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O R I G I N A L  A R T I C L E

A Robust Detection and Optimization Approach for  
Delayed Measurements in UWB Particle-Filter-Based 
Indoor Positioning

Ning Zhou1,2  Lawrence Lau3  Ruibin Bai4  Terry Moore5

1  INTRODUCTION 

As a promising wireless positioning technique, ultrawideband (UWB) has 
received considerable attention among indoor positioning researchers in recent 
years (Yan et al., 2013; Zhou et al., 2021b). UWB-based high-accuracy indoor 
positioning systems have been widely used in a variety of industrial applications 
(Parikh & Michalson, 2008). Examples include smart manufacturing (Feng et al., 
2020), intelligent inventory management (Macoir et al., 2019), and 
automated mining (Cao et al., 2020), etc. UWB sensors transmit information 
based on a non-sinusoidal narrow pulse (nanosecond-level), but not carrier 
wave, over a wide portion of the frequency spectrum. Inherently, the extremely 
high time resolution as well as the large bandwidth of UWB enable it to have 
high-ranging accuracy (decimeter-level) and strong robustness to multipath 
effects (Zhou et al., 2021a). 
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Abstract 
Ultrawideband (UWB) technology has received considerable attention in indoor 
positioning because of its high ranging accuracy. However, UWB range mea-
surements can be contaminated by the delayed signals resulting from obstruc-
tion and reflection in difficult indoor environments. These signals introduce 
delays to range measurements and degrade positioning accuracy if they are not 
resolved properly. In order to mitigate the effects of delayed range measure-
ments on positioning and achieve a high-accuracy position estimation, this 
paper proposes a robust particle-filter-based indoor positioning algorithm. In 
the proposed algorithm, an outlier detection method is proposed for delayed 
measurement identification, and a constrained particle sampling method is 
proposed to optimize the distribution of the predicted particles. The proposed 
algorithm is assessed rigorously through testing. The test results show that the 
proposed algorithm can effectively identify delayed range measurements, miti-
gate their effects on position estimation, and improve positioning accuracy.
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In UWB-based positioning (also known as localization), range measurements 
based on a time-of-arrival (TOA) technique are more commonly used than 
angle-of-arrival (AOA) or signal strength techniques because positioning methods 
based on range measurements can generally provide higher positioning accuracy 
(Wang et al., 2020). However, UWB range measurements can be contaminated 
by delayed signals in the difficult indoor environments in which obstruction 
exists between the transmitter and receiver. Such delayed signals, also known as 
non-line-of-sight (NLOS) signals, refer to transmitted signals that arrive at a receiver 
through a penetrated, reflected, or diffracted path (Yu et al., 2018). 

The range measurement contaminated by a delayed signal is called a delayed 
range measurement, and the type of UWB sensor that produces delayed range mea-
surements are referred to as delayed sensors in this paper. When delayed range mea-
surements are used for position estimation directly, the positioning accuracy can be 
significantly degraded. This problem has been a major challenge for UWB-based 
high-accuracy indoor positioning (Zhang & Duan, 2021).

A TOA technique calculates the range (distance) between a particular UWB tag 
(for signal transmission) and UWB sensor (for signal reception) based on the signal 
travel time. In order to obtain accurate TOA measurements, some advanced rang-
ing techniques such as ranging with a dirty (noisy) template and threshold-based 
ranging (Sahinoglu et al., 2008) have been proposed. However, there are two possi-
ble situations leading to the occurrence of delayed signals. 

One possible situation is that the transmitted signal from a UWB tag can pene-
trate a given obstruction (such as thin wood partition) and still arrive at the sensor 
through a direct (or line-of-sight) path. In this case, the resulting delay (or NLOS 
error) is introduced to the travel time because the signal passes through differ-
ent materials. Another possible situation, which is more common in UWB-based 
indoor positioning, is that the transmitted signal cannot penetrate a given obstruc-
tion (such as a thick concrete wall) but, instead, arrives at the sensor through a 
reflected or diffracted path. In this case, a delay is introduced to the travel time 
because the signal travels a longer path than the true distance between the sensor 
and tag. 

The increased travel time in both cases results in delayed UWB range measure-
ments, especially the delay caused by the reflected path, which has become a main 
error source in UWB-based positioning. The delayed range measurements then 
degrade positioning accuracy if they are not resolved properly. Therefore, iden-
tifying the delayed range measurements and mitigating their effects on position 
estimation are crucial for effective high-accuracy indoor positioning.

Various methods for the identification and mitigation of delayed TOA range 
measurements have been proposed to fulfill the demands of positioning in difficult 
indoor environments. Channel statistics-based methods (Khodjaev et al.,  2010) 
are widely used for tackling the problem of delayed range measurements. In 
Section 2.1, some advanced channel statistics-based methods are described. Such 
methods first identify delayed signals by examining either the statistics of channel 
impulse response (CIR) or the features (metrics) of the received signals, and then 
the delays in the identified delayed signals are calibrated by statistics (Khodjaev 
et al., 2010) or a signal propagation path-loss model (Wu et al., 2007). 

It is known that signal delays cannot be completely eliminated and can only be 
mitigated (Yu et al., 2018), but most of the channel statistics-based methods take no 
account of the effect of residual delays on position estimation. The residual signal 
delays eventually convert to residual range measurement errors, and we find that 
these errors are in the overall range of 0.2 m to 1.0 m (see Section 5.1) in indoor 
environments. These residual range errors need to be addressed since they degrade 
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positioning accuracy. Position estimate-based methods (Khodjaev et al., 2010) 
provide solutions to the residual errors described here. Different from channel 
statistics-based methods, which endeavor to mitigate the delays in signals, the posi-
tion estimate-based methods aim to identify the delayed range measurements and 
mitigate their effects on position estimation through robust positioning algorithms. 

Stochastic filters, such as extended Kalman filters (EKFs), unscented Kalman fil-
ters (UKFs), and particle filters, are the kind of advanced algorithms usually used 
in indoor positioning to reduce the effect of measurement noise and improve posi-
tioning accuracy (Pak et al., 2017). Particle filters are more widely used because of 
its advantages over the other two algorithms. For example, particle filters can per-
form global positioning (i.e., positioning when the initial position is unknown) and 
deal with the problems with arbitrary distribution (Zhou et al., 2021a). However, 
since a standard particle-filtering algorithm has weak robustness to delayed range 
measurements, positioning using standard particle-filtering algorithms in difficult 
indoor environments still suffers from some problems. 

This paper proposes a novel and robust particle-filter-based indoor position-
ing algorithm, the Range-Constrained Sampling Particle Filter (RCSPF), for 
high-accuracy positioning in difficult indoor environments. The algorithm is 
designed for indoor positioning systems using TOA range measurements. In the 
proposed RCSPF algorithm, an outlier detection method is first proposed to iden-
tify the delayed range measurement in question. Then, based on the identifica-
tion results, a range-constrained particle-sampling (RCPS) method is proposed to 
replace the traditional sampling method for generating prior particles. This RCPS 
method can optimize the distribution of prior particles and improve positioning 
accuracy, which is part of the novelty of the proposed algorithm. These two meth-
ods are integrated into a particle-filter framework to form the RCSPF algorithm. 
The proposed algorithm is assessed rigorously through testing, and its results 
show that the proposed algorithm can effectively identify the delayed range mea-
surements, mitigate their effects on position estimation, and improve positioning 
accuracy.

This paper is organized as follows. In Section 2, some advanced identification 
and mitigation methods for delayed range measurement are reviewed, and their 
limitations are described. In Section 3, the detailed principle of the proposed 
RCSPF algorithm is described. The design of the test for positioning performance 
assessment, assessment results, and analysis are given in Section 4. Finally, the 
conclusions are drawn in Section 5.

2  RELATED WORKS

A variety of identification and mitigation methods for UWB delayed range mea-
surements have been proposed in the past two decades. As aforementioned, these 
methods can be generally divided into two categories: channel statistics-based 
methods and position estimate-based methods. This section first reviews the meth-
ods in these two categories and discusses their limitations. Then, some advanced 
TOA-based positioning methods using a particle filter framework are reviewed. 

2.1  Channel Statistics-Based Methods

Channel statistics-based methods identify delayed signals by examining the 
CIR statistics or the received signal features such as maximum amplitude, 
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signal-to-noise ratio, total power, kurtosis, mean excess delay, and root-mean-square 
delay spread. A description of these signal features can be found in Yu et al. (2018). 
Once the delayed signal is identified, it can be mitigated by either error statistics 
or a signal propagation path-loss model. As for the statistical model, Alavi and 
Pahlavan  (2006) introduced a model for UWB TOA ranging errors in an indoor 
environment. This model relates the behavior of the TOA estimation error to the 
bandwidth of the signal. As for the path-loss model, Al-samman et al. (2017) pres-
ent a UWB channel characterization considering stationary and mobility scenarios 
in an indoor environment based on the data collected through TOA measurements. 
Zhao et  al.  (2013) developed an empirical model to continuously determine the 
path loss inside a corridor for the case of transition between direct and delayed 
signals. In the following, other state-of-the-art channel statistics-based methods 
are reviewed.

In the method proposed by Heidari et al. (2007), the peak of the filtered CIR was 
selected as the first detected path of the signal. Then the time (mean excess delay) 
and power (total power) metrics from the first detected path were extracted. The 
delayed signal was then detected by a joint likelihood-ratio hypothesis test of the 
total power, mean excess delay, and hybrid of power/time metrics. The delay in the 
range measurement was then mitigated by subtracting the error from a delayed 
measurement based on the statistics of range errors associated with each class 
of receiver location. The ranging accuracy was improved by about 50% with the 
implementation of this method, and the residual range error was about 1.56 m. 

Albaidhani et al. (2016) identified delayed signals by comparing the power differ-
ence between the first path and received signal with a receiver detection threshold. 
The delay was estimated by a statistical model which took into account the refrac-
tive index and width of a given obstruction. The test results obtained from a corri-
dor environment showed that, for the channel mode CH3 (4.5 GHz), the residual 
range errors remain in the range of about 0.4 m to 1.2 m. 

Wu et al. (2007) proposed a detection method by comparing the arrival time and 
received energy of all paths. The delay was then estimated based on a signal prop-
agation path-loss model. This estimated delay was then used for calibrating the 
measured range. The test results obtained from a basement environment show that 
the residual range errors were in the range of 0.2 m to 0.8 m. 

Maranò et al. (2010) developed a classification and regression method based on 
the support vector machine learning technique. Based on the features extracted 
from the CIR, this method detected the delayed signal and mitigated the delay with-
out formulating statistical models for the features. The test results showed that dif-
ferent feature sets produced different levels of performance, and the best feature set 
could reduce the root-mean-square of residual range error from 3.589 m (without 
any implementation of error mitigation) to 1.419 m (error mitigation implemented). 

Yu et al. (2018) proposed an identification method based on a fuzzy compre-
hensive evaluation. This method divided indoor propagation channels into multi-
ple categories so that the channel identification results could be used to evaluate 
how serious the effect of delayed propagation would be. Given the signal features 
extracted from the CIR, this method could identify the specific delayed channel and 
predict its corresponding delay. The test results obtained from the tested real office 
environment showed that the root-mean-square of range errors had been reduced 
from 1.3 m (no error mitigation) to 0.651 m. In addition to the methods described 
above, more channel statistics-based methods are presented by Güvenç et al. (2008) 
and Wymeersch et al. (2012).

The channel statistics-based methods described can effectively improve individ-
ual range measurement accuracy. However, it is impossible to eliminate the delays 
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completely, and the residual signal delays become delays in the range measure-
ments. With the aforementioned state-of-the-art channel statistics-based meth-
ods, the residual delays in range measurements remained in the overall range 
from about 0.2 m to 1.0 m. These residual errors should be considered seriously 
because they degrade positioning accuracy. In order to mitigate such effects of 
residual delays on positioning, position estimate-based methods are required. With 
the hardware without any channel statistics-based methods, the need for position 
estimate-based methods becomes obvious and significant. In the next section, such 
state-of-the-art position estimate-based methods are described.

2.2  Position Estimate-Based Methods 

According to Hammes and Zoubir (2010), position estimate-based methods 
generally can be divided into two categories. The first category is called robust 
estimation. The methods in this category estimate positions using all observed 
measurements, including delayed ones. They use specific strategies, such as those 
described below, to mitigate the effects of delayed measurements on position 
estimation. 

One typical strategy is to provide weights or scale factors on the delayed mea-
surements. The weight or scale factor can be determined by either the position esti-
mation residual calculated by a residual weighting algorithm (Rwgh; Chen, 1999) 
or the geometry of the base stations (Venkatraman et al., 2002). The Rwgh calcu-
lates the weighted residuals of least squares (LS) estimates obtained from different 
sensor combinations. The final position estimate is the linear combination of these 
LS position estimates weighted inversely against their residuals. 

In addition, Yousefi et al. (2014) proposed a two-stage robust distributed 
algorithm for sensor network positioning. In this algorithm, a Huber estima-
tor is used for the robust position estimation against delayed range measure-
ments. Yin et al. (2013) proposed another algorithm that iteratively estimates 
the probability distributions of range error and position. The methods in this 
category can always provide position estimates whatever the number of delayed 
range measurements is. However, most of the above methods are difficult for 
real-time applications due to the large computation load required (Yu et al., 
2018). Moreover, these methods may be ineffective when the number of delayed 
measurements is large.

The second category of estimate-based methods is called identification-and- 
positioning. The methods in this category attempt to distinguish range measure-
ments between delayed range measurements and direct range measurements (only 
contaminated by noise) first. A non-parametric approach for delayed range mea-
surement identification was proposed by Gezici et al. (2003). It constructs the prob-
ability density functions (PDFs) of delayed- and direct-range measurement errors 
from training samples and uses the Kullback-Leibler divergence to quantify the 
distance between these PDFs and set decision threshold. 

Borras et al. (1998) used the wide variance on a list of range measurements to 
identify delayed range measurements. This method is simple and straightforward 
but has the problem of time latency. Le et al. (2003) proposed using a Kalman filter 
for range measurement smoothing. The standard deviation estimated by Kalman 
filters is used for delayed measurement identification. Casas et al. (2006) identified 
the delayed range measurements using the least-median-of-squares (LMedS) in a 
technique that searches in the space of position estimations obtained from combi-
nations of the minimum number of measurements. 
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A common drawback of the methods described here, however, is that they 
would be ineffective if redundant range measurements are unavailable; increasing 
the number of sensors would increase the cost. In addition, delayed range mea-
surements can also be identified by combining the position estimate with con-
strained information such as its geometry (Liu & Fan, 2010) or a map (Djaja-Josko 
& Kolakowski, 2017). However, constrained information is not always available 
in practice, and the use of constrained information may increase computational 
complexity. 

The identified delayed range measurements can then be either discarded 
or calibrated. The calibration methods in question are similar to the channel 
statistics-based methods, which can be based on either error statistics or the signal 
propagation path-loss model. Moreover, the method proposed by Le et al. (2003) 
would mitigate delays by using a biased Kalman filter to increase the values of 
the diagonal elements of the measurement noise covariance matrix. The identified 
direct range measurements as well as the calibrated measurements can be used for 
position estimation. 

The existing position estimate-based methods described above have limitations 
such as the requirement of measurement redundancy and great dependence on 
prior knowledge (such as the known statistics of a sensor being delayed). In this 
paper, an outlier detection method is proposed for delayed range measurement 
identification. This method is less dependent on prior knowledge and has no 
requirement for measurement redundancy. A detailed description of the proposed 
outlier detection method is presented in Section 3.

2.3  TOA-Based Positioning Using Particle Filter

Various methods have been proposed for TOA-based positioning using parti-
cle filters. Savic and Larsson (2016) proposed an improved particle-filter-based 
positioning algorithm with a Gaussian process regression (GPR) based 
machine-learning method for correcting delayed range measurements. The posi-
tioning accuracy of the algorithm is highly dependent on the environment of the 
collected training data, and thus it has poor robustness to changes in a given posi-
tioning environment. 

Wang and Li (2017) proposed an inertial measurement unit (IMU) and UWB 
data-fusion positioning algorithm based on a particle filter. This algorithm takes 
IMU calculation results (velocity and orientation) as the prior information for the 
particle filter and then uses UWB range measurements for particle weight updat-
ing. The test results show that the prior information derived by IMUs can miti-
gate the effect of delayed measurements on position estimate and thus improve 
positioning accuracy. However, the integration of an additional sensor into a UWB 
system may cause new problems, such as sampling synchronization between the 
two sensors and increased cost on equipment. 

González et al. (2009) proposed an augmented state particle filter containing a 
set of random range offsets into the state vector. This operation seemed to improve 
the robustness against delay, but it simply attributed potential bias into another 
independent component in the state vector without identifying the cause of bias 
(noise or delay). Moreover, the increase of the parameter in the state vector could 
decrease the degrees of freedom in the filtering estimation and hence the reliability 
of the position estimate (Basiri et al., 2017). Therefore, the positioning accuracy 
of the algorithm might degrade significantly when measurement redundancy is 
unavailable. 
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For positioning using the Global Navigation Satellite System (GNSS) in urban 
environments, Suzuki (2019) proposed a particle-filter-based algorithm with GNSS 
delayed signal identification using pseudorange residuals. Based on the pseudo-
range residuals, the delayed measurements would be identified and discarded 
through a simple hypothesis test. However, this method assumes that there would 
always be a reference satellite that could receive direct signals and that the pseu-
dorange it generated would not contain a delay. Such assumptions may be reason-
able for outdoor positioning, in which there are a large number of measurement 
redundancies because of the many positioning satellites on the space. In contrast, 
the number of positioning sensors in indoor positioning is usually much less, and 
indoor environments are usually more complicated, thus such assumptions remain 
unreasonable for indoor environments. Therefore, this proposed algorithm is diffi-
cult to be widely applied in indoor positioning.

In this paper, for the purpose of achieving accurate position estimates in difficult 
environments, an outlier detection method is first proposed for delayed range mea-
surement identification, and a range-constrained particle sampling method is pro-
posed for generating prior particles. Both the proposed methods are integrated into 
a particle-filtering framework to form the proposed RCSPF algorithm. Different 
from the algorithms introduced, the proposed RCSPF algorithm does not need 
assistance from any additional sensors to be effective. Meanwhile, it has no require-
ments for prior training data or measurement redundancies. A detailed description 
of the proposed algorithm is given in the next section.

3  PROPOSED ALGORITHM

The basic concept of a particle-filtering algorithm is presented by Chen (2003). 
Our proposed RCSPF algorithm consists of four steps: prior position determina-
tion, delayed range measurement identification, constrained prior particle sam-
pling, and posterior position estimation and update. Each step is detailed in the 
following. A full procedure of the proposed RCSPF algorithm is given at the end 
of this section.

3.1  Step 1: Prior Position Determination

The state-space model used in the proposed algorithm needs, first, to be defined. 
We need a dynamic model for the moving tag which can provide its state informa-
tion. We denote a state vector as xk k k k k k k

Tx y z x y z=  , , , , , ,    in which ( , , )x y zk k k  
is the 3D position and ( , , )  x y zk k k  is the 3D velocity. The random-walk model (Pak 
et al., 2017) is used as the dynamic model without loss of generality, given by: 

			   x Ax Gwk k k= +−1 � (1)
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and T is the sampling interval. wk is the zero-mean Gaussian random process noise 
with known covariance Qk. This state model assumes that the velocity is subject 
to an unknown acceleration value which is characterized by the motion process 
noise. 

The prior position is determined by the noise-free equation of the dynamic 
model (i.e., x Axk k k k| |− − −=1 1 1, where xk− −1 1|k  is the known posterior position at 
time step k − 1, and xk k| −1  is the prior position at time step k). This prior position 
is actually the mean value of the prior particles obtained using Equation (1) in the 
standard particle filter. This prior position will be used in the delayed measurement 
identification in the next step.

3.2  Step 2: Delayed Measurement Identification

For the purpose of avoiding delayed UWB range measurements degrading posi-
tioning accuracy, a delayed measurement identification should be performed 
beforehand. Cong and Zhuang (2005) proposed an outlier detection method for 
identifying the delayed time-difference-of-arrival (TDOA) range measurements. In 
this step, we revise this outlier detection method and use it for identifying the UWB 
delayed TOA range measurements.

The measurement model should be defined first. We denote the original mea-
surement vector at time step k as yk (i.e., yk k M kr r= … 1, ,, , , where ri k,  is the raw 
range measurement provided by the i-th sensor), and it can be expressed as (Abbasi 
& Kahaei, 2009):

		  r x x y y z z v ei k i i i i k i k, , ,= −( ) + −( ) + −( ) + +
2 2 2 � (2)

where (x, y, z) is the unknown position of the target, and (xi, yi, zi) is the known 
position of the i-th sensor. vi,k is the measurement noise which is usually modeled 
as a zero-mean Gaussian variable, and ei,k is the delay (i.e., NLOS error) resulting 
from delayed signal propagation. When the range is obtained in a line-of-sight sce-
nario, the delay component ei,k should be zero. 

Consider that with a known reference position xref and its range measurement ri 
(which may be contaminated by delay) to the i-th sensor, the conditional probabil-
ity of a range being smaller than ri in the line-of-sight case is given by:
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i i ref
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where R is a random parameter that characterizes all possible range measurements; 
ri,ref is the calculated Euclidean distance between the reference position xref and the 
i-th sensor; σi is the known standard deviation of the measurement noise of the i-th 
sensor; and erf(·) is the error function defined as:

			     erf ex dt
x

t( ) = ∫ −2

0

2

π
� (4)

Equation (3) indicates that the higher the conditional probability, the more 
likely that a range measurement is an outlier contaminated by a delay. Therefore, 
a hypothesis test can be deduced intuitively to identify the delayed/direct range 
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measurement by comparing the calculated conditional probability with a pre-
defined threshold λ, given by:

			     P R r
direct

delayed
i i≤( ) <

> λ � (5)

When the conditional probability in Equation (3) of a range measurement is 
greater than the threshold λ, it is considered as a delayed range measurement, and 
the corresponding UWB sensor is defined as the delayed sensor. On the contrary, 
when the conditional probability is less than the threshold λ, it is considered a 
direct range measurement, and the corresponding UWB sensor is defined as the 
direct sensor.

The result of Equation (4) is dependent on the reference position xref. Ideally, 
using true position as the reference position can obtain the best identification 
performance. However, true position is unachievable in practice. Hence, it is nec-
essary to find an approximated value. When using this delayed measurement iden-
tification method in a static positioning problem, the reference position xref can 
be approximated by the Taylor Series Least Squares (TS-LS; Yu & Guo, 2007) esti-
mated or the Rwgh (Chen, 1999) estimated positions. 

Considering integrating this identification method into the particle-filtering 
framework, we use the prior position xk k| −1  obtained in Step 1 (Section 3.1) as the 
reference position. The accuracy of the prior positioning will affect the delayed 
measurement identification accuracy. When the posterior position at a previous 
time step (i.e., xk− −1 1|k ) is obtained in a line-of-sight environment or an environ-
ment in which delayed sensors account for a small portion of the whole sensors, 
the derived prior position is close to the true position. The bias between the prior 
position and true position in this case is negligible and would not affect the identi-
fication accuracy significantly (see test results in Section 4.4.3). 

However, if xk− −1 1|k  is obtained in an extremely difficult environment, namely 
in a case in which delayed sensors account for a large portion of the whole sensors, 
the effect of the bias should be considered as it may degrade the resulting iden-
tification accuracy. In order to improve the accuracy of the prior position, AOA 
measurements can be integrated into the positioning system since it improves 
the robustness of positioning in difficult indoor environments (Lau et al., 2018). 
The test results given by Cong and Zhuang (2005) show that the integration of 
AOA measurements helps to obtain a more accurate reference position estimate 
and hence better delayed measurement identification accuracy. In this work, we 
use only UWB-range measurements for positioning; integration of AOA measure-
ments into the current method is a subject for future work. The determination of 
the threshold λ is described in Section 4.2.

The proposed delayed measurement identification method has the advantage 
that it does not require any prior information about the delay but only the variance 
of the Gaussian noise of the range measurement. The variance of measurement 
noise can be obtained from the experimental data in practice. Moreover, it can work 
without measurement redundancy (i.e., using only four range measurements).

3.3  Step 3: Range-Constrained Particle Sampling (RCPS)

A simple way to mitigate the effects of identified delayed measurements is 
to discard them directly. However, this may cause the remaining number of 
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available sensors and their geometry to not be suitable for achieving an accurate 
estimate of a given tag’s position. In this step, we propose a range-constrained 
particle sampling method that makes use of the positive effect of the iden-
tified delayed range measurements to optimize the distribution of predicted 
particles.

In a standard particle-filtering algorithm, the particles in the prediction phase 
are generated by adding random process noise to the prior position (Chen, 2003). 
Then each particle is set with the same importance weight, which is the recip-
rocal of the total number of particles. This generic sampling method is optimal 
for positioning with measurements contaminated by Gaussian random noise only. 
However, when the delayed range measurements appear, this sampling method 
becomes suboptimal. 

As any delay in the TOA range measurement is always positive and much larger 
than the absolute value of measurement noise (Shen et al., 2010), the true range 
between the tag and the delayed sensor should always be less than the delayed 
range measurement. In this sense, the position of the tag should be located within 
the sphere with the delayed sensor as the center and the corresponding delayed 
range measurement as the radius. When there are more than one identified delayed 
sensor, multiple such spheres can be obtained. The tag should be located within 
the intersection region of all spheres. Motivated by this constraint condition, the 
RCPS method is proposed. The detailed steps of the RCPS method are described as 
follows:

1.	 Based on the prior position, as well as the known covariance matrix of motion 
process noise, generate a predicted particle using the generic sampling method 
(i.e., adding Gaussian random process noise to the prior position obtained in 
Step 1 [see Section 3.1]).

2.	 With the states of each sensor (delayed or direct) identified by Equations (3) 
and (5), calculate the distances between the generated particle and identified 
delayed sensors.

3.	 If each calculated distance is less than the corresponding delayed range 
measurement, this particle is kept. Otherwise, this generated particle should 
be discarded and a new one should be regenerated according to the operations 
in Steps 1 and 2.

4.	 Repeat the above three operations until a predefined number of particles is 
obtained.

Different from the traditional sampling method, this RCPS method is the nov-
elty of the proposed algorithm because it makes full use of the positive effects 
of the identified delayed measurements for particle sampling. The integration 
of the RCPS method into a particle-filtering (PF) framework contributes to opti-
mizing the distribution of the prior particles and hence improving position-
ing accuracy. This is generally unavailable for the other estimation algorithms 
in the Bayesian framework (such as Kalman filters and subsequent variants) 
because these algorithms represent the estimated state with an exact Gaussian 
probability density function (mean and covariance), but not a set of indepen-
dent particles. 

For clarity, a schematic of the RCPS method in a 2D case is presented in Figure 1. 
The proposed RCPS method is only used in the case that there exists delayed sen-
sors in the system. When all sensors are identified as direct sensors, the generic 
particle sampling method is used directly.



    ZHOU et al.

3.4  Step 4: Posterior Position Estimation and Update

In the update phase of a PF algorithm, the predicted particles generated by the 
RCPS method are required to be evaluated. A simple and straightforward way to do 
this is to remove the identified delayed measurements and evaluate the predicted 
particles using the remaining identified direct range measurements. However, 
Savic and Larsson (2016) point out that the particle filter using the range measure-
ments with the rejection of identified delayed measurements may still suffer from 
serious accuracy degeneration due to the accumulation of positioning error over 
time. 

Removing the delayed measurements can lead to reduced measurement redun-
dancy, and it may result in the loss of positioning accuracy. Insufficient measure-
ments can sometimes even lead to filtering divergence. Moreover, a special case 
that may happen is that all the range measurements are identified as delayed mea-
surements, so no direct range measurement can be used. 

In order to improve the availability of the proposed algorithm (i.e., making sure 
the algorithm can still work when all measurements are identified as delayed mea-
surements), we replace the identified delayed range measurements ri with the cal-
culated ranges îr . The calculated range îr  is obtained by calculating the Euclidean 
distance between the prior position and the identified delayed sensor, which is 
equivalent to ri,ref in Equation (3). The accuracy of the calculated range is depen-
dent on the accuracy of the posterior position at the previous time step as well as 
the process noise at the current time step. When the posterior position in the previ-
ous time step is obtained in a line-of-sight scenario (i.e., no delayed measurements 
occur in the positioning) and the process noise at the current time step is small, the 
prior position at the current time step derived by the noise-free dynamic model can 
be close to the true position. In this case, the calculated range may be closer to the 
true range, especially when the delay is large (Yu & Guo, 2007). 

On the contrary, if the accuracy of the posterior position at the previous time 
step is low and the process noise at the current time step is large, the accuracy 
of the derived calculated range can be reduced. In order to mitigate the effect of 
the latter case on positioning accuracy, a solution is to increase the measurement 
noise of the calculated range. For robustness purposes, the standard deviation of 

FIGURE 1 Schematic of generating a particle using the RCPS method in 2D case; the ellipse 
is determined by the covariance of process noise.
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the measurement noise of the recalculated range is set to 2σi, where σi is the stan-
dard deviation of the raw measurement noise. 

In summary, using this calculated range to replace the delayed measurement 
instead of discarding it directly can not only improve the positioning availability, 
but also contribute to improving positioning accuracy and robustness. If a range 
measurement is identified as direct range measurement, it can be used for particle 
evaluation directly with the measurement noise set to σi. Consider that there are 
M UWB sensors in a positioning system; we denote a revised measurement vector 
as zk k M kd d= … 1, ,, , , where d i Mi k, , ,� = …( )1  is the range measurement of the i-th 
sensor used for particle evaluation, and it is given by:

			   ,
, for direct sensor
, for delayed sensorˆ

i
i k

i

r
d

r
= 


� (6)

where ri is the raw observed range measurement; îr  is the calculated range obtained 
by | 1ˆ ;i i k kr −= −l x  and li  denotes the 3D position of the i-th sensor which is iden-
tified as a delayed sensor. 

The rest of processes in the update phase are the same as any other standard PF 
algorithm. Each predicted particle is evaluated by the revised measurement vec-
tor zk and assigned an importance weight which characterizes the quality of the 
particle. Then, the posterior position can be obtained by calculating the weighted 
sum of the particles. Finally, a resampling operation is implemented. The resam-
pling optimizes the distribution of the particles in each recursion for the purpose of 
eliminating the particles with low importance weights which have negligible con-
tributions to the position estimation. The particles with high importance weights 
are copied and those with low importance weights are discarded. 

Systematic resampling is used in our proposed algorithm since it can perform 
with the lowest resampling variance and is computationally more efficient than 
the other resampling methods (Hol et al., 2006). In order to avoid the sample 
impoverishment problem introduced from resampling, the Gaussian jitter noises 
(Gordon et al., 1993) are added to the over-centralized particles obtained from res-
ampling. The resampled particles are then used in the position estimation at the 
next time step. The full procedure of the proposed RCSPF algorithm is presented 
in Algorithm 1.

ALGORITHM 1 
The Procedure of the Proposed RCSPF Algorithm 

RCSPF Algorithm

State dynamic model: x Ax Gwk k k= +−1

Measurement model: y h x vk k k= ( ) +
Data: �initial state 0x̂ , particle number Np, sensor number M, sampling rate T, original 

measurement vector yk, process noise covariance Q, measurement noise covariance R, 
identification threshold λ

Result: state estimate x̂ .

1. begin

2. for k T= 1 :  do

3.  - Calculate prior position based on the initial state: | 1 1ˆk k k− −=x Ax

4.   for j M= 1 :  do

5.    - Identify the delayed measurements based on xk k| −1, yk and λ according to Step 2.
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6.   end for

7.   - Generate Np prior particles xki  according to Step 3.

8.   �- Replace delayed measurements with calculated ranges and form vector zk 
according to Step 4.

9.   for i Np= 1 :  do

10.
  - Weight calculation: wk

i = 1
2

1
2

1
πdet

T
exp

( )R
z h x R z h x− − ( )( ) − ( )( )








−
k k

i
k k

i

11.   end for

12.
  - Calculate sum of weight: t wi

N
k
ip= ∑ =1 

13.   for i Np= 1 :  do

14.    - Weight normalization: w t wk
i

k
i= −1


15.
   - Obtain posterior particles: xki k

i
i

N
w p,{ }

=1
16.  end for

17.
  - Calculate position estimate: 1ˆ pN i i

k i k kw== ∑x x

18.
 - Implement resampling to get xki p i

N
N p,� /1

1{ }
=

19. end for

20. end

† wk is the process noise generated based on Q, vk is the measurement noise generated 
based on R.

†† The measurement model h(·) for TOA range can be found in Lau et al. (2018).

4  EVALUATION AND ANALYSIS OF THE PROPOSED 
ALGORITHM

This section describes the performance assessment of the proposed RCSPF 
algorithm in the presence of delayed range measurements. In order to unbiasedly 
assess the robustness of the proposed algorithm, test scenarios must cover all pos-
sible combinations and factors of delayed range measurements. However, such test 
scenarios are usually not available from just a few test sites. Moreover, this research 
focuses on mitigating the effect of delayed range measurements on positioning 
accuracy only; other biases/errors such as multipath errors should not be present 
in the test data. Therefore, the delayed range measurements in this assessment are 
obtained by simulation. 

The test scenarios with different numbers of UWB sensors (i.e., measurement 
redundancies), different numbers of delayed range measurements (i.e., delayed 
sensors), and different magnitudes of delays are set manually and realistically. 
These simulated test scenarios can assess the effect of each variable described 
above on positioning performance without the influence of other error sources. 
The simulation contains two steps. 

In the first step, raw range measurements are obtained through a real experi-
ment in an environment in which no obstruction exists between the tag and each 
sensor. These measurements are checked by comparing the truth values which are 
the computed distances between the known sensors and tag. It was found that 
the differences between range measurements and computed ranges agree with the 
Gaussian measurement noise level. Hence, these raw range measurements are the 
direct range measurements which are biased by the Gaussian random measurement 
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noise only. In the second step, the delayed measurements are simulated by adding 
the simulated delays (with different magnitudes) to the raw range measurements 
obtained in the first step. 

In the following, the experiment of obtaining raw direct range measurements is 
described first. Then the determination of the optimal threshold used in the pro-
posed delayed measurement identification method is described. After that, a sim-
ulation of test scenarios with delayed range measurements are described. Finally, 
the test results and analyses are given.

4.1  Experimental Setup and Data Collection

The experiment was performed in the atrium of the Sir Peter Mansfield Building 
at the University of Nottingham Ningbo China (UNNC). There were six Ubisense 
UWB sensors installed on the walls of the building. Before the test, a closed tra-
verse survey was carried out to obtain the coordinates of the UWB sensors in the 
Universal Transverse Mercator (UTM) reference system, and a leveling survey was 
carried out to determine the heights of the traversing stations. The coordinates of 
the two traversing stations in the atrium (i.e., C1 and C2 [see Figure 2]) were deter-
mined through traverse and leveling. In order to minimize the errors in traverse 
and leveling propagation into the coordinates of UWB sensors, the coordinates of 
the six UWB sensors were determined through total station survey from the C1 

FIGURE 2 Locations of the known UWB sensors and test points; the red dots are UWB 
sensors, and the green dots are test points. The black dashed line is the rectangular track that the 
trolley travels on.
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and C2 stations. The calculations of the traverse were performed by a MicroSurvey 
software called Star*Net. The basic concepts of traversing, leveling, and the total 
station survey method were initially presented by Uren and Price (2010).

A trolley was used in this test. As shown in Figure 3, two ranging rods were 
tightly attached to the trolley, and a UWB tag was fixed on the top of a ranging rod. 
A rectangular track with dimensions of 9.6 m × 6.4 m was set in the middle of the 
atrium. The trolley and track helped to obtain the well-controlled tag position and 
height for the algorithm validation. Twenty test points at 1.6-m intervals were dis-
tributed on the rectangular track (see Figure 2). These test points were used for the 
positioning accuracy assessment. The horizontal coordinates of all the test points 
were known from the total station survey from C1 and C2, and the heights of the 
test points were determined using a leveling survey.

The raw direct UWB range measurements were collected by moving the trol-
ley between the twenty test points with a stop-and-go method. Stop-and-go here 
means to start the trolley at rest at a test point and move toward and ultimately 
stop at the next test point for five seconds. When the trolley stopped, the measure-
ments at that point were used to estimate the position, and this position estimate 
was compared with the truth values for the purpose of evaluation. This rigorous 
stop-and-go test allowed us to get UWB measurements at each test point accu-
rately, because it was free from the effects of the residual UWB time synchroni-
zation, dynamic of the moving trolley platform, and the accuracy of visiting test 
points at a particular time. 

In our measurement collection, the trolley started from the test point P1, moved 
steadily on the track in a clockwise direction and stopped (with the tip of the rang-
ing rod pointed at the known test point on the track) at each test point in turn. 
Finally, the trolley moved back to P1. We obtained a total of 1,458 groups of direct 
range measurements from the loop, which corresponded to 1,458 different time 
steps. These direct range measurements were used for the simulation of delayed 
measurements in the following two sections.

4.2  Determination of the Optimal Threshold for Delayed 
Range Measurement Identification

The hypothesis test result in the delayed measurement identification (i.e., Step 2 
in Section 3.2) is dependent on the threshold λ. A threshold that is too small or too 

FIGURE 3 The trolley and UWB tag used in the experiment
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large would affect positioning accuracy. Therefore, it is necessary to find out the 
optimal threshold value beforehand. 

The threshold is generally a function of both the probability of false alarm (i.e., 
Type I error, denoted as Pfalse) and the probability of missed detection (i.e., Type II 
error, denoted as Pmissed). False alarm here refers to a situation in which there is no 
delayed measurement but a delayed measurement identification warning is given, 
often because the threshold is set too low. Missed detection refers to a situation in 
which there exists at least one delayed measurement but the proposed algorithm 
fails to give the appropriate warning, often because the threshold is set too high. 

It is desirable to have a threshold that minimizes both the values of Pfalse and 
Pmissed. Therefore, the optimal threshold λopt can be determined by calculating  
λopt = arg minλ(Pfalse + Pmissed), i.e., the value that minimizes the total error proba-
bility (Wu et al., 2014). In this sense, the changes of Pfalse and Pmissed with respect to 
λ need to be investigated, and from there we can determine the optimal threshold 
λopt based on the rule described above. A simulation test was carried out for the 
investigation in the following.

Two extreme cases are considered in the simulated test. First, an extreme case is 
considered in which all the sensors provided direct range measurements at each 
time step when investigating the relations between the threshold and false alarm 
probability Pfalse. The direct range measurements obtained by the stop-and-go 
method (see Section 4.1) were used directly in this case. The missed detection prob-
ability Pmissed in this case should have been zero, theoretically. Second, an extreme 
case was considered in which there was always at least one delayed measurement at 
each time step when investigating the relations between the threshold and missed 
detection probability Pmissed. The false alarm probability Pfalse in this case should 
have been zero, theoretically. At each time step in this case, we randomly selected 
a certain number (at least one) of sensors to be delayed sensors and introduced 
positive delays to their raw measurements. 

The magnitude of delays was set to the range of 0.2 m (the lower bound) to 
1.0  m (the upper bound) in our investigation. This is because the errors with a 
magnitude less than 0.2 m are more likely caused by measurement noise and they 
can be addressed with the filtering algorithm (Pak et al., 2017), and those higher 
than 1.0 m can be identified and mitigated by the channel statistics-based methods 
described in Section 2.1. The delays within the range of 0.2 m to 1.0 m are likely the 
hardware residual errors affecting the accuracy of range measurements and hence 
positioning accuracy. The proposed algorithm aims to tackle these practical delays. 

If the magnitude of the error due to measurement noise is in the range of 0.2 m 
to 1.0 m, then our proposed algorithm would treat it as delay and tackle it using the 
proposed identification and mitigation methods. In order to simulate the delays in 
the range of 0.2 m to 1.0 m, we modeled the delay as a mean-shifted Gaussian dis-
tribution (Jiang et al., 2010) with the expectation of 0.5 m (which is approximately 
the mean value of the residual errors) and a standard deviation of 0.3 m. Then, the 
simulated delays were added to the direct range measurements obtained in the real 
data collection. The number of sensors used for positioning was taken into account 
in our simulation. Each simulation was performed by 10,000 independent runs. 
The relations between λ and Pfalse with a different number of sensors are presented 
in Figure 4(a); the relations between λ and Pmissed with a different number of sen-
sors are presented in Figure 4(b).

The simulation results in (a) and (b) of Figure 4 show there is a trade-off between 
the false alarm probability and missed detection probability when using different 
values of the threshold λ. According to the determination criterion of the optimal 
threshold described, the optimal threshold for each test scenario can be determined 
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by finding out the value which minimizes the total error probability. Figure 4(c) 
presents the relations between λ and total error probability with different numbers 
of sensors. When four, five, and six UWB sensors were used for positioning, the 
total error probabilities were minimized at λ = 0.84, λ = 0.87, and λ = 0.90, respec-
tively (see each black dot in Figure 4[c]). 

A similar simulation was carried out by modeling the delay as a Rayleigh dis-
tribution (Yu & Guo, 2007). For the purpose of matching the expectation of the 
Rayleigh model with the mean value of the residual errors (0.5 m), the parameter 
sigma in the Rayleigh distribution was set to 0.4. The results obtained are presented 
in Figure 4(d), 4(e), and 4(f). It was found that the results remain similar to those of 
a Gaussian distribution with negligible difference. Namely, the total error probabil-
ities were minimized at λ = 0.84, λ = 0.87, and λ = 0.90 when four, five, and six UWB 
sensors were used in the positioning. Therefore, these three values were used as 
the optimal threshold λopt. These values were used for the positioning performance 
assessment of the proposed algorithm in the next section.

4.3  Simulation of Test Scenarios with Delayed 
Measurements

For the purpose of simulating the test scenarios with different numbers of sen-
sors, not all the measurements from the six UWB sensors were used. When posi-
tioning with four sensors (i.e., no measurement redundancy), the measurements 

FIGURE 4 (a) Comparison of false alarm probability (mean-shifted Gaussian distribution); 
(b) comparisons of a missed detection probability (mean-shifted Gaussian distribution); 
(c)  optimal threshold determination by investigating the total error probability (mean-shifted 
Gaussian distribution); (d) comparison of false alarm probability (Rayleigh distribution); 
e) Comparison of missed detection probability (Rayleigh distribution); and (f) optimal threshold 
determination by investigating the total error probability (Rayleigh distribution)
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from Sensors A and F were excluded from data processing. When positioning with 
five sensors (i.e., one measurement redundancy), the measurements from Sensor 
F was excluded from data processing. In order to obtain the delays with different 
magnitudes, the mean-shifted Gaussian model (the mean is positive) and Rayleigh 
model were used in the test. The parameters in the mean-shifted Gaussian model 
and Rayleigh model were the same as those in Section 4.2 (i.e., expectation of 0.5 m 
and standard deviation of 0.3 m in the mean-shift Gaussian model, and parameter 
sigma of 0.4 in the Rayleigh model). Six test scenarios with respect to different 
numbers of sensors and models of delay are listed in Table 1.

We divided the total 1,458 time steps into five time periods to evaluate the robust-
ness of the proposed algorithm to the number of delayed measurements. In each 
time period, different numbers of sensors were set to be delayed sensors which pro-
vided delayed range measurements. The signal propagation state (delayed/direct) 
with respect to the six UWB sensors are shown in Figure 5. This setting was used 
in the six test scenarios listed in Table 1. The advantage of the above setting for 
evaluation purposes is that it can clearly show the identification accuracy rate of 
the proposed delayed measurement identification method by comparing its identi-
fication results with the known signal states of the sensors at each time step.

The positioning performance assessment of the proposed algorithm was car-
ried out by comparing the positioning accuracy and computation time of the 

TABLE 1 
Position Scenarios of Each Test

Test scenario number
Positioning senario

Number of sensors Sensor ID Model of delay

Scenario 1
4 (no redundancy) Sensors B,C,D,E

Gaussian

Scenario 2 Rayleigh

Scenario 3
5 (1 redundancy) Sensors A, B, C, D, E

Gaussian

Scenario 4 Rayleigh

Scenario 5
6 (2 redundancies) Sensors A, B, C, D, E, F

Gaussian

Scenario 6 Rayleigh

FIGURE 5 The signal propagation state of each sensor along the path; the test point numbers 
listed on the top mean the test points being positioned within the corresponding time period.
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proposed algorithm with those of five advanced positioning algorithms, TS-LS (Yu 
& Guo, 2007), Rwgh (Chen, 1999), EKF, standard particle filter, and robust parti-
cle filter (RPF). The RPF is a variant of a standard particle filter. The difference 
from our proposed RCSPF algorithm is that it uses the outlier detection method 
proposed in Section 3 for delayed measurement identification, but still generates 
the prior particles in the traditional way. We define this variant for the purpose of 
assessing the effectiveness of the RCPS method. Besides, for the purpose of eval-
uating the effectiveness of using the strategy of generating the calculated range 
in the Step 4 (see Section 3.4), we carried out a comparison between the proposed 
RCSPF algorithm and the RCSPF algorithm using the range measurements with 
the rejection of identified delayed measurements. The coordinates of the twenty 
test points determined by each algorithm were compared with the truth values that 
were determined by the total station survey; the root-mean-square error (RMSE) 
was used as the main accuracy assessment metric for evaluating the positioning 
accuracy in 3D space:

	 RMSE
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where n is the number of test points, i is the sample from 1 to n. xi, yi, and zi are the 
estimated easting, northing, and height, respectively of sample i. x, y, and z are the 
truth value coordinates determined by the total station survey. The computation 
time of each positioning algorithm is determined through the function of tic and 
toc in MATLAB. The computer system configuration and software version used for 
data processing in our test are given in Table 2. Moreover, the identification accu-
racy rate of the proposed delayed measurement identification method was assessed 
by comparing the identification results with the known signal propagation states of 
the sensors at the 1,458 time steps. 

The initial position (i.e., position at time step k = 0) would affect the accuracy 
of the prior position used for the delayed measurement identification at the next 
time step as well as the speed of filtering convergence. In this test, the initial posi-
tions of all the particle-filter-based positioning algorithms were determined by the 
Rwgh as it can mitigate the effects of the possible delayed measurements on the 
position estimate. Then, the initial particles could be generated according to the 
Rwgh derived position estimate and covariance. These particles were regarded as 
the posterior particles at time step k = 0. 

Considering the computation efficiency, the number of particles for each 
particle-filter-based algorithm was set to 5,000. The standard deviation of process 
noise was determined by tuning. It is assumed that the process noise in the three 
directions (i.e., easting, northing, and height) were independent, and it was set 
to 0.1 m/s2 in each direction. The direct range measurement noise in the test was 

TABLE 2 
Computer System and Software Used in the Test

Computer Lenovo ideapad 500S-13ISK

CPU Intel Core i5-6200U CPU @ 2.30GHz

RAM 4.00 GB

Operating System Windows 10 Home Version 1903, 64 bits

Software MATLAB 9.1.0.441655 (R2016b) 64 bits
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modeled as zero-mean Gaussian variables and mutually independent. Its standard 
deviation was obtained from the raw measurement data collected in Section 4.1, 
and it was set to 0.15 m. Note that the conditions of the data sets in this positioning 
performance assessment were independent of the conditions of the data sets used 
in the optimal threshold determination in Section 4.2.

4.4  Results and Analyses

In this section, we present the assessment results of the proposed algorithm 
according to four aspects: positioning accuracy, computation time, identification 
accuracy of delayed range measurement, and robustness to parameters. The results 
of each factor is described in the following.

4.4.1  Positioning Accuracy

Table 3 presents the RMSEs of the seven positioning algorithms in different test 
scenarios. Regarding the RCSPF with delayed measurement rejection, we found 
that the RMSEs of twenty test points were unavailable in some positioning scenar-
ios due to filtering divergence. Those details are analyzed later. Regarding the other 
six positioning algorithms, the results show that in both delayed measurement 
models, the proposed RCSPF can always outperform the other five algorithms. 
Compared to the positioning accuracies of the TS-LS, EKF, and standard particle 
filter (all of which do not use any strategies for delayed measurement mitigation), 
the proposed algorithm improves accuracy by about 29.8%, 27.6%, and 13.2% on 
average, respectively. 

TABLE 3 
RMSEs of the Six Positioning Algorithms (PF: particle filter)

Positioning algorithm
RMSE (m)

4 sensors 5 sensors 6 sensors

Delay follows Gaussian model

TS-LS 0.5927 0.5115 0.4625

Rwgh 0.5927 0.5191 0.5061

EKF 0.6121 0.4427 0.4088

Standard PF 0.4724 0.4050 0.3633

RPF 0.4279 0.3639 0.3502

RCSPF 0.4099 0.3443 0.3237

RCSPF with delayed measurement rejection / / 0.5763

Delay follows Rayleigh model

TS-LS 0.6029 0.5022 0.4676

Rwgh 0.6029 0.5168 0.5092

EKF 0.6776 0.4910 0.4557

Standard PF 0.5066 0.4193 0.3745

RPF 0.4419 0.3936 0.3494

RCSPF 0.4224 0.3668 0.3343

RCSPF with delayed measurement rejection / / /
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Positioning accuracy improvements are attributed to the two methods used in 
the proposed algorithm—the outlier detection method for delayed measurement 
identification and the RCPS method for optimization of prior particles. This can be 
verified by the following two pairs of comparisons. First, by comparing the stan-
dard particle filter with the robust particle filter, the effectiveness of the proposed 
delayed measurement identification method can be evaluated. The results show 
that the positioning accuracies of the robust particle filter (with the implementa-
tion of the identification method) are 3.6% to 12.8% higher than those of the stan-
dard particle filter (without the implementation of the identification method) in 
the six test scenarios. Second, by comparing the proposed RCSPF with the robust 
particle filter, the effectiveness of the proposed RCPS method can be evaluated. The 
results show that the positioning accuracies of RCSPF (with the implementation of 
the RCPS method) are 4.2% to 7.6% higher than those of robust particle filter (with-
out the implementation of the RCPS method) in the six test scenarios. Therefore, 
the two methods are effective for positioning accuracy improvement. 

The positioning errors at the twenty test points of the six algorithms (except the 
RCSPF with delayed measurement rejection) with two delay models are shown in 
Figure 6. As demonstrated in the figures, the greater the number of range measure-
ments and the lesser the number of delayed range measurements, the more accu-
rate the position estimate is. The increase of the number of delayed measurements 
resulted in positioning accuracy reductions in the six algorithms. When the num-
ber of direct range measurements was less than the minimum number required for 
accurate positioning (i.e., four), their positioning accuracies reduced significantly. 
This is probably because fewer direct sensors in the positioning system reduced the 
chance of delays canceling each other. 

Nevertheless, the RCSPF algorithm still performed the best among all six algo-
rithms. When there exists delayed measurements in positioning (see Test Points 
6–17 in the horizontal axis of Figure 6), the accuracy reduction of the RCSPF 
algorithm was much less than those of the other five algorithms, especially the 
EKF algorithm. This shows that the outlier detection and RCPS strategies adopted 
in the RCSPF algorithm are effective in positioning accuracy improvement. The 
RCSPF algorithm has better robustness to delayed measurements than the other 
five algorithms. 

Although our proposed RCSPF algorithm can cope with any number of delayed 
measurements, in theory, since the delayed measurement identification for each 
range measurement is independent, the positioning accuracy would suffer from 
significant degradation when the number of delayed measurements was equal to 
or larger than half the number of all sensors. For example, as shown in Figure 6, 
when there are four sensors with three of them acting as delayed sensors, the max-
imum positioning error at a test point is almost 0.9 m. Such accuracy is generally 
not good enough for most indoor positioning applications.

Figure 7 presents the positioning errors of the RCSPF algorithm using the range 
measurements with the rejection of identified delayed measurements. By compar-
ing the results with results of the RCSPF algorithm in Figure 6, it shows that when 
discarding the identified delayed measurements directly in positioning, the pro-
posed RSCSPF algorithm suffered from filtering failure or divergence. The filtering 
failure is more likely to happen when there is no measurement redundancy (i.e., 
the number of remained measurement sensors is less than four). 

For example, considering using four sensors for positioning when the delay 
is simulated by a mean-shifted Gaussian model and Rayleigh model, we found 
that filtering stops at the time step k = 526 and k = 488, respectively. Therefore, 
Figure 7(a) only shows the positioning errors up until Test Point 8, and Figure 7(b) 
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FIGURE 6 Positioning errors at the twenty test points when the delays were simulated based 
on a mean-shifted Gaussian model (a) and a Rayleigh model (b)
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only shows the positioning errors up to Test Point 7. After that, there is no position 
estimation due to the filtering failure. 

An explanation for the filtering failure is that the remaining three measurements 
could not effectively correct and update the prior particles, causing the derived 
posterior position to have a large bias. This bias would be propagated into the prior 
position at the next time step and cause the accuracy of the prior position to be 
degraded. Such a degraded prior position could cause a misidentification when 
used for delayed measurement identification. 

One possible cause of misidentification is when all of the measurements are 
identified as delayed measurements. When these delayed measurements are dis-
carded, no measurements can then be used for particle updating, hence the filtering 
stops and fails. It should be noted that even if the filtering could keep working, the 
positioning errors due to the lack of measurement redundancy would accumulate 
over time. For example, in the positioning scenario with six sensors and Gaussian 
delay model (see Figure 7[a]), the positioning did not fail. However, the filtering 
suffered from divergence. The positioning errors at Test Points 18–20 could not be 
decreased even if the measurements collected at these test points were direct mea-
surements. Therefore, it can be concluded that using a strategy of calculated ranges 
not only can improve the positioning availability and robustness against filtering 
divergence, but also actively contributes to improving positioning accuracy.

4.4.2  Computation Time

Table 4 presents the computation time of each positioning algorithm when six 
sensors are used for positioning. The results show that the TS-LS algorithm and 
the Rwgh algorithm require the least and most computation time, respectively. The 
Rwgh algorithm is computationally insensitive. Its computation time increases 
dramatically along with the number of sensors. In the Rwgh algorithm, one TS-LS 
position estimation needs to be calculated for each of the combinations of four 
or more range measurements. When six sensors are used, in total 22 TS-LS posi-
tion estimations are calculated. The high computation complexity results in a 

TABLE 4 
Computation Time of Each Algorithm when Six Sensors are Used for Positioning

Algorithm TS-LS Rwgh EKF Standard PF RPF RCSPF

Computation time (s) 0.0544 1.3481 1.1496 0.1723 0.2140 0.2712

FIGURE 7 Positioning errors of the RCSPF algorithm with the rejection of identified delayed 
measurements: (a) depicts delays that are simulated based on a mean-shifted Gaussian model and 
(b) depicts delays that are simulated based on a Rayleigh model.
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long computation time, and such computation time is obviously unavailable for 
real-time positioning applications. 

The EKF method requires almost seven times longer than the standard particle 
filter for positioning at a given point. This is because an EKF requires the calcula-
tion of a Jacobian matrix at each time step. Jacobian matrix calculations are very 
time-consuming in large dimensional problems, such as the problem in the test in 
which the dimension of the measurement vector was six. The RPF and RCSPF algo-
rithms require slightly longer computation time than that of the standard particle 
filter because of the added extra methods for delayed range measurement identi-
fication and mitigation. The RCSPF algorithm, in turn, requires only 0.2712 s for 
positioning at a given point. Such computation time is affordable for most real-time 
indoor positioning applications. 

4.4.3  Identification Accuracy of Delayed Range 
Measurements

Table 5 shows the accuracy rate of the proposed delayed measurement identifi-
cation method. Note that the correct identification here has two outcomes: a) The 
identification results show that there exists no delayed range measurement when 
all the measurements are direct range measurements (corresponding to Time Steps 
0–300 and Time Steps 1,200–1,458); and b) the identification results correctly pro-
vide the quantity and corresponding sensor IDs of the identified delayed range 
measurements when there exists at least one delayed range measurement (corre-
sponding to the Time Steps 300–1,200). 

The results show that among the 1,458 groups of measurements, about two 
thirds of them could be correctly identified when no measurement redundancy 
(i.e., with only four sensors) was present in positioning. When the measurement 
redundancy was present (i.e., with five or six sensors), this accuracy rate increased 
to about three fourths. Regarding the test scenario having delayed measurements 
(corresponding to the Time Steps 300–1,200), the delayed measurement identifica-
tion rates are shown in Table 6. 

This shows that performance is greatly dependent on the proportion of delayed 
sensors in all sensors. The proposed identification method works well when there 
are many sensors and only a small portion of them is contaminated by delayed 
signals. For example, in the case of six sensors with only one delayed sensor, the 
identification accuracy rates would both be above 90% in the test scenarios using 
the two models of delay. However, when the number of delayed sensors increase, 
the probability of identifying each of them decreases. The worst case is one in 
which the delayed sensors account for a larger portion of the whole sensors. For 
example, in the test scenario with three delayed sensors out of four sensors in 
total, the probability of identifying all three delayed measurements is equal to or 
less than 6%.

TABLE 5 
Accuracy Rate of the Delayed Range Measurement Identification Method

Model of delay 4 sensors 5 sensors 6 sensors

Gaussian 67.90% 74.76% 76.13%

Rayleigh 68.04% 73.59% 75.79%
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4.4.4  Robustness to Parameters λ and Np

We further investigate the robustness of the proposed algorithm to the param-
eters used for the algorithm implementation, including the threshold λ used in 
delayed range measurement identification and the particle number Np used for 
filtering. Figure 8 shows the RMSEs of the proposed algorithm with respect to the 
delayed measurement identification threshold λ. The results show that the RMSEs 
generally achieve the minimum values at or near the optimal thresholds (deter-
mined in Section 4.2). In practice, the number of sensors is the only factor that 
is known, so the changes of the number of delayed measurements as well as the 
magnitude of delays might cause the optimal thresholds given in Section 4.2 to 
become suboptimal. 

Nevertheless, Figure 8 shows that the positioning accuracy of the RCSPF algo-
rithm is always better than that of the standard particle filter (in which λ = 1) 
even if a suboptimal threshold is selected. This reflects that the proposed algorithm 

TABLE 6 
Identification Rates of the Delayed Sensors

Number of delayed 
sensors

Number of delayed 
sensors identified

Number of sensors

4 5 6

Delay follows Gaussian model

1 1 89.67% 96.67% 99.67%

2
2 90.67% 98.33% 99.00%

1 7.33% 0.33% 0.33%

3

3 0.33% 5.67% 2.33%

2 64.67% 93.33% 97.33%

1 34.67% 1.00% 0.33%

Delay follows Rayleigh model

1 1 83.33% 89.67% 94.00%

2
2 68.33% 87.33% 88.67%

1 21.33% 4.67% 7.67%

3

3 6.00% 3.67% 28.33%

2 59.33% 92.00% 65.00%

1 28.33% 1.67% 5.33%

FIGURE 8 RMSEs of the proposed RCSPF algorithm with different threshold values
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is robust to the threshold value. When using the proposed algorithm in practice, 
users could directly choose the suggested values presented in Figure 4(c) or use the 
values obtained through tuning around these suggested values as the thresholds for 
delayed measurement identification. 

Figure 9 shows the RMSEs of the proposed algorithm with respect to the particle 
number Np. The RMSEs achieve the minimum values when Np = 5,000. Beyond 
using 5,000 particles, there is no significant positioning accuracy improvement. 
This is because the prior densities have enabled the predicted particles to be distrib-
uted closer to the mean of the posterior densities.

5  CONCLUSION

This paper proposes the robust particle-filter-based indoor positioning algorithm, 
Range-Constrained Sampling Particle Filter (RCSPF). In the proposed algorithm, 
the prior position is first derived by the dynamic model. Based on the derived prior 
position, an outlier detection method is proposed for delayed range measurement 
identification. Then, based on the identification result, the identified delayed mea-
surements are replaced by the calculated ranges and a range-constrained particle 
sampling (RCPS) method is proposed for generating particles. This method makes 
full use of the positive effect of identified delayed measurements to optimize the 
distribution of the prior particles. Finally, the identified direct ranges as well as 
the calculated ranges are used to form the revised measurement vector, and the 
revised measurement vector is then used for posterior position determination in 
the update phase. 

The proposed algorithm is assessed rigorously through a simulation test based 
on real data. The test results show that the proposed algorithm can effectively iden-
tify delayed range measurements, mitigate their effects on position estimation, and 
improve positioning accuracy. The average percentage improvements of the pro-
posed algorithm are 29.8%, 27.6%, and 13.2%, respectively, when compared with 
the Taylor Series Least Squares (TS-LS), extended Kalman filter (EKF), and stan-
dard particle filter. The improvement is subject to measurement redundancy as 
well as the number of delayed measurements. 

The positioning accuracy would suffer from significant degradation when the 
number of delayed measurements is equal to or larger than half the number of all 
sensors. Moreover, the computation time of the proposed algorithm is affordable 
for most of the real-time positioning applications. The improved positioning accu-
racy and robustness, as well as the relatively low computation load of the RCSPF 

FIGURE 9 RMSEs of the proposed RCSPF algorithm with different particle values
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algorithm, make it possible to be used in the indoor positioning in difficult environ-
ments such as people tracking in airports, object tracking in logistics, and machine 
guidance in Industry 4.0.

a c k n o w l e d g m e n t s
This work is financially supported by the International Doctoral Innovation 

Centre, Ningbo Education Bureau, Ningbo Science and Technology Bureau, and the 
University of Nottingham. This work is also supported by the UK Engineering and 
Physical Sciences Research Council under Grant EP/L015463/1 and the Zhejiang 
Natural Science Foundation (ZJNSF) General Programme grant LY17D040001.

r e f e r e n c e s
Abbasi, A., & Kahaei, M. H. (2009). Improving source localization in LOS and NLOS multipath 

environments for UWB signals. 2009 14th International CSI Computer Conference, Tehran, Iran.
Al-Samman, A. M., Rahman, T. A., Hadri, M., Khan, I., & Chua, T. H. (2017). Experimental 

UWB indoor channel characterization in stationary and mobility scheme. Measurement, 111, 
333–339. https://doi.org/10.1016/j.measurement.2017.07.053

Alavi, B., & Pahlavan, K. (2006). Modeling of the TOA-based distance measurement error using 
UWB indoor radio measurements. IEEE Communications Letters, 10(4), 275–277. https://doi.
org/10.1109/LCOMM.2006.1613745

Albaidhani, A., Morell, A., & Vicario, J. L. (2016). Ranging in UWB using commercial radio 
modules: Experimental validation and NLOS mitigation. 2016 International Conference on 
Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain. https://doi.org/ 
10.1109/IPIN.2016.7743639

Basiri, A., Lohan, E. S., Moore, T., Winstanley, A., Peltola, P., Hill, C., Amirian, P., & Figueiredo e 
Silva, P. (2017). Indoor location based services challenges, requirements, and usability of current 
solutions. Computer Science Review, 24, 1–12. https://doi.org/10.1016/j.cosrev.2017.03.002

Borras, J., Hatrack, P., & Mandayam, N. (1998). Decision theoretic framework for NLOS 
identification. 48th IEEE Vehicular Technology Conference, Ottawa, ON, Canada. https://doi.
org/ 10.1109/VETEC.1998.686556

Cao, B., Wang, S., Ge, S., & Liu, W. (2020). Improving positioning accuracy of UWB in complicated 
underground NLOS scenario using calibration, VBUKF, and WCA. IEEE Transactions on 
Instrumentation and Measurement, 70, 1–13. https://doi.org/10.1109/TIM.2020.3035579

Casas, R., Marco, A., Guerrero, J. J., & Falcó, J. (2006). Robust estimator for non-line-of-sight error 
mitigation in indoor localization. EURASIP Journal on Advances in Signal Processing. https://
doi.org/10.1155/asp/2006/43429

Chen, P. -C. (1999). A non-line-of-sight error mitigation algorithm in location estimation. 1999 
IEEE Wireless Communications Networking Conference, New Orleans, LA. https://doi.org/ 
10.1109/WCNC.1999.797838

Chen, Z. (2003). Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics: A 
Journal of Theoretical and Applied Statistics, 182(1). https://doi.org/ 10.1080/02331880309257

Cong, L., & Zhuang, W. (2005). Nonline-of-sight error mitigation in mobile location. IEEE 
Transactions on Wireless Communications, 4(2), 560–573. https://doi.org/10.1109/
TWC.2004.843040

Djaja-Josko, V., & Kolakowski, M. (2017). A new map based method for NLOS mitigation in the 
UWB indoor localization system. 2017 25th Telecommunication Forum (TELFOR), Belgrade, 
Serbia. https://doi.org/ 10.1109/TELFOR.2017.8249314

Feng, D., Wang, C., He, C., Zhuang, Y., & Xia, X. -G. (2020). Kalman-filter-based integration of 
IMU and UWB for high-accuracy indoor positioning and navigation. IEEE Internet of Things 
Journal, 7(4), 3133–3146. https://doi.org/10.1109/JIOT.2020.2965115

Gezici, S., Kobayashi, H., & Poor, H. V. (2003). Nonparametric nonline-of-sight identification. 
2003 IEEE 58th Vehicular Technology Conference, Orlando, FL. https://doi.org/ 10.1109/
VETECF.2003.1285996

González, J., Blanco, J. L., Galindo, C., Ortiz-De-Galisteo, A., Fernández-Madrigal, J. A., Moreno, 
F. A., & Martínez, J. L. (2009). Mobile robot localization based on ultra-wide-band ranging: 
A particle filter approach. Robotics and Autonomous Systems, 57(5), 496–507. https://doi.
org/10.1016/j.robot.2008.10.022

Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian 
Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140(2), 107–113. 
https://doi.org/10.1049/ip-f-2.1993.0015

Güvenç, I., Chong, C. -C., Watanabe, F., & Inamura, H. (2008). NLOS identification and weighted 
least-squares localization for UWB systems using multipath channel statistics. EURASIP 
Journal on Advances in Signal Processing. https://doi.org/10.1155/2008/271984

https://doi.org/10.1016/j.measurement.2017.07.053
https://doi.org/10.1109/LCOMM.2006.1613745
https://doi.org/10.1109/LCOMM.2006.1613745
https://doi.org/%2010.1109/IPIN.2016.7743639
https://doi.org/%2010.1109/IPIN.2016.7743639
https://doi.org/10.1016/j.cosrev.2017.03.002
https://doi.org/%2010.1109/VETEC.1998.686556
https://doi.org/%2010.1109/VETEC.1998.686556
https://doi.org/10.1109/TIM.2020.3035579
https://doi.org/10.1155/asp/2006/43429
https://doi.org/10.1155/asp/2006/43429
https://doi.org/%2010.1109/WCNC.1999.797838
https://doi.org/%2010.1109/WCNC.1999.797838
https://doi.org/%2010.1080/02331880309257
https://doi.org/10.1109/TWC.2004.843040
https://doi.org/10.1109/TWC.2004.843040
https://doi.org/%2010.1109/TELFOR.2017.8249314
https://doi.org/10.1109/JIOT.2020.2965115
https://doi.org/%2010.1109/VETECF.2003.1285996
https://doi.org/%2010.1109/VETECF.2003.1285996
https://doi.org/10.1016/j.robot.2008.10.022
https://doi.org/10.1016/j.robot.2008.10.022
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1155/2008/271984


ZHOU et al.    

Hammes, U., & Zoubir, A. M. (2010). Robust mobile terminal tracking in NLOS environments 
based on data association. IEEE Transactions on Signal Processing, 58(11), 5872–5882. https://
doi.org/10.1109/TSP.2010.2063425

Heidari, M., Akgul, F. O., & Pahlavan, K. (2007). Identification of the absence of direct path in 
indoor localization systems. 2007 IEEE 18th International Symposium on Personal, Indoor and 
Mobile Radio Communications, Athens, Greece. https://doi.org/10.1109/PIMRC.2007.4394450

Hol, J. D., Schon, T. B., & Gustafsson, F. (2006). On resampling algorithms for particle filters. 
2006 IEEE Nonlinear Statistical Signal Processing Workshop, Cambridge, UK. https://doi.
org/10.1109/NSSPW.2006.4378824

Jiang, H., Xu, J., & Li, Z. (2010). NLOS mitigation method for TDOA measurement. 2010 6th 
International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 
Darmstadt, Germany. https://doi.org/ 10.1109/IIHMSP.2010.56

Khodjaev, J., Park, Y., & Malik, A. S. (2010). Survey of NLOS identification and error mitigation 
problems in UWB-based positioning algorithms for dense environments. Annals of 
Telecommunications, 65, 301–311. https://doi.org/10.1007/s12243-009-0124-z

Lau, L., Quan, Y., Wan, J., Zhou, N., Wen, C., Qian, N., & Jing, F. (2018). An autonomous ultra-wide 
band-based attitude and position determination technique for indoor mobile laser scanning. 
ISPRS International Journal of Geo-Information, 7(4). https://doi.org/10.3390/ijgi7040155

Le, B. L., Ahmed, K., & Tsuji, H. (2003). Mobile location estimator with NLOS mitigation using 
Kalman filtering. 2003 IEEE Wireless Communications and Networking, New Orleans, LA. 
https://doi.org/ 10.1109/WCNC.2003.1200689

Liu, L., & Fan, P. (2010). An efficient geometry-constrained NLOS mitigation algorithm based on 
ML-detection. IET 3rd International Conference on Wireless, Mobile and Multimedia Networks, 
Beijing, China. https://doi.org/ 10.1049/cp.2010.0687

Macoir, N., Bauwens, J., Jooris, B., Van Herbruggen, B., Rossey, J., Hoebeke, J., & De Poorter, E. 
(2019). UWB localization with battery-powered wireless backbone for drone-based inventory 
management. Sensors, 19(3), 467. https://doi.org/10.3390/s19030467

Maranò, S., Gifford, W. M., Wymeersch, H., & Win, M. Z. (2010). NLOS identification and 
mitigation for localization based on UWB experimental data. IEEE Journal on Selected Areas in 
Communications, 28(7), 1026–1035. https://doi.org/10.1109/JSAC.2010.100907

Pak, J. M., Ahn, C. K., Shi, P., Shmaliy, Y. S., & Lim, M. T. (2017). Distributed hybrid particle/FIR 
filtering for mitigating NLOS effects in TOA-based localization using wireless sensor networks. 
IEEE Transactions on Industrial Electronics, 64(6), 5182–5191. https://doi.org/ 10.1109/
TIE.2016.2608897

Parikh, H. K., & Michalson, W. R. (2008). Impulse radio UWB or multicarrier UWB for non-
GPS based indoor precise positioning systems. NAVIGATION, 55(1), 29–37. https://doi.
org/10.1002/j.2161-4296.2008.tb00416.x

Sahinoglu, Z., Gezici, S., & Guvenc, I. (2008). Ultra-wideband positioning systems: Theoretical 
limits, ranging algorithms, and protocols. Cambridge University Press.

Savic, V., & Larsson, E. G. (2016). Experimental study of indoor tracking using UWB measurements 
and particle filtering. 2016 IEEE 17th International Workshop on Signal Processing Advances in 
Wireless Communications, Edinburgh, UK. https://doi.org/ 10.1109/SPAWC.2016.7536853

Shen, G., Zetik, R., Hirsch, O., & Thomä, R. S. (2010). Range-based localization for UWB sensor 
networks in realistic environments. EURASIP Journal on Wireless Communications and 
Networking. https://doi.org/10.1155/2010/476598

Suzuki, T. (2019). Mobile robot localization with GNSS multipath detection using pseudorange 
residuals. Advanced Robotics, 33(12), 602–613. https://doi.org/10.1080/01691864.2019.1619622

Uren, J., & Price, B. (2010). Surveying for engineers (5th ed.). Basingstoke: Palgrave Macmillan.
Venkatraman, S., Caffery, J., & You, H. -R. (2002). Location using LOS range estimation in NLOS 

environments. IEEE 55th Vehicular Technology Conference, Birmingham, AL. https://doi.
org/10.1109/VTC.2002.1002609

Wang, S., Wang, S., Liu, W., & Tian, Y. (2020). A study on the optimization nodes arrangement 
in UWB localization. Measurement, 163. https://doi.org/10.1016/j.measurement.2020.108056

Wang, Y., & Li, X. (2017). The IMU/UWB fusion positioning algorithm based on a particle filter. 
ISPRS International Journal of Geo-Information, 6(8). https://doi.org/10.3390/ijgi6080235

Wu, S., Li, J., & Liu, S. (2014). Single threshold optimization and a novel double threshold scheme 
for non-line-of-sight identification. International Journal of Communication Systems, 27(10), 
2156–2165. https://doi.org/10.1002/dac.2464

Wu, S., Ma, Y., Zhang, Q., & Zhang, N. (2007). NLOS error mitigation for UWB ranging in dense 
multipath environments. 2007 IEEE Wireless Communications and Networking Conference, 
Hong Kong, China. https://doi.org/10.1109/WCNC.2007.295

Wymeersch, H., Marano, S., Gifford, W. M., & Win, M. Z. (2012). A machine learning approach to 
ranging error mitigation for UWB localization. IEEE Transactions on Communications, 60(6), 
1719–1728. https://doi.org/10.1109/TCOMM.2012.042712.110035

Yan, J., Tiberius, C. C. J. M., Bellusci, G., & Janssen, G. J. M. (2013). Non-line-of-sight identification 
for indoor positioning using ultra-wideband radio signals. NAVIGATION, 60(2), 97–111. https://
doi.org/10.1002/navi.31

https://doi.org/10.1109/TSP.2010.2063425
https://doi.org/10.1109/TSP.2010.2063425
https://doi.org/10.1109/PIMRC.2007.4394450
https://doi.org/10.1109/NSSPW.2006.4378824
https://doi.org/10.1109/NSSPW.2006.4378824
https://doi.org/%2010.1109/IIHMSP.2010.56
https://doi.org/10.1007/s12243-009-0124-z
https://doi.org/10.3390/ijgi7040155
https://doi.org/%2010.1109/WCNC.2003.1200689
https://doi.org/%2010.1049/cp.2010.0687
https://doi.org/10.3390/s19030467
https://doi.org/10.1109/JSAC.2010.100907
https://doi.org/%2010.1109/TIE.2016.2608897
https://doi.org/%2010.1109/TIE.2016.2608897
https://doi.org/10.1002/j.2161-4296.2008.tb00416.x
https://doi.org/10.1002/j.2161-4296.2008.tb00416.x
https://doi.org/%2010.1109/SPAWC.2016.7536853
https://doi.org/10.1155/2010/476598
https://doi.org/10.1080/01691864.2019.1619622
https://doi.org/10.1109/VTC.2002.1002609
https://doi.org/10.1109/VTC.2002.1002609
https://doi.org/10.1016/j.measurement.2020.108056
https://doi.org/10.3390/ijgi6080235
https://doi.org/10.1002/dac.2464
https://doi.org/10.1109/WCNC.2007.295
https://doi.org/10.1109/TCOMM.2012.042712.110035
https://doi.org/10.1002/navi.31
https://doi.org/10.1002/navi.31


    ZHOU et al.

Yin, F., Fritsche, C., Gustafsson, F., & Zoubir, A. M. (2013). TOA-based robust wireless geolocation 
and Cramér-Rao lower bound analysis in harsh LOS/NLOS environments. IEEE Transactions 
on Signal Processing, 61(9), 2243–2255. https://doi.org/10.1109/TSP.2013.2251341

Yousefi, S., Chang, X. -W., & Champagne, B. (2014). Distributed cooperative localization in wireless 
sensor networks without NLOS identification. 2014 11th Workshop on Positioning, Navigation 
and Communication, Dresden, Germany. https://doi.org/ 10.1109/WPNC.2014.6843290

Yu, K., & Guo, Y. J. (2007). NLOS error mitigation for mobile location estimation in wireless 
networks. 2007 IEEE 65th Vehicular Technology Conference, Dublin, Ireland. https://doi.
org/10.1109/VETECS.2007.228

Yu, K., Wen, K., Li, Y., Zhang, S., & Zhang, K. (2018). A novel NLOS mitigation algorithm for UWB 
localization in harsh indoor environments. IEEE Transactions on Vehicular Technology, 68(1), 
686–699. https://doi.org/10.1109/TVT.2018.2883810

Zhang, Y., & Duan, L. (2021). A phase-difference-of-arrival assisted ultra-wideband positioning 
method for elderly care. Measurement, 170. https://doi.org/10.1016/j.measurement.2020.108689

Zhao, X., Geng, S., & Coulibaly, B. M. (2013). Path-loss model including LOS-NLOS transition 
regions for indoor corridors at 5 GHz. IEEE Antennas and Propagation Magazine, 55(3), 
217–223. https://doi.org/10.1109/MAP.2013.6586668

Zhou, N., Lau, L., Bai, R., & Moore, T. (2021a). A genetic optimization resampling based particle 
filtering algorithm for indoor target tracking. Remote Sensing, 13(1). https://doi.org/10.3390/
rs13010132

Zhou, N., Lau, L., Bai, R., & Moore, T. (2021b). Novel prior position determination approaches 
in particle filter for ultra wideband (UWB)-based indoor positioning. NAVIGATION, 68(2), 
277–292. https://doi.org/10.1002/navi.415

How to cite this article: Zhou, N., Lau, L., Bai, R., & Moore, T. (2022). 
A robust detection and optimization approach for delayed measurements in 
UWB particle-filter based indoor positioning. NAVIGATION, 69(2). https://
doi.org/10.33012/navi.514

https://doi.org/10.1109/TSP.2013.2251341
https://doi.org/%2010.1109/WPNC.2014.6843290
https://doi.org/10.1109/VETECS.2007.228
https://doi.org/10.1109/VETECS.2007.228
https://doi.org/10.1109/TVT.2018.2883810
https://doi.org/10.1016/j.measurement.2020.108689
https://doi.org/10.1109/MAP.2013.6586668
https://doi.org/10.3390/rs13010132
https://doi.org/10.3390/rs13010132
https://doi.org/10.1002/navi.415
https://doi.org/10.33012/navi.514
https://doi.org/10.33012/navi.514

	A Robust Detection and Optimization Approach for 
Delayed Measurements in UWB Particle-Filter Based Indoor Positioning

	Abstract 

	Keywords

	1 ￼ INTRODUCTION 

	2 ￼ RELATED WORKS

	2.1 ￼ Channel Statistics-Based Methods

	2.2 ￼ Position Estimate-Based Methods 

	2.3 ￼ TOA-Based Positioning Using Particle Filter


	3 ￼ PROPOSED ALGORITHM

	3.1  Step 1: Prior Position Determination 
	3.2  Step 2: Delayed Measurement Identification 
	3.3  Step 3: Range-Constrained Particle Sampling (RCPS) 
	3.4  Step 4: Posterior Position Estimation and Update 

	4 ￼ EVALUATION AND ANALYSIS OF THE PROPOSED ALGORITHM

	4.1 ￼ Experimental Setup and Data Collection

	4.2 ￼ Determination of the Optimal Threshold for Delayed Range Measurement Identification

	4.3 ￼ Simulation of Test Scenarios with Delayed Measurements

	4.4 ￼ Results and Analyses

	4.4.1 ￼ Positioning Accuracy

	4.4.2 ￼ Computation Time

	4.4.3 ￼ Identification Accuracy of Delayed Range Measurements

	4.4.4 ￼ Robustness to parameters λ and Np



	5 ￼ CONCLUSION

	Acknowledgments

	References





