 
(Borio et al., 2010; Spilker et al., 1996). From there, pseudoranges, Doppler esti-
mates, decoded navigation messages, position solutions, etc., are derived and fed 
into the EKF.

FIGURE 4 Performance analysis flowchart for cumulative innovations monitor
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As with the synthetic GNSS measurements, synthetic IMU measurements are 
generated to be consistent with the true receiver trajectories. Noise is added to the 
nominal measurements according to the emulator configuration (i.e., simulated 
IMU quality/grade); this includes turn-on biases, in-run biases, white noise, etc. 
(Quartararo et al., 2016).

6  RESULTS

Performance of the FIND algorithm is first compared to the snapshot and IH 
algorithms using CAIEV. For FIND, N = 60 monitors are used with B = 10 mea-
surements per block. We chose these values in conjunction with the 1-Hz GPS 
measurement update to cover a time span of 10 minutes with monitors increas-
ing in duration by steps of 10 seconds. A topic for future work is to study how to 
more rigorously select the FIND design parameters for a specific application and 
set of faults and fault profiles to consider. The Pfa for the snapshot, IH, and FIND 
bank was set to 10–5 and, given the 1-Hz measurement rate, about 0.86 false alarms 
would therefore be expected per day of continuous operation.

Figure 5 shows the missed detection performance over time for the tightly cou-
pled GPS/inertial EKF with a tactical-grade IMU. It is worth discussing how the 
probability of missed detection (Pmd) was determined for FIND given that multi-
ple, correlated monitors were involved. A missed detection occurs when the test 
statistic s from every monitor fails to exceed its threshold T. Therefore, Pmd can be 
written as:

   P P s T s Tmd = < ∩ < ∩( )1 1 2 2   (16)

It is difficult to compute Pmd in Equation (16) because the test statistics are mutu-
ally correlated. In response, we use the upper bound (Hailperin, 1965):

    P s T s T P s T P s T( ) ( ( ), ( ), )1 1 2 2 1 1 2 2< ∩ < ∩ ≤ < < min  (17)

to predict Pmd for FIND using CAIEV. That is, at each time instance, we extract 
the minimum Pmd across all monitors in the bank. It is this minimum value that is 
plotted over time in the right-most panel of Figure 5.

FIGURE 5 Probability of detection as a function of time for a tightly coupled GPS/inertial 
EKF equipped with a tactical grade IMU (CAIEV)
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For the quadratic fault profile, the snapshot monitor is unable to reliably detect 
the presence of faulty measurements for fault magnitudes up to 2,000 m. The 
IH monitor clearly has better detection performance compared to the snapshot 
monitor, but also struggles with smaller fault magnitudes. Only for the largest 
fault magnitude of 2,000 m does the IH method provide a high probability of 
detection (Pd). An observation in Figure 5 is that for all fault magnitudes, FIND’s 
highest Pd over the entire fault duration always exceeds that of the IH monitor. 
For example, with a fault magnitude of 750 m, the highest Pd for FIND is approx-
imately 0.025 whereas it is only 4.75 × 10–4 for IH. In other words, covariance 
analysis predicts that the N = 60, B = 10 instantiation of the FIND algorithm out-
performs the IH monitor. However, it is worth pointing out that other instanti-
ations may result in different relative assessments between FIND, IH, and the 
snapshot monitor.

One way to understand the theoretical basis for why the FIND algorithm may 
perform better than IH is by considering the degrees of freedom (DOF) in the test 
statistic. Qualitatively, DOFs capture the allowable variation in the test statistic, 
analogous to how DOFs capture the allowable motion of a dynamic body. For 
example, a body with a single DOF can only translate along a line, whereas a body 
with six DOFs can translate and rotate in three dimensions. The IH test statistic 
can have many DOFs. Thus, if the IH monitor encounters a faulty measurement 
sequence after it has been accumulating for a while, it could be that the faults are 
“allowable” within the DOF, resulting in poor detection performance. With the 
FIND algorithm’s finite-length accumulations, the DOFs of each monitor could 
be substantially less compared to IH, making it harder to justify that the faulty 
behavior is due to natural causes. As a result, the detection probability for the FIND 
algorithm would be higher than IH.

It is also worth discussing the behavior of the FIND Pd curves for fault magni-
tudes of 1,000 m and 1,500 m. The curves initially rise when faults begin to appear 
at 1,200 seconds, indicating that the likelihood of fault detection increases with 
exposure time. However, this trend does not continue for the entire fault duration. 
After approximately 1,300 seconds, the Pd curves begin to fall, and it becomes less 
likely that the measurement faults will be detected. This is explained as follows.

The analysis conducted here does not include exclusion (i.e., faulty measure-
ments are always incorporated by the EKF) regardless of alarm status. Therefore, 
the state estimate, which serves as the EKF linearization point, begins to follow the 
faulty state trajectory with prolonged exposure to the fault, resulting in less sensi-
tivity to the presence of faulty measurements and lower probabilities of detection. 
It is important to note that an actual implementation of the FIND algorithm would 
execute an exclusion algorithm upon fault detection.

A concise performance summary is obtained by extracting the best-case (highest) 
Pd over time for each fault magnitude. This metric is shown in Figure 6 for many 
IMU grades, fault profiles, and fault detection algorithm configurations, and the 
results reiterate the fact that the best detection performance is achieved using the 
FIND algorithm given a particular IMU grade.

The CAIEV analysis performed in this section has two important limitations. 
First, it is based on first-order approximations and thus does not fully capture 
second-order or nonlinear effects. Second, it assumes that the EKF has perfect 
knowledge of measurement and process noise statistics and therefore does not cap-
ture the effects of real-world model uncertainty. Nevertheless, the CAIEV analysis 
is useful for performing initial studies of fault detection performance. In parallel, 
we also perform high fidelity Monte Carlo simulations to better understand the 
effect of processes that cannot easily be replicated in covariance analysis.
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For several combinations of IMU grade (aviation or tactical) and measurement 
fault profile, we ran 100 Monte Carlo simulations, each simulating 30 minutes 
of navigation with all fault detection algorithms active. Just as with the covari-
ance analysis, fault exclusion was not conducted in the Monte Carlo analysis (i.e., 
measurements were always ingested by the filters regardless of the fault detection 
alarms). An example plot is shown in Figure 7 to illustrate the metrics that are pre-
sented later. The top plot shows the percentage of runs, R, in which each detector 
triggered, and the bottom plot shows the corresponding position pulloff, Δr, of the 
fault. By t = 1,264 seconds (64 seconds after the onset of the faults), 99% of FIND 

FIGURE 6 Best case Pmd for snapshot, IH, and FIND monitors (CAIEV analysis)

FIGURE 7 Monte Carlo detection rate example for three fault detection algorithms with an 
aviation-grade IMU, 750-meter pulloff fault, 100 runs



QUARTARARO and LANGEL    

runs had detected faults. This may initially seem slow, but it is important to note 
that the quadratic fault profile had only reached approximately nine meters of total 
position pulloff compared to the 6.4 km traveled by the aircraft in that same period. 
Rmax indicates the maximum (best) detection rate achieved across all time (out of 
30 minutes) for a particular configuration and algorithm.

Table 3 summarizes the values of Rmax (see Figure 7 ) for different scenarios and 
sensor configurations. Performance was strongly tied to the grade of IMU; coupled 
with the limitations of processing resources and time, data was not collected for 
every permutation of fault and IMU grade. Data was collected for the aviation-grade 
IMU up to where 99% detection rates were observed, however in the future it would 
be useful to fill out those cases, particularly for the second two metrics. Utilizing an 
aviation-grade IMU, the FIND algorithm achieved excellent detection for the 500- 
and 750-meter fault profiles, and the IH did well for the 750-meter fault.

The Monte Carlo results show reasonable agreement with the CAIEV predictions 
but there were some differences. Specifically, within the tactical-grade IMU results, 
the snapshot monitor generally outperformed IH whereas the CAIEV results pre-
dicted that IH would provide better fault detection than the snapshot monitor. This 
difference may be explained by the fact that CAIEV does not account for the model 
mismatch effect which more severely impacts long accumulating monitors such 
as IH, leading to a potential loss of detection sensitivity as evident in these Monte 
Carlo simulations. This discrepancy was not seen, however, in the aviation-grade 
results, where the Monte Carlo results agreed with the CAIEV predictions that 
the FIND algorithm would outperform IH, and IH would outperform snapshot. 
Another complicating factor here may be that the length of accumulation during 
the fault activity varied between the two cases, as evidenced by the time-to-detect 
metrics that will be described next; shorter detection indicates less time for the IH 
monitor to recover from the long fault-free accumulation before the faults began, 
which was driven by model mismatch.

Tables 4 and 5 summarize the time-to-detect results for the Monte Carlo sim-
ulations (the time to achieve 99% detection rate). Since the fault scenarios were 

TABLE 3 
Maximum (best) detection rate over time (Rmax, as percentage of 100 runs) 
for various configurations and algorithms (across 0–30 minute span where 
faults start at 20-minute mark)
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250

No Data

2 8 8

500 2 8 100

750 19 48 100

1,000 0 0 1 84 100 100

1,250 1 1 50 99 100 100

1,500 2 7 100

No Data

2,000 8 6 100

2,500 40 0 100

3,000 90 3 100

3,500 100 2 100

4,000 100 100 100
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selected to be subtle and to explore the boundaries of performance of the FIND 
algorithm, not all of the algorithm/scenario/IMU configurations ever achieved 
a 99% detection rate (note that only some of the Rmax entries in Table 3 meet or 
exceed 99%).

As a result, the tables are somewhat sparse, but we can see that the algorithms 
did eventually achieve strong detection performance and typically did so within a 
few seconds to minutes of the fault onset, as indicated by the t99 values in Table 4. 
While detection rates on the order of tens of seconds to minutes may seem slow, it 

TABLE 4 
Time to 99% detection rate (since fault onset in sec) from Monte Carlo 
runs for various configurations and algorithms; dashes indicate where 99% 
detection rates were not achieved.
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- - -

500 - - 130

750 - - 62

1,000 - - - - 197 41

1,250 - - - 123 144 27

1,500 - - 44

No Data

2,000 - - 21

2,500 - - 16

3,000 - - 13

3,500 21 - 11

4,000 14 111 10

TABLE 5 
Accumulated position fault (in m) at the 99% detection time from Monte 
Carlo runs for various configurations and algorithms; dashes indicate where 
99% detection rates were not achieved.
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1,250 - - - 53 72 3

1,500 - - 8
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2,000 - - 2

2,500 - - 2

3,000 - - 1

3,500 4 - 1

4,000 2 137 1
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is important to remember that the fault profiles are very slow accumulations and as 
a result the total position error achieved after a minute may only have amounted to 
a few meters. The total position error (in meters) at the corresponding t99 times are 
shown Table 5. For the cumulative monitors that had valid data, they typically trig-
gered only when tens of meters of pulloff had occurred, which is very small com-
pared to the kilometers the aircraft may have truly traveled over that time (recall 
that the aircraft speed is 100 m/s). Stronger pulloff faults tend to be detected more 
quickly and the FIND algorithm typically triggers when only a few meters of actual 
position pulloff have been achieved at that point.

7  SUMMARY

This paper derived and analyzed a novel approach to utilize additional sensors 
for GPS fault detection. The proposed algorithm, FIND, uses a bank of cumula-
tive innovations monitors in an EKF for sensitivity to slow and fast accumulat-
ing faults and to minimize the effect of real-world model uncertainty on detection 
performance. Analysis of the new method was conducted using an adaptation of 
first-order covariance analysis (the CAIEV approach introduced in this paper) 
and high-fidelity Monte Carlo simulations. Performance was demonstrated for a 
tightly coupled GPS/inertial integration architecture, and results showed that the 
instantiation of the FIND algorithm studied in this paper provides superior detec-
tion performance for the cases considered over existing approaches to innovations 
monitoring.

8  FUTURE WORK

While improved detection performance for the FIND algorithm versus other 
algorithms has been demonstrated for specific cases in this paper through covari-
ance analysis and high-fidelity Monte Carlo simulations, significant future work 
could be performed. For a more realistic assessment, hardware-in-the-loop testing 
would be the next step. This would include error sources that these simulations did 
not study; for example, the impacts of multipath, atmospheric (ionosphere/tropo-
sphere) delays, IMU misalignments and scale factor errors, second-order effects on 
sensors such as vibratory conditions (which can affect clocks and IMUs), gravity, 
and gravity-squared error effects, etc.

The dimensionality of the test space is large, and the number of test cases/vec-
tors is intractable, but at least some additional permutations of trajectory, scenario 
duration, IMU grades, fault profiles, GNSS constellations (e.g., multi-GNSS such 
as Galileo), and RF environments (e.g., jamming) would provide additional rigor 
to support the performance conclusions. Additional study on optimal selection of 
FIND configuration parameters (number of monitors N and block size B) may yield 
additional performance improvement.

This study focused exclusively on fault detection but of course mitigation is a crit-
ical component to the hardening of PNT equipment. Mitigation is typically straight-
forward for a snapshot monitor because it can simply exclude the single offending 
measurement set under evaluation without tainting the recursive filter state. For 
cumulative monitors, detection indicates a problem with the accumulated his-
tory of measurements in the recursive filter. A straightforward approach would 
be to save the filter state history and non-satnav sensor measurements, rewind 
in time equal to the size of the window of the alarming monitor and re-play 
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without the satnav measurements. Depending on the length of the accumula-
tion, this may be infeasible, but there may be clever solutions that allow an effi-
cient hybrid between a purely recursive vs. batch filter approach (i.e., it may be 
unnecessary to save every Kalman filter state/covariance, save every IMU mea-
surement, etc.). Another approach would be to have a bank of parallel filters 
running (which process different measurements) that the user equipment could 
swap over to or copy from. A recent approach using fading filters is described in 
Tanil et al. (2019).

As described in Section 2, any mismatch between the real errors and the models 
of those errors can lead to discrepancies between a predicted probability of false 
alarm and the actual false alarm rate (and the same concern applies to detection). 
Beyond simply getting a parameter value wrong (e.g., the variance for a Gaussian 
noise process), real system errors may not even be Gaussian-distributed (e.g., mul-
tipath errors) although engineers typically use this model. It is critical to study and 
verify actual false alarm rates, and future work should consider efforts in that area. 
An in-depth sensitivity analysis of the impacts on performance due to model mis-
match would help improve understanding in this area.

The approaches outlined in this paper have only examined validating mea-
surement sets as a whole; they do not determine which of the measurements 
are faulty and, as a result, discard all of them if the test statistic exceeds the 
detection threshold. It would be advantageous to improve upon this so that 
subsets of good measurements can still be incorporated. For example, ARAIM 
(Blanch et al., 2007; WG-C ARAIM Subgroup, 2016) can sift out subsets of 
self-consistent measurements (noting self-consistent does not necessarily mean 
correct without independent information/sensors such as clocks and inertial 
sensors).

The probability of detection analysis did not address the correlated nature of 
the accumulated test statistic. The IH source material (Tanil et al., 2018) contains 
a comment on this as well, and the authors posit that the analysis is probably still 
generally valid, although it would be valuable to address this flaw. Since we saw 
detection rates and performance consistent with predictions, the effect is probably 
not massive, but it would be useful analytical work to mathematically characterize 
this effect and its impact on performance predictions.

We were able to show that the sensitivity loss is strongly affected by model mis-
match which accumulates over time. However, we have noticed that even in the 
covariance and a lower-fidelity Monte Carlo analysis where the models perfectly 
match the errors being added to the synthetic measurements, very long accumula-
tions (IH algorithm) still suffer from some loss of sensitivity over time. This could 
be due to the correlation in the accumulated test statistics that the predictive anal-
ysis does not account for, but further work should seek to understand the source of 
this residual effect.

Lastly, while the monitor bank concept is general to any Kalman filter, we have 
only explored it in the specific cases of one filter that processes inertial and GNSS 
measurements, relying on the inertial and clocks to help detect faulty GNSS mea-
surements. Since the core algorithm translates to any filter, other sensor configu-
rations could naturally and automatically benefit. For example, a filter that also 
incorporates altitude information from a barometric altimeter may be able to sig-
nificantly increase detection of faults (particularly in the vertical direction as we 
examined in this paper).
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APPENDIX A: EFFECT OF MONITOR CROSS-
CORRELATION ON FALSE ALARM RATE

This appendix investigates the effect that monitor cross-correlation has on the 
actual false alarm rate of the FIND algorithm. In addition to showing that equally 
allocating Pfa to each monitor is conservative, we will also provide insight into how 
conservative this allocation is. The analysis is carried out through Monte Carlo 
simulations with a total number of monitors in the FIND bank varying from five to 
60. Using Figure 3 as a guide, we use B = 1 and assume for simplicity that each of 
the mi is a chi-square random variable with 10 degrees of freedom.

Suppose that the overall false alarm requirement is 10–4 and that we allocate this 
budget equally to each monitor. Recall from Section 3.4 that the FIND test statistic 
can be written as:
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 (A1)

where N is the number of cumulative monitors in the bank (varying between four 
and 59 for our case). The threshold for sFIND is TFIND = 1.0.

To assess the behavior of sFIND under fault-free conditions, we randomly simulate 
one billion samples. A single sample is obtained by first generating independent 
mi, each of which is a chi-square random variable with 10 degrees of freedom. 
Then the normalized test statistics si /Ti are formed by summing the appropriate 
subsets of the mi and normalizing by the threshold.

Lastly, the si /Ti are substituted into Equation (A1) to obtain one sample of sFIND. 
The true false alarm rate for a given threshold is determined empirically by divid-
ing the number of samples exceeding the threshold by the total number of sam-
ples. The results of this analysis are shown in Figure A1. Notice that for the FIND 
threshold of one, the true false alarm rate is less than the desired value of 10–4, with 
the discrepancy increasing as the number of monitors increases. Hence, the Monte 
Carlo analysis supports the claim that equal allocation of the false alarm require-
ment to each monitor is a conservative approach.
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Figure A1 also provides an indication of how conservative an equal false alarm 
allocation is as a function of the number of monitors. With five monitors, the true 
false alarm rate is 7.58 × 10–5, 24% below the required level. If 60 monitors are used, 
the true false alarm rate is 2.78 × 10–4, or 72% below the desired value. It is difficult 
to make general statements about whether it is worth trying to exploit monitor 
cross-correlation when setting thresholds for the FIND monitor bank.

Not only will the answer depend on the application, but it will also depend on the 
form of the bank. This appendix only considers instantiations where the number of 
degrees of freedom was equal for each of the mi, and the results could vary signifi-
cantly with degrees of freedom. Nevertheless, if the bank structure is known a pri-
ori, the Monte Carlo approach outlined in this section could serve as a data-driven 
method for setting monitor thresholds that take advantage of cross-correlation.

FIGURE A1 FIND false alarm rate as a function of the detection threshold
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