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O R I G I N A L  A R T I C L E

Gravity Modeling in GNSS-Aided Inertial Navigation 
System Safety Certification

Timothy Needham  Michael Braasch

1  INTRODUCTION 

Safety certification of GNSS-aided inertial navigation systems (INS) in civil 
aircraft requires thorough testing to ensure proper operation, even in worst-case 
conditions. The heart of an INS is the orthogonal triad of specific-force sensors 
called accelerometers that measure the vector sum of Newtonian acceleration 
and its reaction to gravity. The INS computes estimates of gravity in order to iso-
late the Newtonian acceleration from the specific-force measurements, thereby 
enabling the subsequent determination of velocity and position. A wide range of 
gravity models and databases exist that vary in fidelity. Even high-order spherical 
harmonics-based gravity models contain errors that result in acceleration, veloc-
ity, and positioning errors. Previous research by the authors has shown that the 
mis-modeling of gravity in a GNSS-aided navigation-grade INS can result in hori-
zontal positioning errors of nearly 200 meters after coasting (i.e., continued opera-
tion after loss of GNSS) for only 10 minutes (Needham & Braasch, 2017). 

Standards-making bodies, such as RTCA in the United States, develop and 
publish, in cooperation with certification authorities, requirements and testing 
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Abstract 
Safety certification of GNSS-aided inertial navigation systems (INS) in civil air-
craft requires thorough testing to ensure proper operation, even in worst-case 
conditions. One error that must be considered is that of gravity compensation 
on accelerometer measurements. Prior to the work described in this paper, no 
stochastic models existed with the Gaussian bounding of the tails required to 
ensure integrity performance. This paper describes a method to determine effi-
cient stochastic models of the error of current high-order gravity models such 
as EGM2008. The stochastic and high-order models are combined to achieve a 
high-fidelity model suitable for use in testing systems designed for low-approach 
operations such as RNP-AR. This paper also describes a method to determine 
efficient stochastic models for low-order gravity models such as the WGS-84 
ellipsoidal model. Such models may be used in testing systems designed for 
operations with less stringent lateral requirements.
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guidance for manufacturers of aviation equipment. Current guidance for so-called 
gravity compensation testing in RTCA documents DO-229 (RTCA, 2020a) and 
DO-316 (RTCA, 2009) is limited in applicability to enroute phases of flight in which 
high-fidelity gravity modeling is not required. Thus, the current testing methods 
are not appropriate for low-approach operations such as Required Navigation 
Performance–Authorization Required (RNP-AR). Furthermore, although gen-
eral guidance has been given in the aforementioned documents, those desiring 
to simulate gravity for less stringent flight operations are still faced with the task 
of deriving an acceptable model. Such models must mimic the behavior of the 
actual gravity field even in low-probability cases. Although the Earth’s gravity field 
is obviously deterministic, we hypothesize that the variations of the true gravity 
vector from the gravity models can be viewed/modeled as stochastic processes. 

As will be shown in the remainder of this paper, the aforementioned hypothe-
sis is reasonable and, as a result, computationally efficient stochastic models can 
be derived for use in certification simulations. The first contribution is a method 
to derive and apply efficient stochastic models of the error of existing high-order 
gravity models such as EGM2008 (Pavlis et al., 2012). As mentioned earlier, even 
high-order gravity models contain errors and, for the purposes of safety certifica-
tion testing, these errors cannot be ignored. In Monte Carlo simulations performed 
during certification testing, the derived models can be used along with the existing 
high-order models to simulate nominal and worst-case gravity environments.

The second contribution is a method to derive stochastic models of the error of 
commonly used low-order gravity models such as the WGS-84 ellipsoidal gravity 
model (National Geospatial-Intelligence Agency, 2014). For equipment certification 
involving phases of flight with requirements less stringent than RNP-AR, this lower 
fidelity simulation method has the advantage of being significantly less computation-
ally intensive than the first method. The two methodologies presented herein may 
thus be utilized to test various systems designed to operate in various phases of flight.

The authors have served on RTCA Special Committee 159 (SC-159) Working 
Group 2C (WG2C) whose work was recently published as DO-384: Minimum 
Operational Performance Standards (MOPS) for GNSS Aided Inertial Systems 
(RTCA, 2020b). The authors of the present article were the primary developers of 
the gravity modeling appendix in that document. Much of the work presented in 
this paper was performed in support of that effort.

The remainder of the paper is organized as follows: Section  2 describes grav-
ity compensation and the impact of mis-modeling. Section 3 provides a graphical 
explanation of the little-understood phenomenon whereby the observed spatial 
spectra of gravity deflections differ significantly in along-track versus cross-track 
directions. Section 4 presents a high-fidelity gravity simulation architecture suit-
able to support certification testing in phases of flight such as RNP-AR. Section 5 
describes the technical approach used to derive the stochastic model portions of 
the high-fidelity simulation and an example model derived with this approach is 
given in Section 6. Section 7 presents a low-fidelity gravity simulation architecture 
suitable to support certification in less-stringent phases of flight such as RNP X 
where X >= 0.3. Also described is the technical approach and an example. Finally, 
conclusions and recommendations are presented in Section 8.

2  GRAVITY COMPENSATION AND MIS-MODELING

The well-known accelerometer-sensing equation illustrates the relationship 
between sensed/measured specific-force Newtonian acceleration and its reaction 
to gravity:
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	 f a g= − � (1)

in which all three terms are vectors. Note that the right-hand side of the equation is 
the sum of Newtonian acceleration and the reaction to gravity. It is not acceleration 
minus gravity.

Nevertheless, gravity compensation is a simple rearrangement of this equation to 
isolate the desired Newtonian acceleration:

	 a f g= + � (2)

Thus, gravity compensation requires the determination of a gravity vector at the 
point in space where the INS is operating. Gravity is determined either through a 
software algorithm/model or a database. No gravity model or database is perfect, 
however, and mis-modeling results in an error in the determined Newtonian accel-
eration. The gravity modeling error is typically described as the difference between 
the true and modeled gravity vectors. The difference between the vectors is char-
acterized by the anomaly (difference in vector magnitude) and the deflection of the 
vertical or DOV (difference in vector angle). 

DOV is commonly decomposed into angular components in the local north-south 
and east-west planes. It is well known that the gravity anomaly affects vertical 
positioning performance but has negligible impact on horizontal positioning. 
Conversely, as will be described shortly, the impact of the DOV is most pronounced 
in the horizontal. Since barometric, not inertial, altitude governs the key points 
in instrument approach operations (e.g., decision height; ICAO, 2009), the main 
concern in gravity mis-modeling for civil aviation is DOV rather than the anomaly.

As shown in Figure 1, DOV results in a horizontal component of the true gravity 
vector. An error in the modeling/compensation of DOV results in a net horizon-
tal acceleration error of approximately 5 micro-g per arc-second of uncompen-
sated deflection. Unsurprisingly, large deflections occur in the vicinity of large 
mountains, ocean trenches, and continental shelves. Two examples of these were 
described by the authors previously (Needham & Braasch, 2020) and are summa-
rized again here. 

Figure 2 depicts a simulation of the required navigation performance (RNP) 0.3 
approach into Runway 02 at the Kahului Airport on the island of Maui. Figure 3 
illustrates the north-south component of the DOV along this approach. Note 
that over the span of approximately 60 nautical miles, the DOV changes from a 

FIGURE 1 Illustration showing the DOV as the angle of the effective gravity vector relative 
to the ellipsoidal normal
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maximum value of 55 arc-seconds to a minimum value of nearly –30 arc-seconds. 
The deflection, thus, changes by nearly 85 arc-seconds, or equivalently, more than 
400 micro-gs. 

FIGURE 2 Trajectory of an RNP 0.3 approach into Runway 02 of the Kahului Airport

FIGURE 3 North-south DOV for an approach into Runway 02 of Kahului Airport
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Figure 4 depicts a simulation of the RNP approach into Runway 33 at Ted Stevens 
Anchorage International Airport in Alaska. The circling maneuver near the end of 
the approach is an actual part of the published procedure and is required in order 
to lose altitude after passing over the mountains.

FIGURE 4 Simulated approach onto Runway 33 at Ted Stevens Anchorage International 
Airport

FIGURE 5 North-south DOV for an approach onto Runway 33 of Ted Stevens Anchorage 
International Airport
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Figure 5 illustrates the north-south component of the DOV along this approach. 
The large excursion that has a negative peak approximately 190 nautical miles 
from the airport is due to the effects of the continental shelf, whereas the high spa-
tial frequencies observed closer to the airport are due to the Kenai Mountains to the 
South and the Chugach mountains to the East. As will be described in more detail 
later, high-order gravity models such as EGM2008 capture low spatial frequencies, 
but do not fully capture the high spatial frequencies. Low-order models such as 
WGS-84 ellipsoidal gravity do not capture either high or low spatial frequencies.

3  EFFECTS OF A STATIONARY MASS ON  
A MOVING OBJECT

As described earlier, DOV is typically decomposed into two orthogonal com-
ponents which typically are chosen in the north-south and east-west directions. 
However, it has been known for over 50 years that the observed spatial spectra of 
DOV components are dependent upon direction of travel (Harriman & Harrison, 
1986; Shaw et al., 1969). 

Specifically, the observed spatial power spectrum of the DOV along-track com-
ponent is significantly different than that of the cross-track component. This phe-
nomenon must be taken into account when stochastic models of DOV are being 
developed for moving vehicles such as aircraft. Since this phenomenon is not well 
understood within the civil aviation community, a brief graphical explanation is 
presented here.

First, recall the vector form of the inverse-square law of universal gravitation:

	 1 2
212

21

ˆm m
G= −F r

r
� (3)

where G is the gravitational constant, m1 and m2 are the masses of the two objects, 
r21 is the distance vector between them, and 21r̂  is the unit vector from Object 1 to 
Object 2.

Now, consider an object (Object 1) moving in a straight line, passing a stationary 
object (Object 2) offset from the moving object’s line of motion as shown in Figure 6. 
In this diagram, the positive y-axis represents the positive along-track direction, 
and the positive x-axis represents the cross-track direction. At times t–∞ and t∞, the 
moving object is sufficiently far from Object 2 so as to consider the line-of-sight 
between them to be parallel with Object 1’s direction of motion. At times t1 and 
t3, the gravitational force on Object 1 has components in both the along-track and 
cross-track directions. At time t2, Object 2 is perpendicular to Object 1’s line of 
motion and, thus, no along-track gravitational force exists. 

However, at this same time, the cross-track component reaches a maximum. As 
the object continues in the positive y direction, the along-track component grows to 
a maximum (as the line-of-sight projects more and more onto the along-track direc-
tion) but eventually decays due to the 1/r2 factor. The along-track and cross-track 
components of the force, plotted as a function of the y position coordinate, are 
shown in Figure 7.

Figure 7 clearly demonstrates the fact that the along-track and cross-track com-
ponents have different properties. First, the along-track component is zero when 
the cross-track component has its maximum value. Furthermore, the cross-track 
component has a non-zero mean (as opposed to the along-track component) and, 
in fact, is non-negative (given the chosen coordinate axes). It is, thus, not surprising 
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that the observed spatial spectra of these components are significantly different. 
This is demonstrated in the power spectra shown in Figure 8. As expected with a 
zero-mean signal, the along-track component had a null at zero frequency, whereas 
the cross-track component had a maximum at zero frequency. The results are con-
sistent with those of a similar analysis seen in Harriman and Harrison (1986). 

It is important to emphasize that the differences in the spectra are not inher-
ent to the gravity field, itself, but rather how the physical forces project onto the 

FIGURE 6 Visualization of gravitational forces acting on Object 1 as it moves on a path 
offset from Object 2

FIGURE 7 Normalized along-track and cross-track components of the gravitational force 
experienced as Object 1 passes Object 2 that is offset from the trajectory
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along-track and cross-track directions of a moving object. The impact of this phe-
nomena in the present context is that the gravity mis-modeling error components 
depend on the direction of travel of the moving vehicle. Thus, as will be described 
in a later section, separate error simulation models must be developed for each 
component.

4  HIGH-FIDELITY GRAVITY SIMULATION 
ARCHITECTURE

The development of efficient, yet robust, error models is needed to enable the 
large-scale Monte Carlo simulations typically used in the certification testing of 
safety-critical navigation systems. The gravity error models must generate simu-
lated data that is statistically representative of the errors (also referred to as residu-
als) that remain after gravity compensation. 

Figure 9 illustrates a high-fidelity gravity model error simulation architecture. 
The input to the gravity model error simulator is the vehicle trajectory being sim-
ulated and the output is the gravity DOV residuals (comprised of two orthogo-
nal components). The residuals are comprised of deterministic and stochastic 
components. 

A high-accuracy reference model (e.g., EGM2008) was used to form the determin-
istic portion by differencing it with the estimate formed by the system-under-test 
(navigator gravity model). The stochastic component simulates the error of the 
reference model with autoregressive moving average (ARMA) models that are 
described in the next section.

FIGURE 8 Normalized spatial power spectra demonstrating differences between the along-
track and cross-track components of the gravitational forces
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This architecture has distinct advantages over simpler alternatives. Previous 
research has shown that high-fidelity stochastic modeling of the total DOV can-
not be done efficiently due to the non-stationary nature of the data (Needham & 
Braasch, 2020). As described in a later section, low-fidelity stochastic models can 
be derived, but they are not appropriate for low-approach operations with the most 
stringent lateral requirements. Alternately, generating/simulating the DOV solely 
with the high-accuracy reference model is not acceptable, either, due to known 
errors in these reference models. The approach presented here solves both of 
these problems by utilizing the high-accuracy reference model to account for the 
known deterministic portion of the DOV, with the addition of a stochastic model 
to account for the errors in the reference model.

5  HIGH-FIDELITY STOCHASTIC MODEL 
DEVELOPMENT APPROACH

The first step in developing the stochastic model in question was to determine the 
errors in the high-accuracy reference model. Reference models such as EGM2008 
are valid over the entire surface of the Earth and above the surface, up to altitudes 
far above the operations of any civilian aircraft. Currently, there is no source of 
truth value that can be used to evaluate the accuracy of these reference models over 
their entire volume of applicability. 

However, higher accuracy regional databases do exist that are valid only at the 
surface of the Earth. For example, the DEFLEC regional data (NGS, 2021a) from 

FIGURE 9 Block diagram demonstrating the generation of the total simulated gravity 
model error
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the National Geodetic Survey (NGS) are valid over much of the western half of 
the northern hemisphere. The DEFLEC data is more accurate than the EGM2008 
data, as it contains additional gravity measurements such as those collected by the 
GRAV-D mission (NGS, 2021b). In addition, terrain databases are used to estimate 
higher frequency gravity terms due to irregular topography (Hardy, 2020). 

Since the DOV generally decreases in magnitude with altitude (i.e., the Earth 
becomes more like a point-mass), the reference model errors (computed by differ-
encing the reference model with the higher-accuracy database) determined near 
the surface are a conservative bound on the errors that would be experienced at 
a given operational altitude. In addition, with an increase in altitude, the higher 
frequency components of the DOV are attenuated more than the lower frequency 
components (Vanderwerf, 1996), thus, further increasing the conservatism. 

Previous work by the authors (an example plot is reproduced here in Figure 10) 
showed that EGM2008 performs well in capturing lower spatial frequencies in the 
DOV, but exhibits non-trivial residuals in the higher spatial frequency components 
(Needham & Braasch, 2020). The reference model residuals, such as those depicted 
in Figure 10 for EGM2008, are used in the simulation architecture described herein 
as the basis for stochastic model determination.

Simulated trajectories can be generated over the regional area and gravity model 
errors can then be formed by differencing the regional database and reference grav-
ity model estimates. Thresholds may be set to extract only the data sets containing 
significant differences. Following this, segments of data are chosen with approxi-
mately constant mean and variance. Ideally, segments would be chosen that are 
statistically stationary, but this is rarely possible in practice and, thus, we chose 
segments that were second-order weakly stationary. 

FIGURE 10 DOV profiles as determined from EGM2008 and DEFLEC data sets for a 
simulated approach into Ted Stevens International Airport in Anchorage, Alaska
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The formation of these residual data sets is the first step of the model develop-
ment process as outlined in Figure 11. The residuals are then processed using time 
series system identification to generate model parameters (with the obvious under-
standing that these data sets are actually spatial series rather than time series; 
Cryer & Chan, 2008; Ljung, 1999). System identification is used to fit each of the 
individual runs in the data set with candidate models of various orders. 

A generalized model that can be used for system identification is the autore-
gressive integrated moving average (ARIMA) model. The ARIMA model allows for 
time-differencing non-stationary data to create stationary time series. In contrast, 
the ARMA model is sufficient when the original data set is stationary. 

The ARMA(p,q) model is a combination of a AR model of order p and a mov-
ing average (MA) model of order q, and can be represented mathematically as 
Equation (4), where the AR coefficients are represented by φ and the MA coeffi-
cients are represented by θ. The input to the model is a white noise term with unity 
variance zk, whose amplitude is scaled by the white noise standard deviation σwn: 

	 x x x x z z z zk k k p k p k k q k q wn k= + + + + + + + +− − − − − −ϕ ϕ ϕ θ θ θ σ1 1 2 2 1 1 2 2  � � � (4)

After creating the measured data set, the next step is selecting the minimum 
order model that is sufficient to represent the data. Time series system identifica-
tion is utilized to fit ARMA models for various orders up to ARMA(15,15) to each 
of the runs. The outputs of system identification include model order selection 
criteria and model coefficients for each of the time series analyzed. 

FIGURE 11 Block diagram outlining the process for using system identification to analyze 
measured data, identify, and validate representative ARMA models
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A variety of model order selection criteria are described in the literature. 
These include the Akaike Information Criterion (AIC; Akaike, 1970), the Final 
Prediction Error (FPE; Akaike, 1974), and the Bayesian Information Criteria (BIC; 
Schwarz, 1978). An advantage of the BIC is that it imposes a greater penalty for 
increasing model complexity relative to the other criteria. Since an aim of this 
work is to identify the most efficient (i.e., simplest) models, the BIC was selected 
for the present work. 

The coefficients resulting from system identification represent the structure 
of the model that best fits a particular data sample for a given (p,q) order com-
bination. Once a model order is selected via the model order selection criteria, 
a deeper analysis of the model coefficients can be conducted for the selected 
order. The coefficients can be visualized by viewing the corresponding roots in a 
pole-zero plot. As mentioned previously, gravity cannot be treated as a single sta-
tionary stochastic process. Individual stationary data segments can be processed 
by system identification, but each segment will produce slightly different roots. 
To account for the varying roots, a region of interest can be defined around the 
identified roots. 

Lastly, any model must be validated against the original measured data. One val-
idation check is to compare the power spectral densities of the measured data to 
that of the candidate models. The time series data generated by the model should 
have similar spectral properties to that of the data. To demonstrate this process, two 
examples are now given. 

The first example is geared towards a high-end user (i.e., DO-384 Category A) 
such as a commercial aircraft that can coast for extended amounts of time, whereas 
the second example is intended for applications such as GNSS-enhanced attitude 
and heading reference system or AHRS (i.e., DO-384 Category C) that utilize lower 
cost inertial sensors that can coast only for brief periods of time. 

6  EXAMPLE HIGH-FIDELITY STOCHASTIC MODEL

An example is now shown to demonstrate the development of cross-track and 
along-track ARMA models representative of high-order reference model errors. 
The reference model and regional truth data are EGM2008 and xDEFLEC19 (NGS, 
2021c), respectively, and the measured data to be analyzed is created by differenc-
ing the two data sets. 

In this example, 24 cross-track and 28 along-track DOV time series data were 
analyzed, each 100 nautical miles long and running north-to-south with a sam-
pling interval of one nautical mile (NM; note that data obtained from east-to-west 
trajectories yield similar results). The 100-NM distance was chosen to be represen-
tative of what an aircraft could potentially coast through during a GNSS outage on 
approach to an airport. 

These series were down-selected from a larger data set of 6,000 random trajectories 
by selecting those that contained at least one data point larger than 20 arc-seconds. 
This threshold of 20 arc-seconds was chosen to identify the worst-case scenarios 
that are of interest in this work. As a result, the benign conditions that made up the 
majority of the data set were not considered. 

The data set was then screened so that only second-order weakly stationary 
runs were used for system identification. This screening helped to ensure a consis-
tent set of data from which to perform system identification. Example cross-track 
and along-track reference model errors are shown in Figure 12 and Figure 13, 
respectively. 
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FIGURE 12 Example differences between EGM2008 and xDEFLEC19 cross-track 
components of DOV for select trajectories

FIGURE 13 Example differences between EGM2008 and XDEFLEC19 along-track 
components of DOV for select trajectories
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6.1  Example Cross-Track Model Structure Development

Once the aforementioned data set was created, system identification was per-
formed on each of the individual data sets for ARMA models up to ARMA(15,15). 
The first items of interest were the model order selection criteria values. The results 
of each of the individual runs varied slightly in terms of BIC and model coefficients. 

To provide a measure of overall performance, the BICs for the select runs were 
averaged for a particular order combination such that a single value was calcu-
lated for each (p,q) combination as shown in Figure 14. An inspection of Figure 14 
indicates that the minimum BIC value occurred with ARMA(2,0; i.e., AR[2]), thus 
making it the primary candidate model. 

Next, the AR(2) model coefficients resulting from system identification were 
analyzed. The coefficients of the AR(2) model were used to calculate the corre-
sponding roots and view them using a pole-zero plot as shown in Figure 15. The 
clustering apparent from a visual inspection of the figure demonstrates an under-
lying stochastic structure of the residuals and adds weight to the choice of AR(2) 
models for the cross-track component. The combination of low BIC and consistent 
poles indicates that an AR(2) model is sufficient to represent the underlying struc-
ture of the cross-track data for the given application. 

The desire is to create a single, efficient model for each track component. A means 
to do so is to take the centroid of the cluster of roots and use the corresponding 
coefficients to create a single model. This approach allows for a single model to be 
used for each realization. 

A more robust approach is to identify the region of roots and draw uniformly 
from this region for each Monte Carlo realization, thus ensuring that, over the 
course of a large-scale Monte Carlo simulation, the worst-case scenarios would 

FIGURE 14 Mean of the BIC for each of the selected cross-track runs
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be exercised. In the present example, the centroids were used to develop a sample 
model for further analysis. 

Once a second-order AR model had been selected and model coefficients were 
identified via the centroids, the model could be mathematically represented as 
Equation (5), in which coefficients ϕ1 and ϕ2 control the structure of the signal and 
σwn is the standard deviation of the driving unity-variance white noise source zk. 

	
x x x z

x
k cross cross k cross k wn k

k

, , , ��
. � .

= + +
= −

− −

−

ϕ ϕ σ1 1 2 2

11 0722 0 41118 2x zk wn k− +� �σ
�

(5)

For AR(2) models, the standard deviation of the driving white noise input (σwn) 
is related to the standard deviation of the AR model output (σx) as follows (Cryer & 
Chan, 2008):

	 σ σ
ϕ ϕ ϕ ϕ ϕ

ϕwn x
2 2 2 1 2 1 2

2

1 1 1
1

=
+( ) − −( ) + −( )

−( )
� (6)

The final step is validating the model against the original measured data by 
comparing the power spectral density (PSD) of the measured data to that of 
the model specified in Equation (5). A comparison of the PSDs is provided in 
Figure 16 and demonstrates an agreement between the measured and simulated 
data as the spectrum of the simulated data falls well within the 95% confidence 
bounds. Validating the AR(2) model completes the final step in developing the 
cross-track ARMA model. A similar process for the along-track data is conducted 
and presented next. 

FIGURE 15 Pole-zero plot showing the cross-track and along-track pole results from system 
identification of each of the trajectories 
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6.2  Example Along-Track Model Structure Development

The along-track model development follows the same process as the cross-track 
case. The model order selection criterion was first calculated for each (p,q) combi-
nation up to ARMA(15,15) as shown in Figure 17. For the along-track models, the 
ARMA(2,2) had the minimum BIC value. To investigate this model order choice, 
the pole-zero plot was analyzed and sample roots from the distribution were 
selected and used to calculate the coefficients in the model shown in Equation (7). 
Similar to the cross-track example, this model is validated against the measured 
data by comparing the PSDs of each. 

	
x x x z zk along along k along k along k along k, , , , ,= + + +− − −ϕ ϕ θ θ1 1 2 2 1 1 2 −−

− − − −

+
= − + − +

2

1 2 1 20 8834 0 4206 0 9681 0 9681
�

. . . . �
�σ

σ
wn k

k k k k

z
x x z z wwn kz�

�
(7)

6.3  Model Magnitude Determination

Having identified the model coefficients for both the along-track and cross-track 
cases, attention is now turned to the magnitude of the model output. The AR coef-
ficients dictate the stochastic structure of the data (i.e., serial correlation), but the 
standard deviation of the model output might be scaled arbitrarily by the standard 
deviation of the white noise input as shown, for example, in Equation (5) for the 
AR(2) case. 

FIGURE 16 Comparison of the measured data PSD to the simulated data to show validation 
of the AR(2) model specified in Equation (5)
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The magnitude of the aforementioned model errors (i.e., the difference between 
the EGM2008 model and the DEFLEC data) can be assessed. Since a large portion 
had small magnitudes, specific focus was given to the tails. It is important to bound 

FIGURE 17 Mean of the model order selection criteria (i.e., BIC) over a range of (p,q) 
combinations up to ARMA(15,15)

FIGURE 18 Pole-zero plot showing the ARMA(2,2) poles and zeros for model fits in addition 
to the roots selected for the ARMA(2,2) model used for validation



NEEDHAM and BRAASCH    

the tails as these are the worst-case situations that need to be protected against. In 
cases where the tails are not well-bounded by a known probability distribution, 
bounding techniques can be utilized to ensure proper bounding. 

Examples of this technique are Gaussian bounding (Blanch et al., 2018) and 
Gaussian-Pareto bounding (Larson et al., 2019). Although alternative techniques 
exist, Gaussian (or Gaussian-related) bounding has gained broad acceptance in the 
civil aviation community for its utility in demonstrating that a given algorithm 
meets a given set of integrity performance requirements.

An example of Gaussian bounding is shown here. The Gaussian bounding meth-
ods and tools used are those described in Blanch et al. (2018). The tools provide a 
one-sided bound, thus both sides of the distribution need to be bounded separately. 
To be conservative, the larger of the two standard deviations was used to define the 
bounding two-sided Gaussian distribution. 

In this example, a Gaussian distribution with a standard deviation of 16.3 
arc-seconds bounds the residuals for both the along-track and cross-track com-
ponents (note that the bounding Gaussian distribution is zero-mean). The com-
plementary cumulative distribution function (CDF) is shown in Figure 20 and 
demonstrates the bounding of the tails of the residual distribution. 

Once the model parameters were identified, the gravity model errors could 
be simulated as shown in Figure 21. Simulated reference model error/residuals 
were generated using the along-track and cross-track models of Equation (5) and 
Equation (7) and σx = 16.3 arc-seconds and is shown in Figure 22. 

The standard deviations for the white noise input were 9.7 arc-seconds for the 
cross-track model and 7.1 arc-seconds for the along-track model. As shown in 
Figure 21, the final simulated gravity model residuals were obtained by summing 

FIGURE 19 The measured data PSD with confidence bounds compared to the PSD produced 
by the ARMA(2,2) model in Equation (7)
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FIGURE 20 Complementary CDF showing that Gaussian distribution bounds the tails of 
the model errors

FIGURE 21 Block diagram demonstrating the use of ARMA models to generate simulated 
reference model
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this result with the deterministic gravity model error (such as the difference curve 
shown in Figure 2). 

7  LOW-FIDELITY STOCHASTIC MODEL 
DEVELOPMENT APPROACH AND EXAMPLE

Although the high-fidelity modeling approach described provides both deter-
ministic and stochastic characterization of the DOV, it might prove computation-
ally burdensome for some applications. If an inertial system utilizes accelerometers 
with bias instabilities that are larger than the worst-case total DOV, a high-fidelity 
gravity model would not be needed for testing. 

For example, inertial systems containing accelerometers with bias instabilities 
on the order of one milli-g or more contain inherent system errors that render the 
total DOV variations minor in consideration. It is further noted that in such sys-
tems the navigator gravity models are typically low-order models, which account 
for the DOV minimally. Thus, the total DOV is essentially the gravity model error. 

Even though these systems do not have the stringent accuracy and integrity 
requirements of low-approach operations such as RNP-AR, gravity compensation 
errors cannot be ignored completely in safety certification testing. There is, thus, a 
need for a computationally efficient low-fidelity model that captures the structure 
and magnitude of the worst-case total DOV variations. 

A key feature of the low-fidelity approach is that the actual DOV does not need 
to be calculated for every location point used in the Monte Carlo simulation, thus 
reducing the computational burden of the testing process. The remainder of this 
section discusses low-fidelity approaches followed by an example.

FIGURE 22 Example simulated reference gravity model errors using the models given in 
Equations (5) and (7) and a model standard deviation of σx = 16.3 arc-seconds
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An assumption for the low-fidelity case is that high-order gravity model errors 
are negligible compared to accelerometer errors. The maximum DOV on Earth is 
on the order of 100 arc-seconds, or the equivalent of 500 micro-g’s, and the errors 
in high-order reference models are less than this value (by at least a factor of two). 
Thus, when testing systems containing accelerometers with relatively large bias 
instabilities (e.g., 1 milli-g or larger), the DOV from the high-order reference mod-
els can be used by itself in simulations. 

The goal is to create time series data that is sufficient to represent the residu-
als remaining after gravity compensation so as to thoroughly stress the nav-
igation system under testing. Although the high-order reference models are 
computationally burdensome, a simpler approach is to use a worldwide data-
base, such as the EGM2008 database that can be downloaded from the National 
Geospatial-Intelligence Agency (2021), and to sample the DOV from randomly 
selected trajectories across the globe and, thus, from gravitationally diverse regions. 

Since these databases are only valid at the surface of the reference ellipsoid, 
they cannot be used for high fidelity applications where the effects of altitude 
variation must be taken into account. Again, the sample data can be directly used 
as input to the Monte Carlo testing. In this approach, the sample DOV series is 
not tied to the actual positions of the Monte Carlo trajectories. Instead, a given 
trajectory utilized in Monte Carlo testing was subjected to a wide variety of DOV 
profiles. Since the DOV data is available in a database, the computational burden 
is small.

Another approach is to create a stochastic model or models of the entire DOV 
so as to not require a deterministic component (as was the case in the high-fidelity 
approach). The aim is to create a computationally simple ARMA model that is 
sufficient to represent the underlying statistics of the DOV. The trajectories in the 
high-fidelity example were concentrated in areas near mountain ranges so as to 
focus on the worst-case areas. 

The lower frequency terms were ignored by the high-fidelity stochastic model as 
they were already captured by the deterministic part of the simulator. However, for 
total DOV modeling, worst-case lower frequency terms like those due to the continen-
tal shelf (e.g., left side of Figure 4) or large, more isolated mountains such as Hawaii 
(Figure 3) need to be included to ensure robustness in the low-fidelity approach. 

A dilemma that arises with the low-fidelity approach is that a single model can-
not reproduce residuals representative of both the low and high frequencies men-
tioned above. A robust low-fidelity simulator architecture needs to account for 
these different worst-case scenarios in some manner. One method is to determine 
separate models for each case and implement some mechanism to switch between 
the models throughout the simulation as demonstrated in the block diagram of 
Figure 23.

The choice of switching logic is dependent upon its application. Some users 
may want to generate an initial quiet segment with little or no DOV, followed by a 
low-frequency DOV segment to simulate a trajectory that traverses a single large 
geographic feature. Other users may wish to generate high-frequency DOV seg-
ments only to simulate a trajectory over a mountainous region.

An example is now given that shows the development of two models for each of 
the track components. The first models were based on the same trajectories that 
were used in the high-fidelity example to capture the higher-frequency errors such 
as those in mountain ranges. The second set of models was based on analyzing 
trajectories passing near Hawaii and the Puerto Rico trench to represent areas with 
geographies that produce large, low-frequency gravity terms. The DEFLEC data 
was chosen as the source of truth data for DOV. 
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7.1  Geographic Area #1: Large Mountain Ranges

First, the DOV near large mountain ranges was considered as these areas pro-
duced large DOV deflections that could change rapidly as shown in Figure 24 and 
Figure 25 for the cross-track and along-track directions, respectively. 

FIGURE 23 Block diagram demonstrating an example of low-fidelity architecture

FIGURE 24 Sample cross-track total DOV for a select trajectory
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The same trajectories identified in the high-fidelity example were examined. 
System identification was performed in the same way as described earlier and it 
was found that an ARMA(1,1) yielded the minimum model order selection criteria 
for both track components (see Figure 26). 

The roots of the ARMA(1,1) model fits shown in Figure 27 were analyzed to 
gain an understanding of the distribution. The poles and zeros in Figure 27 were 
not clustered especially tightly and this was due to the diversity of the actual 
terrain. As mentioned earlier, simulation fidelity can be increased by randomly 
sampling poles from the range of identified locations to generate simulation 
models. 

FIGURE 25 Sample along-track total DOV for a select trajectory

FIGURE 26 Mean BIC values for each ARMA(p,q) combination for the cross-track (left) and 
along-track (right)
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To illustrate validation, the centroids were calculated to form an example 
model and the corresponding ARMA(1,1) coefficients were found as shown in 
Equation (8) and Equation (9):
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Simulated time-series data was generated using these models and the simulated 
PSD was compared to that of the original measured data as shown in Figure 28. 
A  visual inspection of the PSDs demonstrated the similarities in spectrum and 
served as a validation step. 

FIGURE 27 Pole-zero plots showing roots of the ARMA(1,1) fits to the low-order cross-track 
and along-track

FIGURE 28 PSDs of the measured data compared to the spectrum of the simulated data 
generated by Equation X and Equation Y



    NEEDHAM and BRAASCH

For an ARMA(1,1) model, the standard deviation of the white noise input 
(σwn) is related to the standard deviation of the model output (σx) as follows 
(Brockwell & Davis, 1996):

	 σ σ
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2 2 1 1
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7.2  Geographic Area #2: Isolated Large Geographic 
Features

The second area to be studied had large but slowly changing DOV values such 
as those demonstrated in Figure 3 for an approach into Hawaii or a flight over the 
Puerto Rico trench, where an 82 arc-second DOV change occurred over an 80-NM 
span (Needham & Braasch, 2017). 

To better capture the longer wavelengths, segments 300-NM long were studied. 
The cross-track DOV profiles were processed via system identification and resulted 
in the BIC as shown in Figure 30. An inspection of the figure demonstrated that 
an increase in MA order provided minimal improvement, while an increase along 
the AR order axis showed a significant drop at first, then little improvement was 
gained after order three. 

The lowest BIC occurred with a model order combination of ARMA(3,3), but 
many of the combinations nearby had similar values. Given the low-fidelity nature 
of the model being developed, the slightly simpler AR(2) and AR(3) models were 
first selected and the calculated roots were examined further. 

FIGURE 29 DOV for a trajectory over Puerto Rico showing the large low-frequency effects 
and gravitational effects of the trench
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The AR(2) roots shown in Figure 31 were tightly clustered, whereas the AR(3) 
roots in Figure 32 did not exhibit the same tight clustering. Thus, the AR(2) model 
was selected for the cross-track component. 

FIGURE 30 Mean BIC for the cross-track low-fidelity residuals from areas near Hawaii and 
Puerto Rico

FIGURE 31 Pole-zero plot demonstrating the results of the system identification on cross-
track DOV of trajectories near Hawaii and the Puerto Rico trench using AR(2)
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Next the along-track direction of the second geographic area was considered. 
The model order selection criterion yielded similar results as the cross-track 
case and demonstrated similar properties along the MA and AR order axes. The 

FIGURE 32 Pole-zero plot demonstrating the results of the system identification on DOV of 
trajectories near Hawaii and the Puerto Rico trench using AR(3)

FIGURE 33 Low-fidelity Geographic Area #2 along-track
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lowest BIC occurred with ARMA(4,2), however the values of nearby combina-
tions were similar. Similar to the cross-track example, the AR(2) and AR(3) mod-
els were selected as candidates for further evaluation due to their relatively low 
BIC values. 

The AR(2) roots in Figure 34 clustered more tightly than the AR(3) roots shown 
in Figure 35. Given the relatively low value of BIC and the tight clusters, the 
AR(2) model was deemed sufficient to represent the structure of the along-track 
model. 

To validate the selected AR(2) models, the centroids of the roots were used to 
produce coefficients of the example models of Equation (11) and Equation (12). 

•	 Example cross-track AR(2) model:
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(11)

•	 Example along-track AR(2) model:
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The models were used to generate data so the PSDs of the measured and simu-
lated data could be compared. The PSDs are shown in Figure 36 for the cross-track 
direction and Figure 37 for the along-track direction and demonstrate agreement. 

FIGURE 34 Pole-zero plot demonstrating the results of the system identification on along-
track DOV of trajectories near Hawaii and the Puerto Rico trench using AR(2)
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FIGURE 35 Low-fidelity Geographic Area #2 along-track

FIGURE 36 The measured data PSD with confidence bounds compared to the PSD produced 
by AR(2) cross-track model in Equation (10)
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FIGURE 37 The measured data PSD with confidence bounds compared to the PSD produced 
by AR(2) along-track model in Equation (11)

FIGURE 38 Complementary CDF showing that Gaussian distribution bounds the tails of 
the low-fidelity model errors
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7.3  Low Fidelity Magnitude Determination

Again, as was done with the high-fidelity models, the amplitude of the models 
must be addressed. In order to fully characterize the magnitude variations, all of 
the DOV data were utilized, not just the segments used for coefficient determi-
nation. The data distribution and bounding Gaussian distribution are shown in 
Figure 38 using the complementary CDF. 

The standard deviation of the bounding Gaussian was 25.23 arc-seconds, which 
was used to set the input white noise standard deviation accordingly. Example 
data generated with the models of Equation (10) and Equation (11) are plotted in 
Figure 39.

8  CONCLUSION AND RECOMMENDATIONS

This article presented a method to determine efficient stochastic models that 
could be used to generate time/spatial series samples representative of gravity 
model errors. The models provided a means for manufacturers to thoroughly test 
gravity compensation schemes during certification testing. 

This article also described the physical phenomena that induces differences in 
the statistical properties of the along-track and cross-track errors. Separate ARMA 
models were developed for both the along-track and cross-track directions. A test 
framework was outlined to demonstrate how the ARMA models could be incorpo-
rated for testing of a navigation system, with examples given for high-fidelity and 
low-fidelity applications. 

FIGURE 39 Example cross-track and along-track data generated using the model as 
specified in Equation (10) and Equation (11)
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