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O R I G I N A L  A R T I C L E

Mapping Bit to Symbol Unpredictability with Application 
to Galileo Open Service Navigation Message Authentication

Cillian O’Driscoll1  Ignacio Fernández-Hernández2

1  INTRODUCTION 

Out of the various GNSS anti-spoofing methods proposed in the literature (Psiaki 
& Humphreys, 2016), navigation message authentication (NMA) is a method by 
which navigation satellites transmit cryptographic data allowing a receiver to 
authenticate navigation messages transmitted by a GNSS and ensure that the data 
does not come from another source. NMA has been implemented for the Galileo 
Open Service through a delayed release symmetric key scheme based on the Timed 
Efficient Stream Loss-Tolerant Authentication (TESLA) protocol (Perrig et al., 
2002), with some adaptations allowing its implementation in GNSS, and in partic-
ular in Galileo (Fernandez-Hernandez et al., 2016).

A secondary benefit of NMA is that, if the cryptographic data varies regularly, the 
navigation messages, which now include cryptographic data, are not predictable, 
preventing a spoofer from, for example, generating a spoofed navigation message 
today and broadcasting it tomorrow. If a defense mechanism is implemented in 
a receiver based on this concept, the receiver must discern which parts, or bits, 
of the message are unpredictable, and which are not. However, this is sometimes 
not evident. This is particularly the case if the message is convolutionally encoded 
and has some sort of checksum as the dependencies between the information bits, 
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Abstract 
This paper investigates the distribution of unpredictable symbols in the open 
service navigation message authentication (OSNMA) scheme, which introduces 
cryptographic elements into the Galileo I/NAV message. Prior work has described 
the forward estimation attack (FEA; Curran & O’Driscoll, 2016), that takes advan-
tage of the forward error correction (FEC) employed by the Galileo E1 OS to 
ensure that a spoofed receiver correctly decodes the I/NAV message, even if it has 
been generated with errors in some symbols. In order to defend against such an 
attack, the receiver can re-encode the navigation message into symbols and com-
pare the symbol error rates for those symbols that are predictable and those that 
are not. In order to perform this, it is first necessary to know which symbols are 
unpredictable. This paper presents in detail how this can be achieved, including 
the impact of the cyclic redundancy check (CRC) on symbol unpredictability.
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checksum bits, and encoded symbols do not make it obvious how to determine the 
unpredictable symbols.

The first part of this paper is devoted to determining unpredictable symbols after 
the cyclic redundancy check (CRC) and forward error correction (FEC) encoding 
and interleaving, based on a stream of predictable and unpredictable bits particular-
ized for the Galileo I/NAV messages (European Union, 2021). Our work is based on 
Fernández-Hernández and Seco-Granados (2016), which proposed a general scheme 
to determine unpredictable symbols, but just by checking the number of equations 
(symbols) and unknowns (bits) for each newly received symbol (therefore without 
the full mathematical formulation) and omitting the analysis of the CRC. In addi-
tion, Cancela et al. (2019) performed a similar analysis and considered CRC bits to be 
unpredictable, assuming that they depended on the unpredictable bits, but without 
any mathematical proof. This paper presents, for the first time to the knowledge of 
the authors, how determining which symbols are unpredictable given the knowl-
edge of unpredictable bits can be achieved for both the convolutional encoding and 
the CRC, proposing a simple implementation method in the receiver. This method 
is particularized for Galileo I/NAV and open service navigation message authentica-
tion (OSNMA). As a result, for a certain OSNMA chain configuration, the receiver 
can know a priori the mask of unpredictable symbols for every I/NAV subframe.

In the second part of the paper, the unpredictable symbol mask is used to protect 
against a signal replay attack, by which the adversary tries to forge the pseudorange 
measurement while leaving the navigation data unchanged. In order to implement 
an anti-spoofing defense based on the unpredictable symbol mask, the receiver 
needs to re-encode the navigation data once it has been successfully decoded. 
This re-encoding enables the receiver to compare the symbol error rates for those 
symbols that were known a priori and those that were not. Given the information 
for which symbols are predictable and which are not, it is then straightforward to 
design and implement a replay detection mechanism.

The proposed defense mechanism is tested against a forward estimation attack 
(FEA; Curran & O’Driscoll, 2016). This attack takes advantage of the FEC employed 
by the Galileo E1 OS in order to ensure that a spoofed receiver correctly decodes 
the I/NAV message, even if it has been generated with some errors in unpredict-
able symbols. The critical observation is that the FEC is designed to remove symbol 
level errors, thereby ensuring the correct decoding of the navigation message. At 
the same time, this attack does not break the NMA scheme, in that it does not make 
the receiver vulnerable to spoofed navigation messages, but rather makes it more 
likely that the receiver will decode the correct message, even if a spoofed message 
is broadcast. The consequence of a successful FEA attack is that, not only can a 
signal be replayed, but it can also be advanced in time, which gives an even higher 
potential advantage to the adversary.

After this introduction, the Galileo I/NAV message structure, including OSNMA, 
checksum, and coding scheme, are recalled. Next, the symbol unpredictability 
ignoring the CRC is determined. This is followed by the unpredictable symbol 
determination also including the CRC. Later, an attack model is described based on 
the FEA and simulated over a randomly generated bit stream based on a realistic 
OSNMA configuration. The results of the simulations are presented and the paper 
finalizes with the conclusions of analysis.

2  I/NAV MESSAGE STRUCTURE AND  
UNPREDICTABLE BITS

While the proposed method can be used for other messages, we take the 
Galileo I/NAV and OSNMA as the reference. The I/NAV message is broadcast in 
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one-second page intervals. Each page part consists of 250 symbols at a rate of 
250 symbols/second. These 250 symbols are further divided into a preamble of 
10  symbols, followed by 240 data symbols. These 240 data symbols are derived 
from 114 bits of navigation data plus six tail bits that are rate ½ encoded using 
a convolutional coding scheme of constraint length seven. The page parts come 
in pairs—an even page part followed by an odd page part—to form a two-second 
page, and 15 such pages are grouped together to form a 30-second subframe. Every 
odd page part includes a 40-bit OSNMA field (currently named Reserved 1), and 
a 24-bit CRC. After the CRC generation, the symbols output by the convolutional 
encoder are re-ordered using an 8x30 interleaver matrix that is written one column 
at a time and read out one row at a time. Further details on the CRC, encoder, and 
interleaver are illustrated in Figure 1 and presented in the Galileo Signal-In-Space 
(SIS) Interface Control Document (ICD; European Union, 2021).

2.1  OSNMA Field Structure

The OSNMA data field consists of 40 bits (bits 19 through 58 of the odd 
I/NAV page parts), split into an eight-bit header and root key (HKROOT) sec-
tion and 32-bit MACK (Message Authentication Code–MAC–and Key) data. The 
HKROOT section is slowly varying and so, as a conservative bound, we assume 
that these bits are known a priori, as we do for the rest of the I/NAV message, 
with the exception of the CRC. The MACK section contains a mix of predictable 
and unpredictable data depending on the particular configuration of the NMA 
scheme in force. Therefore, we consider only a maximum of 32 unpredictable 
bits every odd page part. 

The MACK data is arranged in one, two, or three MACK blocks per subframe. 
There are 480 MACK bits per subframe (15x32 bits), and so either 480, 240, or 
160 bits per MACK block. Each block includes a number of MACs (consisting of 
unpredictable bits), followed by a MAC information section (consisting of predict-
able bits) and a key. The key bits are considered predictable in our analysis, since 
key information is shared amongst satellites, so some key information related to 
the current satellite signal may already have been received from another satellite. 
This is a conservative assumption. 

FIGURE 1 Left: I/NAV page structure, including the 40-bit OSNMA field as Reserved 1 and 
the 24-bit CRC; Top-Right: Fields that are checked by the CRC (including Reserved 1); Bottom-
Right: I/NAV FEC scheme
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Therefore, the exact distribution of predictable and unpredictable bits through-
out a subframe and within an odd I/NAV page part is a function of the specific 
OSNMA configuration (i.e., the key and MAC sizes in bits and the number of 
MACK blocks per subframe). In the following analysis, we consider a sample con-
figuration consisting of the following parameters: Key size (KS) = 96 bits; MAC size 
(MS) = 32 bits; NMACK (number of MAC & key blocks per subframe) = 2; Number 
of MACs per MACK block = 3. However, the technique applied will be re-useable 
for any configuration. The layout of the MACK blocks in this configuration over 
the 15 pages in a subframe is shown in Figure 2. For further details on the OSNMA 
SIS specification see European Commission (2018). 

Note from the figure that, for the OSNMA configuration considered, there are 
only four possible cases for the 32 MACK bits in the OSNMA field in the odd page 
parts:

1.	 All 32 MACK bits are unpredictable.
2.	 Only the first 16 MACK bits are unpredictable.
3.	 Only the last 16 MACK bits are unpredictable.
4.	 All 32 MACK bits are unpredictable.

In the following analysis, we propose a technique for determining which sym-
bols can be considered unpredictable, given only the information on which of the 
original data bits are unpredictable. First, we introduce some nomenclature.

2.2  Nomenclature

In the rest of the paper, we will use the following nomenclature for the message 
symbols encoding the message bits:

•	 Known symbols: symbols generated only from bits that are known a priori 
(e.g., information that is slowly varying or constant)

•	 A-priori unknown symbols: symbols that depend on at least one bit that is 
considered unknown, either because it is part of the OSNMA unpredictable 
information or part of the CRC. The a-priori unknown symbols are divided as 
follows:
°° Predictable symbols: a-priori unknown symbols that, based on the already 

transmitted symbols, can be determined before transmission

FIGURE 2 Layout of the MACK blocks in one subframe for the chosen OSNMA configuration; 
only the MACN blocks ( { ,� , � })N ∈ 0 1 2  are considered unpredictable. Note that different OSNMA 
configurations yield different arrangements of the unpredictable bits within the OSNMA data field.
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°° Unpredictable symbols: a-priori unknown symbols that, based on the already 
transmitted symbols, cannot be determined before transmission

For example, if we take the case in which all MACK 32 bits are unknown in a 
given page, this would reflect in bits 27, 28…58 for OSNMA, and 83, 84…106, for 
the CRC. The related a-priori unknown symbols would be 53, 54…128, and 165, 
166…224, respectively. While the rest, 1…52 and 129…240 depend on known bits, 
and are, therefore, known symbols. The next sections study which of the a-priori 
unknown symbols are predictable and which are unpredictable.

3  UNPREDICTABLE SYMBOL DETERMINATION 
IGNORING THE CRC

To simplify the analysis, we begin by disregarding the impact of the CRC on sym-
bol predictability and, instead, focusing entirely on those symbols directly affected 
by the OSNMA Reserved 1 field (bits 19 to 58 of the odd I/NAV page parts). 

3.1  Methodology

The following analysis is based on the work of Fernández-Hernández and 
Seco-Granados (2016), where we establish a set of equations for each symbol 
received. We observe that the convolutional encoding can be written as an affine 
transformation as follows1:

	 s H d c= +E � (1)

where s = …[ , , , ]s s s T
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1�Note that a very similar expression could be used, e.g., for the GPS L1 CNAV-2 message, where HE corresponds to 
the Low-Density Parity Check (LDPC) encoding matrix and c = 0.
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The (1,0) stream shown in HE is based on the encoding polynomials shown in 
Figure 1, and the vector c reflects the inversion of G2, also shown in Figure 1. If we 
split the data vector d into two components: k as the vector of known bits (zeros at 
all unknown bit locations) and u as the vector of unknown bits (zeros at all known 
bit locations), then we can write:

	

d = +
= + +
= +

k u
s H k c H u

s sk u

E E

�

(3)

Where sk is the vector generated from the known bits and su is the vector of sym-
bols generated from unknown bits:

	
s H k c
s H u s s s s
k

u k k

= +
= = − = +

E

E �

(4)

Where we replace subtraction with addition as they are equivalent modulo 2. As 
each symbol si  is received, the attacker can compute s s su i i k i, ,= + , and this adds a 
new equation relating the unknown bits u to the already received symbols. Each 
new symbol corresponds to a row in the matrix HE, say the i-th symbol received 
yields the j-th row of HE, where:

	 j i i
= + − +

−





1 8 1 30 1
30

� � ( , )mod � (5)

which reflects the effect of interleaving. Let HE i,  denote the matrix constructed 
from the rows of HE given by the first i  unknown symbols, and consisting of only 
those columns that correspond to the unknown bits in u. Then the number of 
linearly independent rows in HE i,  is given by its matrix rank, which can be easily 
computed. When a new symbol is received, the updated matrix is obtained, and 
its rank is computed. If the rank so computed is the same as the rank given the 
previous symbol, then the new row is a linear combination of rows of HE i, −1, and 
so the symbol si  is predictable given symbols up to and including si−1. Also, let 
Nu  denote the number of unknown bits (and so equal to the number of columns 
in HE i, ), then a sufficient and necessary condition for determining all elements of 
u is:

	 rank� ,
HE i uN= � (6)

The following algorithm can therefore be used to determine the predictable sym-
bols of the I/NAV odd page part under OSNMA (ignoring the CRC):

1.	 Input: list of all a-priori unknown symbols (in order received), list of 
unpredictable bits, the number of symbols in advance to predict A

2.	 Initialize: set the modified encoding matrix HE,0  to be the empty matrix, and 
its rank r0 0=  

3.	 For each a-priori unknown symbol, si, in the order received:
a.	 Compute j, the index of the symbol prior to interleaving
b.	 Compute the j-th row of HE  and extract only those columns that depend 

on the unknown bits rj
c.	 Concatenate this row to the matrix HE i A, −  to obtain:
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d.	 Calculate the rank of HE i A, − +1: ri
a.	 If r ri i= −1, then add si  to the list of predictable symbols
b.	 If r Ni u= , then add all remaining symbols (not including si) to the list 

of predictable symbols and terminate. The remaining a-priori unknown 
symbols are the unpredictable symbols.

In the following sections, we apply this methodology to three OSNMA field cases 
based on the aforementioned configuration (KS = 96, MS = 32, NMACK = 2). One 
can see that, in this configuration, there are three possible cases which are pre-
sented hereafter. 

3.2  Case 1: 32 Unpredictable Bits in OSNMA Field

In this case, bits 27 to 58 of the odd page part are unknown, and these bits affect 
symbols 53 to 128 inclusive. The CRC bits are left out of the analysis for the moment 
and will be covered in the next section. Running the algorithm for determining the 
unpredictable symbols for an advance of one symbol, we obtain the results illus-
trated in Figure 3, where white symbols are known symbols (CRC symbols are not 
incorporated in the analysis yet, so they are still considered known), green symbols 
are (a-priori unknown) unpredictable symbols, and yellow symbols are (a-priori 
unknown) predictable symbols. 

In other words, at a point in time before any symbols of the page part are trans-
mitted, none of the colored symbols are known. As the symbols are received, those 
symbols colored green remain unknown until such a point in time as they are 
received, while those colored yellow are known at least one symbol in advance of 
being received. In the figure, the symbols are received in order from left to right 
starting from the top-left corner, and starting on the left-hand column in each row, 
much like reading lines of text.

FIGURE 3 Layout of the predictable and unpredictable symbols for Case 1, without 
accounting for the CRC; predictable symbols are shown in yellow, while unpredictable symbols 
are in green
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Note that this result differs from the work of Fernández-Hernández and Seco 
Granados (2016) in that the symbols s122 and s123 are here shown to be predictable. 
The difference is due to the fact that Fernández-Hernández and Seco-Granados 
(2016) assumed linear independence amongst the equations. Note also that, in 
accordance with their work, there are precisely 32 unpredictable OSNMA symbols.

3.3  Case 2: 16 Unpredictable Bits in OSNMA Field (First 
8 Bits Known, Next 16 bits Unknown, Last 16 Bits Known)

In this case, bits 27 to 42 of the odd page part are unknown, and these bits affect 
symbols 53 to 96 inclusive (a-priori unknown symbols 165 to 224). Again, running 
the symbol prediction algorithm with an advance of one symbol leads to the results 
in Figure 4.

Again, in this case, there are two predictable symbols within the first 16 
OSNMA-dependent symbols, so a naïve approach would mis-identify these as 
unpredictable. There are exactly as many unpredictable OSNMA-dependent sym-
bols as there are unknown bits, and again we have ignored the CRC.

3.4  Case 3: 16 Unpredictable Bits in OSNMA Field (First 
24 Bits Known, Last 16 Bits Unknown)

In this case, bits 43 to 58 of the odd page part are unknown, and these bits affect 
symbols 85 to 128 inclusive. Running the symbol prediction algorithm yields the 
results in Figure 5, which are consistent with the other two cases.

4  UNPREDICTABLE SYMBOLS INCLUDING THE CRC

While the results of the previous section show how to account for the possible 
linear dependence between unknown symbols, they ignore the impact of the CRC. 
In this section, we show how the CRC can be incorporated into the symbol predic-
tion algorithm to give the receiver designer the correct view of which symbols are, 
in fact, unpredictable.

FIGURE 4 Layout of the predictable and unpredictable symbols for Case 2; predictable 
symbols are highlighted in yellow. Note that symbols 90 and 91 are predictable. CRC is excluded.
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4.1  Methodology

The methodology employed to account for the CRC relies on the following 
observations:

1.	 The CRC can be expressed as a linear mapping from the input bits to CRC bits.
2.	 This linear mapping can be computed symbolically with a simple algorithm.

The first observation is well known, though, it is not obvious. The second obser-
vation appears to be new and will be shown below. Let us write the vector of data 
bits as follows:

	 d a t b r c=  , , , ,
T

� (8)

where a, b, and c are known bits, t is the vector of unknown OSNMA bits, and r is 
the vector of CRC bits. Then, following the methodology of the preceding section, 
we write:

	 k a b r ck=  , , , ,0
T

� (9)

Where here rk  is the CRC computed from the known bits of the navigation mes-
sage with the other bits set to zero. Similarly, we write:

	 u t ru=  0 0 0, , , ,
T

� (10)

where ru  is the CRC computed from only the unknown bits with the other bits set 
to zero. Now, due to the linearity of the CRC, we have:

	
r r r
d k u

k u= +
∴ = + �

(11)

So, we can apply the same methodology as in the previous section, provided that 
we can find a suitable matrix mapping from u  to su. Now, the computation of the 
CRC can be expressed as a long division operation, where the numerator N x( )  and 

FIGURE 5 Layout of the predictable and unpredictable symbols for Case 3; predictable 
symbols are highlighted in yellow. Note that symbols 122 and 123 are predictable. CRC is excluded.
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denominator G x( ) are both expressed as polynomials over GF(2). For the Galileo 
I/NAV CRC, the numerator is formed as follows (European Union, 2021):

	 N x m x x( ) ( )= 24 � (12)

where m x( ) is the message for which the CRC is to be computed. This can be writ-
ten as:

	 m x e x x t x x l x( ) ( ) ( ) ( )= + +64 24 � (13)

where e x( ) is a polynomial of degree 131, representing the known 132 bits of the 
CRC message prior to the OSNMA bits, t x( ) is a degree-39 polynomial representing 
OSNMA bits, and l x( ) is a degree-23 polynomial representing the known 24 bits 
of the CRC message occurring after the OSNMA bits. Following the methodology 
outlined in the appendix, we can write the CRC for the unknown bits as follows:

	 r H tu = ρ � (14)

and so, we can write:

	 u I H t=  0 0 0, , , ,ρ
T

� (15)

Now that we have a simple expression for u,  we can re-use the methodology 
above and compute:

	 s H u H I H tu = =  E E
T

0 0 0, , , ,ρ � (16)

In the following sections we use this approach to determine the unpredictable 
symbols for the OSNMA cases shown in Figure 2.

4.2  Case 1: 32 Bits Unknown

The results of this analysis are shown below:

FIGURE 6 Location of unpredictable symbols for I/NAV Case 1 when accounting for the 
CRC; known symbols are white, unpredictable symbols are green, and predictable symbols are 
yellow.
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Note that symbols 67, 122, and 218 are predictable, and that 32 unpredictable 
symbols must be received before the attacker has full knowledge of all the unknown 
data bits. Contrasting this with Figure 3, we see the symbols become predictable 
much earlier than without accounting for the CRC, and symbol 75 is the last unpre-
dictable symbol received. On the other hand, most of the early CRC symbols are 
unpredictable, for the same total of 32 bits.

4.3  Case 2: 16 Unpredictable Bits in OSNMA Field (First 
8 Bits Known, Next 16 Bits Unknown, Last 16 Bits Known)

The results for Case 2 are shown below. Note again that only 16 unknown 
symbols are received before the attacker can potentially have full knowledge of 
all the unknown bits. In this case, there are three linear dependencies in the first 
19 received symbols.

4.4  Case 3: 16 Unpredictable Bits in OSNMA Field (First 
24 bits Known, Last 16 Bits Unknown)

The results for Case 3 are shown on the next page, and are very similar to 
the previous results. Again, only 16 of the a-priori unknown symbols need to 
be received before the attacker can potentially have full knowledge of all the 
unknown bits.

Finally, Figure 9 presents the aggregation of the unpredictable symbols in a 
Galileo OSNMA configuration with a 96-bit key size, 32-bit MAC size, 2 MAC-key 
blocks per subframe (left), and 1 MAC-key block per subframe (right), considering 
the keys to be predictable. This figure encompasses the results of Figure 6, Figure 7, 
and Figure 8. One can see that most unpredictable parts are placed at the beginning 
of the subframe, as shown in the previous figures. It also shows a fully predictable 
period when the key is transmitted, as it is considered predictable in this work for 
reasons mentioned previously.

FIGURE 7 Location of unpredictable symbols for I/NAV Case 2 when accounting for the 
CRC; known symbols are white, unpredictable symbols are green, and predictable symbols are 
yellow.
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5  ATTACK SIMULATION RESULTS

To verify the above analysis, a set of simulations were conducted using a 
Candidate E1 I/NAV OSNMA subframe structure as a starting point. In each sim-
ulation, the attacker generated a spoofed signal a number of symbols in advance 
of the currently received symbol (the advance is varied from one to eight sym-
bols). The resulting symbols were decoded using a standard hard-decision Viterbi 
decoder. The decoded bits are re-encoded to determine which symbols were 
received in error. In each case, 100 subframes were spoofed and the results were 
computed by averaging across these 100 separate subframes. 

5.1  Verification of Symbol Unpredictability

The first stage in the verification is to analyze the symbol error rates for the 
symbols generated by the spoofer. Figure 10 shows the modeled unpredictable 

FIGURE 8 Location of unpredictable symbols for I/NAV Case 3 when accounting for the CRC; 
known symbols are white, unpredictable symbols are green, and predictable symbols are yellow.

FIGURE 9 Aggregated unpredictable (green) and predictable (blue) symbols in a 30-second 
I/NAV subframe; each row represents a single I/NAV odd page part of 240 symbols, with one 
symbol per column.
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symbols and the symbol error rates measured across all 100 of the Page 1 mes-
sages generated by the spoofer. The figure shows results for spoofer advances of 
one, four, and eight symbols. Note that the symbol error rate for all known and 
predictable symbols is zero across all spoofer advances, and the symbol error rate 
is approximately 0.5 for all unpredictable symbols. Note also that the number 
of unpredictable symbols increases as the symbol advance increases. Thus, the 
baseline of a single symbol advance represents the most conservative estimate 
from the defender’s perspective, and only these symbols should be considered 
unpredictable in the design of a symbol-level defense against a forward estima-
tion attack.

Similar results were obtained for all the other I/NAV pages. This shows that the 
models derived above correctly account for both the linear dependence between 
the symbols and the effect of the CRC. The list of unpredictable symbols can be 
used by a receiver to detect a FEA by analysis of the error rates for these symbols.

5.2  Decoder Results

The preceding results demonstrate that the models are correct, but there is a 
complex interaction between the symbol errors and their manifestation as bit 
errors. A successful FEA attack requires: a) that the receiver decodes the cor-
rect NMA data bits; b) that the receiver decodes the correct CRC (we assume the 
receiver requires the CRC to pass before using the NMA bits); and c) that the 
receiver does not cross-check the actual received symbols and the expected sym-
bols given a correct decoding of the navigation message.

In this section, we analyze the results of a hard-decision Viterbi decoder applied 
to the spoofed symbols, under the assumption that all the spoofed symbols are 

FIGURE 10 Validation of symbol predictability models; Left: Modeled predictability; Right: 
symbol error rates from the spoofed I/NAV odd page parts; Top to bottom: symbol advances of 
one, four, and eight symbols
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received without error (in the sense that the receiver extracts precisely those sym-
bols transmitted by the spoofer, even if these symbols are not the same as those 
generated by the satellite). This represents a lower bound on the probability of 
correctly decoding a FEA spoofed navigation message, since Curran and O’Driscoll 
(2016) show that the use of soft-decision decoding (and appropriate weighting of 
the symbols by the attacker) can result in much higher probabilities of successful 
decoding by the receiver.

Figure 11 shows the distribution of bit errors across the decoded odd page parts 
for Pages 1 and 2 (corresponding to 32 and 16 unknown bits, respectively) for both 
one- and eight-symbol advance attacks. We assume that the attacker takes advan-
tage of the CRC (i.e., the received CRC symbols are used to aid in predicting other 
a-priori unknown symbols, as shown in Figure 10 as shown in Section 4). Note that 
the overall probability of a bit error varies from 0.02 for the one-symbol advance 
attack on Page 2, to 0.85 for the eight-symbol advance attack on Page 1. For a single 
symbol advance, the attacker has a greater than 50% chance of a successful attack 

FIGURE 11 Bit errors for hard-decision Viterbi decoder applied to the FEA attack using CRC 
on I/NAV. Top: Page 1 (all 32 NMA bits unknown); Bottom: Page 2 (last 16 NMA bits unknown); 
Left: One symbol advance FEA; Right: Eight symbol advance FEA
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(in the sense that the probability that the true bits will be successfully decoded by 
a hard-decision Viterbi decoder is greater than 50%). 

The plots show that the bit errors are evenly distributed throughout the unknown 
NMA bits and the CRC bits, but also that the bits after the CRC are potentially 
decoded in error.

The impact of the symbol advance is shown in more detail in Figure 12 below, 
which presents the overall probability of a bit error and the probabilities of bit 
error for the NMA and CRC bits for both Page 1 and Page 3, with symbol advances 
from one to eight symbols. In this case, Pe  denotes the probability of error in any 
bit within the page, while Pe nma,  denotes the probability of error in any bit in the 
40-bit NMA field, and Pe crc,  denotes the probability of error in any of the CRC bits. 
As expected, the probability of a successful attack (essentially one minus the proba-
bility of a bit error) decreases as the symbol advance increases, but overall, the prob-
ability of successful attack is high. This confirms the necessity of cross-checking 
the symbol error rates in the unpredictable symbols as a mechanism for detecting 
a FEA attack.

6  CONCLUSION

This paper has investigated the distribution of unpredictable symbols in a 
GNSS message introducing unpredictable bits which are later verified by a mes-
sage authentication scheme, in which the message can include error correction 
and detection mechanisms. In particular, the analysis is specialized for Galileo 
OSNMA, which is transmitted in 40 bits every other second in the I/NAV message. 
The I/NAV message also includes a 24-bit CRC and is convolutionally encoded and 
interleaved. 

We consider known symbols as those fully derived from known bits, and a-priori 
unknown symbols as those derived from unknown bits. The latter are divided into 

FIGURE 12 Error rates for the hard-decision Viterbi decoding of FEA symbols.; each plot 
shows three probabilities of error: Pe, the probability that any one bit is in error; Pe,nma, the 
probability that one of the NMA bits is in error; and Pe,crc, the probability that one of the CRC 
bits is in error.
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predictable symbols and unpredictable symbols. Predictable symbols are those that, 
at the time of transmission, can be determined based on the reception of the pre-
vious symbols, while unpredictable symbols are those that cannot be determined 
before reception.

A simple method is proposed to determine which symbols are unpredictable. 
The method defines a system of equations in which each a-priori unknown symbol 
received adds one equation to a linear system. It refines previous work by evaluat-
ing the rank of the system matrix with every new symbol, as every new equation 
may be linearly dependent on the previous ones, which occurs in a few cases. The 
application of the method to the CRC is based on two observations: that the CRC 
can be expressed as a linear mapping from the input bits to CRC bits; and that this 
linear mapping can be computed symbolically with a simple algorithm. Based on 
this process, a receiver can define by a priori a mask of unpredictable symbols 
and use it to detect potential message replay attacks, including forward estimation 
attacks (FEA). 

The method is particularized for Galileo OSNMA with a configuration of 96-bit 
keys, 32-bit MACs, two MAC and key blocks per subframe, and three MACs per 
block, considering the keys to be predictable. An FEA attack was generated and 
the results were evaluated by investigating the distribution of the spoofed sym-
bol errors and the impact of the spoofed navigation message on a hard-decision 
Viterbi decoder. It was shown that the proposed models are correct, which high-
lights the necessity of utilizing an anti-FEA defense in which the decoded data are 
re-encoded and the error rates of the unpredictable symbols are evaluated. The 
results showed that the error rate for these symbols should be 50%, irrespective of 
the symbol advance employed by the attacker. The results also show that the more 
symbols in advance the attacker operates, the more symbols are unpredictable to 
the attacker. This might be expected, as the attacker has potentially received less 
information about the symbol before the time of transmission when the advance 
is large. 

The same approach can be applied directly to other convolutionally encoded 
schemes, such as satellite-based augmentation system (SBAS) signals, and can be 
trivially extended to work for any other encoding scheme that can be expressed as 
an affine transformation. For example, the GPS C/NAV message is encoded using a 
low-density parity check code, which can be expressed as a matrix product between 
the encoding matrix and the vector of data bits. Thus, this same approach can be 
used in the context of the proposed GPS chips message robust authentication 
(Chimera) scheme (Air Force Research Laboratory, 2019).

While the specifics of a defense against the FEA are not considered in this work, 
a rough outline is as follows. The defense takes on the form of a binary hypothesis 
test, wherein under the null hypothesis, the distribution of symbol errors within 
a page part should follow a Gaussian model, depending only on the received 
signal-to-noise ratio (SNR) values per symbol. Under the alternate hypothesis, the 
distribution of the symbol errors is a function of whether or not the symbol is pre-
dictable. For predictable symbols, the error distribution should be the same as that 
under the null hypothesis, while for unpredictable symbols, the error rate would 
be 50%, irrespective of the SNR per symbol. Knowing both the SNR per symbol and 
the distribution of the unpredictable symbols is essential for the correct implemen-
tation of such a defense.

Further work may characterize the time an adversary needs to estimate every 
a-priori unknown predictable symbol, or characterizing a replay attack probability 
of detection and false alert in a real environment, where all symbol types may be 
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corrupted due to signal impairments. Also, this symbol-level analysis may be com-
plemented with lower-level signal analysis to attempt detecting tracking lift-off 
replay attacks based on the unpredictable parts of the signal. 
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APPENDIX: DERIVATION OF LINEAR DEPENDENCE 
BETWEEN CRC AND INPUT BITS

Here we show how the CRC bits can be written as a linear combination of the 
unknown bits. Assume that we have transformed our message such that there are 
Nu  unknown bits followed by m  zeros, so that the message over which the CRC is 
to be computed is given by:
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The CRC computation can be written as a long division as follows:
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such that m x F x G x r x( ) ( ) ( ) ( )= + . We have introduced the notation m xi ( )  to 
denote the remaining denominator at the i-th iteration of the long division, so that 
m x m x( ) ( )= 1 , and P xi ( )  is the i-th product polynomial P xi ( ). Here:
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Now f1  is chosen to ensure that the highest order term of P x1 ( )  equals the 
highest order term of m x1 ( ):

	 f g u f u1 1 1 1 1= ⇒ =� � (20)

In fact, in general fi  is the highest order term in m xi ( ), but as the order of m xi ( )  
decreases by one as i  increases by one, we have: f mi i

i=
So, the i-th product polynomial P xi ( )  is given by: P x f G x xi

i
m N N iu g( ) ( )= =+ − + −1
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Finally, the next numerator polynomial m xi+1 ( )  is computed as: 
m x m x P xi i i+ = +1 ( ) ( ) ( )  

The process continues until the degree of m xi ( )  is less than the degree of G x( ),  
at which point m xi ( )  is the remainder sought:

	 r x mm N Nu g( ) = + − +1 � (21)

We can express each of the polynomials as a vector where the i-th element rep-
resents the coefficient of the i-th highest power:
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Now we can express mi  in terms of the initial message m1  as follows: 
m N mi i= 1  
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where Ni  is a ( ) ( )m N m Nu u+ × +  matrix. Given that the last m  elements of m1  
are zero, then we can write:
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The polynomial P xi ( )  can be expressed as:

	 p g N mi i
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Where gi  is the length m Nu+  representation of the polynomial 
G x xm N N iu g( ) + − + −1 :
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So putting this together, we obtain the matrix relationship:
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This gives us a recursive equation for computing N i:
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By iterating this procedure until i m N Nu g= + − +1  we obtain a relationship 
between the input message m1  and the CRC bits r:
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So, we can write the linear relationship:

	 r H u= ρ � (29)

Where Hρ  is the matrix obtained from the last Ng −1  rows and first Nu  col-
umns of Nm N Nu g+ − +1.
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