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INS Stochastic Noise Impact on Circular Error Probability 
of Ballistic Missiles
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1  INTRODUCTION

Inertial navigation systems (INSs) are widely used in both military and commer-
cial fields (Titterton et al., 2004). They are self-contained and reliable enough to sat-
isfy users' specifications in the most acceptable way possible. The most important 
and difficult ballistic missile issues (surface-to-surface) are guidance, navigation, 
and control problems. Guidance and control techniques are implemented to guide 
the missile through a reference path to reach the appropriate point of impact. The 
missile movement around the center of gravity (C/G) is achieved by the onboard 
autopilot, which helps in obtaining stability and transient restrictions. These guid-
ance restrictions may be carried out by means of appropriate guidance and control 
techniques (Siouris, 2004). 

One of these guidance techniques, mostly used with ballistic missiles, is inertial 
guidance. One of the most essential objectives of inertial guidance is to set the mis-
sile on a pre-calculated trajectory. The missile's necessary attitude in various phases 
of flight is a function of the required range. There are many error sources that arise 
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Abstract
A circular error probability (CEP) metric in ballistic missile science is an exper-
imental indicator of the accuracy of a missile system. There are a lot of error 
sources that cause a ballistic missile to deviate from its ideal trajectory, and that 
causes a deviation from required CEP. This work discusses the problems of dis-
persion of ballistic missiles due to inertial navigation system (INS) errors. INS 
deterministic errors are usually calibrated and compensated using some proper 
techniques. However, INS stochastic errors can be modeled and analyzed. In this 
study, a chosen missile is thoroughly analyzed using the six degrees-of-freedom 
missile flight trajectory simulator. A Monte Carlo simulation is used to generate 
a large number of flight trajectories to inspect the effect of INS stochastic noise 
on missile CEP. Moreover, a strategy for selecting an adequate sensor according 
to mission requirements and its corresponding sensor errors is introduced.
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during missile guidance like INS errors, which affect the ability of inertial sensors 
to calculate the acceleration, position, and attitude of a missile. 

Assisting the INS with external navigation sensors such as GPS may bound the 
propagating errors in INS algorithms. Nevertheless, this development is regulated 
by specific countries. For example, GPS receivers have certain limits on maximum 
height and velocity. Consequently, this work focuses on standalone inertial navi-
gation systems. The precision of the navigation loop depends on the calibration, 
alignment, and algorithm of the adopted estimation techniques used with INS 
sensors (Zhang et al., 2012). A typical INS is comprised of inertial measurement 
units (IMUs) and the processing module that performs all the required naviga-
tion processing. The IMU in question is usually composed of two triads of gyro-
scopes (gyros) and accelerometers that measure angular rate and acceleration, 
respectively.

IMU errors are classified into systematic errors (deterministic) and random 
errors (stochastic). Calibration is performed for deterministic errors in 
accelerometers and gyros such as scale factor, non-orthogonality, bias, and 
misalignment. Calibration is done by going through different calibration 
techniques such as the six-position test, eight-position test, and angular rate test. 
The goal of IMU calibration is to estimate the intrinsic value of the IMU and 
compensate for errors in IMU measure-ments to enhance INS efficiency. The 
precision of the IMU intrinsic calibration will also have a direct impact on the 
effects of motion estimation (Hegazy et al., 2020a). 

Stochastic noise analysis is used to estimate random errors such as angle 
random walk, bias instability, and rate random walk. Stochastic analysis is 
performed using several techniques such as the autocorrelation function, power 
spectral density, and Allan variance (AVR). The core of the analysis process is 
the calculation of the effect of specific noise sources on sensor output and sensor 
accuracy (Hegazy et al., 2020a).

A strap-down INS (SINS) typically contains an orthogonal three-axis group of 
gyros and accelerometers that provide data to the INS navigation computer. INS 
modules are directly installed on the vehicle chassis. Navigation is the process of 
calculating the physical body’s position, velocity, and acceleration relative to some 
reference frame (i.e., the inertial frame, Earth’s frame, navigation frame, and 
the wander azimuth navigation frame). The basic principle of SINS that is 
addressed in this work was calculated in the wander azimuth navigation frame 
(w-frame). The mathematical model of SINS was set up and the calculation steps 
in the w-frame were obtained (Zhang et al., 2012).

INS errors affect missile accuracy. A circular error probability (CEP) in ballistic 
strategic science is an experimental indicator of the accuracy of a given missile 
sys-tem. CEP can be defined as an indicator of the delivery accuracy of a weapon 
sys-tem, used as a factor in determining probable damage to a target (Moran Jr., 
1966).

This work aims to enhance the precision of an INS by using appropriate and 
precise inertial sensor calibration methods to estimate both deterministic and 
stochastic errors. The inertial sensors adopted in this research are under the 
micro-electromechanical systems (MEMS) technology. To study the effect of INS 
errors on missile navigation performance, a complete missile six-degrees-of-freedom 
(6DOF) simulator is used. The INS is modeled according to the required noise 
parameters integrated with the missile model. 

Missile performance is demonstrated by illustrating the difference between 
nominal trajectory in the onboard navigation computer and proposed algorithm 
outputs. The proposed algorithm contains an error model to subtract determin-
istic errors and an ideal gyro and accelerometer model to add stochastic noise to 
calculate the effect of stochastic noise on CEP using Monte Carlo simulations. The 
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general model and subsequent algorithms were developed in the MATLAB envi-
ronment. The results are demonstrated through simulation and real-flight trajec-
tory data with an illustration of the effect of the IMU noise parameter on CEP. This 
workflow is illustrated in Figure 1.

The article layout is organized as follows: Section  1 focuses on the introduc-
tion; Section 2 regards INS sensor calibration, stochastic simulation, and analysis; 
Section 3 focuses on strap-down algorithms and Monte Carlo simulation; Section 4 
describes the CEP algorithm; Section 5 regards experimental work and analysis; 
and Section 6 concludes the paper.

2  INS SENSOR CALIBRATION AND 
STOCHASTIC ANALYSIS

The main inertial sensor errors explored are predictable errors and unpredict-
able errors. Predictable (deterministic) errors are those that can be estimated and 
compensated for using a suitable calibration method, such as bias, scale factor, 
non-orthogonality errors, and gravity (g)-sensitive and non-g-sensitive drifts. 
Unpredictable (random) errors are correlated with sensor noise such as rate ran-
dom walk, quantization noise, and bias instability, which can be analyzed and esti-
mated using many techniques, among them the AVR technique which is adopted 
in this work.

2.1  IMU Calibration

An IMU is composed of three accelerometers and three gyroscopes. The follow-
ing subsections discuss the methodology used to calibrate the used gyros and accel-
erometers for deterministic errors.

2.1.1  Gyroscope Calibration

A mathematical gyro error model of deterministic error can be obtained by: 

W D K W D W D W D A D A D Axo p x x xi p zx z yx y x x x y x z/ /= + + + + + +( )0 1 2 3 (1)

where Wxo p/  represents the gyro output of axis X; Kx  represents the gyro scale 
factor; D x0  represents constant drift terms; Wxi p/  represents applied rate; Dyx  
and Dzx  represent installation error coefficients of gyro axes Y and Z with axis X, 

FIGURE 1 CEP calculation according to selected IMU errors
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respectively. Dx1, Dx2, and Dx3  represent drift coefficients of the X channel out-
put of the gyroscope related to apparent acceleration in directions X, Y, Z, respec-
tively; Wy  and Wz  denote the two components of angular rate respectively; and 
A A Ax y z, � , and  represent applied input acceleration on the X, Y, and Z axes. 

The gyro error model parameters were calibrated by making a relation between 
the sensor outputs with known inputs. The rate test alongside the multi-position 
static test is the most commonly utilized technique for calibration.

2.1.1.1  Scale Factor

Scale factor errors are analyzed by means of angular velocity calculations, in 
which the turntable includes a set of specific angular velocities for the under-test 
gyro axis. The scale factor is determined with the assumption that the gyroscope 
output has a linear relation to the input angular rate. Consequently, a constant 
scale factor is calculated as shown in Figure 2.

However, this is not accurate for gyros since gyro damping non-linearly changes 
with varying input rates. This non-linearity problem is addressed in Guo and Zhong 
(2013) in which the authors propose a technique to evaluate scale factor taking 
into consideration the nonlinearity problem. The proposed technique calculates 
the scale factor in both directions (+ve scale factor and –ve scale factor) for each 
input rate, as shown in Figure 3. It appears that the scale factors have a linear rela-
tionship with the input, except for low rates (1°/s to 10°/s) due to the non-linearity.

FIGURE 2 The scale factor’s trend of Axis Z with the angular input

FIGURE 3 The scale factor’s trend of Axis X with the input angular rates as positive and 
negative rates
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Consequently, using standard processing techniques has the downside of 
obtaining different scale factors according to each input rate (+ve, –ve) which, 
consequently, provides unreliable scale factor estimation due to a wide range of 
interpolation and extrapolation. So, this approach uses the least-squares estimation 
as shown in Figure 4, depicting the relationship between the scale factors of Axis 
X with respect to the inverse of input angular velocity [ ]− − −1 30 1�to�  ( / )° −s 1  and 
[ ]30 1 1�to � −  ( / )° −s 1. This has drawbacks due to neglecting the scale factors at low 
rates. To overcome this downside, a calibration approach is proposed by this work’s 
author and presented in Hegazy et al. (2020a).

This innovative approach addresses the non-linearity problem of scale factor due 
to the shift in gyro damping with different rates applied in which a weighted linear 
regression is utilized to fit the output-input gyro response. Where the normalized 
error at each applied rate is calculated as shown in Figure 5.

The weights are experimentally calculated as the normalized error inverse as 
follows:

	 H error ii = 1/ ( ) � (2)

where error(i) represents the scaled error rates by normalizing the error rates 
within a precise range [0, 1], and Hi represents the determined weight.

FIGURE 4 The least-squares curve for the regression of the scale factors

FIGURE 5 The error behavior between the measured and actual rate
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So, the scale factor calculated as: 

	 �� |K H i K Hx y z i ii
datapoint

i
datapoint

, , ( ) /= ∗
== ∑∑ 11

� (3)

where Kx y z, ,  is the single scale factor for the x, y, and z axes, and Ki is the scale 
factor for each rate.

2.1.1.2  Non-Orthogonality

Non-orthogonality errors occur when either of the sensor triad's axes deviates 
from reciprocal orthogonality, usually occurring during the triad's inertial sensor 
industrialization. There are many techniques to calculate the non-orthogonality 
error, such as the technique presented in Shin and El-Sheimy (2012), which pro-
poses a non-orthogonality estimation algorithm from the static position test. This 
algorithm has a downside, however, in that it takes the Earth’s rotation as a single 
parameter, which is a weak signal. Moreover, it neglected the effect of centripetal 
acceleration from the lateral coupling factor (non-orthogonality). 

In light of this problem, the work presented in Hegazy et al. (2020a) introduced 
an approach for the calculation of a pure non-orthogonal error by removing the 
irrelevant lateral coupling signal that is measured using a lateral accelerometer in 
position and rate tests. This irrelevant signal is directly proportional to the centrip-
etal acceleration and is caused by the rates applied. The exact non-orthogonality 
error between y and x gyro is determined as follows: 

	 D
L
K

A
Kyx

yxT

y

yxg

y
= −

0
� (4) 

where lyxT  is the lateral coupling between Axis Y with respect to Axis X; Ayxg  is the 
acceleration component in the y-axis, which identifies the gyroscope's g-dependent 
drift; and Ky  and K y0  denote the scale factor of Axis Y's gyroscope and accelerom-
eter, respectively.

For the sake of verifying the proposal's efficiency through a laboratory rate test, 
two error models are built from the classical approach presented in Guo and Zhong 
(2013) and in Shin and El-Sheimy (2012), for scale factor and non-orthogonality, 
respectively, and the proposed method. The turntable is utilized to apply different 
rates with the X-axis pointing up and the lateral Y-axis. The error of each error 
model with respect to the actual applied rate is depicted in Figure 6. 

FIGURE 6 The error of the classical calibration method and proposed method with respect 
to the actual input rate



HEGAZY et al.

As shown in Figure 6, the proposed calibration method has a smaller error in 
both clockwise and counter-clockwise rates than the classical method. Moreover, 
it can be inferred that the difference between the two methods increases with high 
applied rates, which indicates the efficiency of the proposed method for high rate 
navigation systems.

2.1.2  Accelerometer Calibration

The multi-position static test is usually used for accelerometer calibration. 
Aggarwal et al. (2008) suggest that it is possible to construct an error calibration 
model by installing an IMU on a leveled turntable and alternately aligning each axis 
up and down for various angle rotations and measuring the scale factor and bias fac-
tor. However, this approach does not quantify the error of non-orthogonality. The 
modified six-position approach is then used to measure the IMU's misalignment 
(non-orthogonality). Hegazy et al. (2020b) proposed a simple and more accurate 
calibration method that used an eight-position test to calculate all accelerometer 
error parameters without relying only on the direction of gravity acceleration. The 
position data is tabulated in Table 1.

2.1.2.1  Scale Factor

While the input axis (IA) is up and down, two values are determined from the X 
accelerometer measurements using the previously explained sequence of positions 
for the accelerometer in the sensor assembly X direction, as follows: 

•	 Rotate around the output axis (OA) from Position 2 and Position 4:

	 K A Ax x up x down1 1
2= −( ) /� �� � (5)

•	 Rotate around the pendulum axis (PA) from Position 5 and Position 7:

	 K A Ax x up x down1 2
2= −( ) /� �� � (6)

TABLE 1 
Accelerometer Eight-Position Test

X accelerometer

IA PA OA

1 West Up North

2 Up East North

3 East Down North

4 Down West North

5 Up South East

6 East South Down

7 Down South West

8 West South Up

Note: IA, PA, and OA denote input, pendulum, and output axes, respectively.
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•	 Then the scale factor is calculated from the average of these two values from 
Equation (5) and Equation (6):

	 K K Kx x x1 1 11 2
2= +( ) / � (7)

2.1.2.2  Bias

For the accelerometer in the X direction, four values are calculated from the mea-
surements of the X accelerometer using the previous explained series of positions 
while IA is up, east, down, and west as follows.

•	 Rotate around the OA from Positions 3 and 1 and Positions 2 and 4:

	 B A Ax x East x West0 1
2= +( ) /� � � (8)

	 B A Ax x up x down0 2
2= +( ) /� � � (9)

•	 Rotate around the PA from Positions 6 and 8 and Positions 5 and 7:

	 B A Ax x East x West0 3
2= +( ) /� � � (10)

	 B A Ax x up x down0 4
2= +( ) /� � � (11)

•	 Hence, the bias is calculated from the average of these four values from 
Equation (8) and Equation (11):

	 B B B B Bx x x x x0 0 0 0 01 2 3 4
4= + + +( ) / � (12)

2.1.2.3  Installation Error Coefficient

PA and OA misalignments are considered only because misalignments on 
the other IAs do not have a material impact on the accuracy of a single-axis 
accelerometer.

•	 Rotate around the OA from Positions 1 and 3:

	 K S S Kxz A West A East xx x
= −( ) /� � 2 1 � (13)

•	 Rotate around the PA from Positions 8 and 6:

	 K S S Kxy A West A East xx x
= −( ) /� � 2 1 � (14)

Deterministic errors are compensated for using the error model in the INS algo-
rithm after performing sensor calibration in the laboratory. However, stochastic 
noise, which affects INS output, is another cause of errors in INS sensors. As a 
result, accurate performance necessitates an investigation and analysis of these 
errors and their effects on the system, allowing an assessment of the output to 
choose the applicable sensors for any mission.
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2.2  IMU Stochastic Simulation and Analysis

Gyroscope and accelerometer noise modeling is required for navigation simula-
tion. To model such sensors, it is required to precisely study the noise characteris-
tics such as quantization noise (Q), rate random walk (K), bias instability (B), and 
angle random walk (N; Hegazy et al., 2020c). IMU modeling is also used to assess 
the performance of error estimation algorithms such as the Allan variance (AVR) 
by calculating the previously modeled stochastic noise coefficients and, hence, the 
error percentage is able to be determined.

2.2.1  IMU Simulation

IMU simulation of stochastic noise is achieved using the MATLAB IMU 
Sensor System Object™. The IMU Sensor Object includes an idealized gyroscope 
and accelerometer object that is defined using certain parameters. First, using 
the noise-free default parameters for the gyro and accelerometer models, ideal 
sensor measurements are simulated. Second, the IMU's parameters vary inde-
pendently, since each parameter reflects a certain form of noise. The values of 
each parameter are determined with respect to the tactical grade sensor's speci-
fication range.

The IMU simulation with different stochastic noise parameters was proposed 
by this work's author and presented in Hegazy et al. (2020c). In brief, an example 
is presented here, such as how quantization noise (Q) has been introduced as a 
consequence of converting an analog signal to a digital signal. This is due to vari-
ations in the actual amplitudes of the points measured and the resolution of the 
analog-digital converter. The Q is generated as a white additive noise uniformly 
distributed within its bandwidth, and the simulation is achieved using the resolu-
tion parameter in gyro parameters given by the unit (rad/s)/LSB, which calculates 
the quantum step size. Figure 7 depicts a simulation in which the quantization 
error is measured as: 

	 e W Wq O p i p= −/ / � (15)

where WO p/  denotes gyro output (quantization data) and Wi p/  denotes angular 
velocity input.

Angle random walk (N) simulation is achieved using the noise density param-
eter, which is the amount of white noise in the sensor measurement; bias 

FIGURE 7 Gyroscope input sinusoidal data and quantization data
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instability (B) is performed using the bias instability parameter representing the 
amount of pink or flicker noise in the sensor measurement; and the rate random 
walk (K) is simulated using the random walk parameter, which represents the 
amount of Brownian noise in the sensor measurement.

2.2.2  IMU Stochastic Analysis

The AVR technique is used to categorize various sources of noise found in 
measurements of inertial sensors. In this work, AVR is implemented and used in 
addition to the usage of AVR's built-in MATLAB function. Validation of the AVR 
algorithm was performed by comparing the simulated input (added) noise to the 
estimated noise parameters and then calculating the error percentage.

The Allan variance is plotted in a log-log graph as the standard deviation ver-
sus the cluster time τ to estimate the IMU Crossbow 440 (Crossbow, 2010) noise 
parameters at different sampling frequencies after calibration and the removal of 
deterministic errors. Figure 8 shows the estimated noise parameters of Gyro X for 
four hours of data collected at a sampling frequency of 50 Hz. Gyro noise parame-
ters at a sampling frequency of 50 Hz are tabulated in Table 2. The noise parame-
ters of accelerometers are obtained and tabulated in Table 3.

TABLE 2 
Noise Parameter for Memsic-440 with Sampling Frequency of 50 Hz

Wx Wy Wz

N50 0.0056 0.0057 0.0061

K50 7.55 ∗ 10–5 4.41 ∗ 10–5 0.0002497

B50 0.0023 0.0031 0.0033

TABLE 3 
Noise Parameter for Memsic-440 with Sampling Frequency of 50 Hz

Ax Ay Az

N50 1.72 ∗ 10–4 1.35 ∗ 10–4 9.5 ∗ 10–5

B50 1.72 ∗ 10–4 2.10 ∗ 10–5 4.12 ∗ 10–5

FIGURE 8 The AVR analysis for gyro (IMU Crossbow 440) with sampling frequency of 
50 Hz
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3  MATHEMATICAL MODEL AND MATLAB 
SIMULATION OF STRAP-DOWN INERTIAL  
NAVIGATION SYSTEM

In a strap-down INS (SINS) system, the accelerometers and gyroscopes are 
attached to the vehicle body and don’t mechanically move. A mathematical 
approach is used to keep track of the IMU orientation and transfer the measure-
ments from the body coordinate frame to the navigation coordinate frame to over-
come the drawbacks faced by the gimbaled system and, most significantly, decrease 
the system's scale, price, energy consumption, and complexity (Yin et al., 2013). 
The aim of the simulation of the trajectory was to produce data according to the 
designed real trajectory.

The mechanization of the wander azimuth is used to avoid all Earth navigation 
challenges (i.e., angular rotation rates and singularity issues; Jwo et al., 2014). The 
ENU-frame is selected as the frame for navigation. Figure 9 displays the whole 
SINS process principle in the wander azimuth frame mechanization. 

In this mechanization, the wander azimuth frame is defined as (x y zp p p), in 
which the xp-axis points in the east direction; the yp-axis points in the north direc-
tion with an azimuth angle α; and the zp-axis points in the up direction. We define 
the Earth frame as (x y ze e e ) in which ye points to the North Pole, ze  lies in the 
equatorial plane through the Greenwich meridian, and xe  forms the right-hand 
coordinate frame. We define the navigation frame as (x y zn n n) in which xn points 
in the east direction, yn points in the north direction, and zn  points in the up direc-
tion. Lastly, we define the body frame as (x y zb b b) in which xb  points to right-wing, 
yb  is the longitudinal axis, and zb points to the vertical (“up”) direction. 

In order to define the orientation of the local-level frame in the wander azimuth 
system, a set of direction cosine matrices (DCMs) relating to Earth-fixed axes are 
utilized. It’s used to define the transformation matrix Cep  that is obtained by a series 
of rotations as shown in Figure 10.

If we define the platform frame as a wander azimuth frame or computational 
frame, it means that C Ce

p
e
c= . Note that the platform frame (w-frame) is the same as 

the navigation frame (n-frame) when the wander azimuth angle equals zero.
The quaternion attitude is widely used in INS computation and is used to com-

pute an equivalent DCM or transform the measured specific force vector into the 
chosen reference frame (Zhang et al., 2012).

First, the real trajectory (nominal trajectory) of the missile in the w-frame is set. 
Second, the ideal output of the IMU sensors is obtained from the nominal trajectory. 

FIGURE 9 Strap-down computation cycles
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The sensor simulation data can be acquired by adding noise (Crossbow IMU noise 
parameters) to the nominal data. Finally, we take the simulated sensor data with 
noise to extract an oblique simulated trajectory with stochastic noise parameters as 
shown in Figure 11, Figure 12, and Figure 13.

Figure 11 and Figure 12 show the sensor data output of the nominal trajectory 
and the same data with added Crossbow noise parameters. The error between the 
nominal trajectory and the simulated trajectory corrupted with noise is shown in 
Figure 13. Calculation of the effect of each type of noise parameter on CEP requires 
a useful statistical tool for analyzing uncertain scenarios for noise parameters; such 
a method is called a Monte Carlo simulation (MCS).

FIGURE 10 Transformation cycle of reference frames for INS

FIGURE 11 Accelerometer X output data from nominal trajectory versus data corrupted 
with noise

FIGURE 12 Gyroscope X output data from nominal trajectory versus data corrupted 
with noise



HEGAZY et al.

4  MONTE CARLO SIMULATION

The MCS method is a common name for a wide variety of stochastic techniques. 
MCS is a very useful statistical tool for analyzing uncertain scenarios and provides 
a deep analysis of multiple scenarios. Information gathered from random samples 
is used to estimate the distributions and obtain statistical properties for different 
situations (Smits et al., 2018).

Monte Carlo simulation is a methodology used to research how a model 
responds to inputs that are randomly generated. Typically, it requires the following 
procedure:

1.	 Generate L inputs randomly (noise parameters).
2.	 For each of the L inputs, run a simulation. On a computerized model of the 

system being studied, simulations would be performed (according to the IMU 
model).

3.	 Accumulate and evaluate the results of the simulation. Popular measurements 
include mean value, distribution, and the minimum or maximum value of the 
output.

The sample distributions of the mean and the variance are close to normal dis-
tributions, as depicted in Figure 14 which shows the rate random walk sample 
distribution.

FIGURE 13 The error between nominal trajectory east and north distance and the trajectory 
corrupted with noise

FIGURE 14 Normal Gaussian distribution of rate random walk



HEGAZY et al.

5  CIRCULAR ERROR PROBABILITY (CEP) ALGORITHM

The CEP circle is a statistical representation of the accuracy of a military strike; 
this index is proportional to the radius of a circle whose middle is at the target 
spot, and 50 percent of hits reach within this circle. The normal circle distribution 
is used to measure the CEP (Liu et al., 2018). Similar to statistical and probability 
analysis numbers, CEP fulfills: 

	 ρ( ) .x y R2 2
50
2 0 5+ ≤ = � (16)

where: 

•	 x  denotes the horizontal range miss distance;
•	 y  denotes the vertical range miss distance;
•	 R50  denotes CEP confidence levels; and
•	 ρ  denotes correlation coefficient.

The related bi-normal density distribution function is:

	 F x y dx dy
cep

( , )� .∫∫ = 0 5 � (17)
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where σ σ µ µx y x y, , ,� � �and� � represent the standard deviations and the means of hor-
izontal and vertical range miss distance, and ρ is the correlation coefficient of X 
and Y. Thus, the CEP is determined by this integral equation.

Ballistic missile engineering has provided conclusive evidence that it is impossi-
ble for the horizontal miss distance to have any effect on the vertical miss distance 
and vice-versa. So, it is safe to assume that ρ = 0 (Didonato, 2007).

Many techniques can be used to resolve this equation and calculate the boundary 
of CEP, where the CEP is a circle considering the aiming point as its center and its 
diameter is the approximate value of the CEP. To solve this problem, a numerical 
method must be used.

The ideal method of approximating CEP using numerical integration of its bivar-
iate normal density function is an infinite series expansion. The corresponding 
mathematical model for calculating the CEP is based on the normal modified dis-
tribution for the missile assuming the coordinate system is centered on the target 
with (0,0), and the deviation of long-range and cross-range is denoted as X and 
Y, respectively. The double integration for the joint probability density function 
is taken, and the boundary of this integration is the set of coordinates for a circle. 
This circle is taken as the CEP (Didonato, 2007). The equation for CEP determina-
tion is given by Equation (18) with substitute p�= 0
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A numerical method was used to solve this problem. We chose Simpson's rule 
because it gives the minimum error during the evaluation process. Simpson’s rule 
is based on approximating curves with parabolas instead of line segments. The 
shaded area under the parabola is given by:

	 A h Y Y Y0 0 1 23
4= + +( ) � (20)

Applying this formula successively along a continuous curve Y f x= ( ) from 
x a=  to x b=  leads to an estimate of ( )

b

a
f x∫  that is generally more accurate than 

the usual trapezoidal method.
By transforming Equation (19) to polar coordinates, with x r cos= θ  and 

x r sin= θ  yields: 
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and using elementary trigonometric identities:
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where:
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Using the fact that: 

	 I x x cos dO ( ) exp ( )= ∫
1

0π
θ θ

π
� (23)

where I xO ( ) represents a modified Bessel function of the first kind with a zero-order 
consequently: 
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So:

	 cep R y= ∗σ � (25)

6  EXPERIMENTAL WORK AND ANALYSIS

The experimental work structure is given in Figure 15. As shown in the figure, 
the gyroscope and accelerometer data are obtained from a nominal trajectory. First, 
the gyro and accelerometer data are corrupted individually and in combination 
with Crossbow stochastic noise parameters using an IMU modeling algorithm. 
For each noise parameter, a Monte Carlo simulation was used to produce 2,500 
IMU data to produce 2,500 different trajectories (Liu et al., 2018). Finally, using 
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the strap-down algorithm, the IMU data with its initial parameters are processed 
to obtain the system's attitude, velocity, and position values. These position results 
yield 2,500 impact points, which are then used to calculate the CEP based on the 
deviation of each position in relation to the nominal trajectory position.

The CEP calculation is shown in Figure 16. As shown in the figure, the Crossbow 
IMU noise parameters caused the missile's final impact point to be outside the 
required CEP (by 150 m in this case).

So, a range for each noise type was selected in the scope of high tactical grade 
MEMS, simulated with gyro and accelerometer data to put hands on the permissi-
ble error ranges that lead to acceptable CEP values.

This is done for each noise individually and combined in the form of cases. 
Three such cases are mentioned as follows: Case 1 features the gyro angle random 
walk noise (N) parameter; Case 2 features the accelerometer's N noise parame-
ter; and Case 3 features the combined accelerometer and gyro N noise parameters. 
The results for these cases are illustrated in Figure 17, Figure 18, and Figure 19, 
respectively.

Consequently, the gyro and accelerometer noise parameters were also selected 
in the scope of high tactical grade MEMS and simulated with gyro and accelerom-
eter data to put hands on the permissible error ranges that lead to acceptable CEP 
values. These parameters are listed in Table 4, and the CEP is shown in Figure 20.

FIGURE 15 Simulation cycle 

FIGURE 16 CEP with Crossbow noise parameters
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Case 1 CEP with Gyroscope N Parameter

FIGURE 17 CEP with gyro angle random walk noise

Case 2 CEP with Accelerometer N Parameter

FIGURE 18 CEP with accelerometer angle random walk noise

Case 3 CEP with ACC and Gyro N Parameter

FIGURE 19 CEP N gyro and accelerometer



HEGAZY et al.

7  CONCLUSION

The CEP circle is a statistical representation of the accuracy of a weapon sys-
tem, so the paper has presented a method for the improvement of CEP through 
precise identification, calibration, and compensation of sensor deterministic error 
coefficients. 

Precise modeling and simulation of different noise parameters were discussed, 
and the Allan variance algorithm was performed and validated. Moreover, the 
MCS method was introduced as a statistical tool for analyzing uncertain scenarios 
and providing a deep analysis of different scenarios for stochastic noise parame-
ters. Also, a navigation and CEP algorithm was built for measuring the CEP, which 
indicates the ballistic missile accuracy, and estimates the effect of each stochastic 
noise parameter on CEP to choose sensors that are adapted to various applications.

TABLE 4 
Selection Noise Parameters

Noise parameter Mean STD

Acc Q (m
s

LSB2 / ) 0.5566 0.2002616

Acc N (m
s

Hz2 / ) 0.0538 0.0261

Acc B (m
s2 ) 0.0551 0.0256

Gyro Q ( rads LSB/ ) 5.508 ∗ 10–4 2.562 ∗ 10–4

Gyro N ( rads Hz/ ) 5.132 ∗ 10–5 2.872 ∗ 10–5

Gyro B ( rads ) 4.981 ∗ 10–5 2.832 ∗ 10–5

Gyro K ( rads Hz∗ ) 5.007 ∗ 10–7 2.876 ∗ 10–7

FIGURE 20 CEP for all IMU stochastic noise
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