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O R I G I N A L  A R T I C L E

AGPC-SLAM: Absolute Ground Plane Constrained  
3D Lidar SLAM

Weisong Wen  Li-Ta Hsu

1  INTRODUCTION

Accurate mapping and localization (Dill & Uijt de Haag, 2016) are significant for 
autonomous systems such as autonomous driving vehicles (ADVs; Huang et al., 
2019) and indoor mobile robotics (Hess et al., 2016). Great efforts have been devoted 
to achieving accurate simultaneous localization and mapping (SLAM) using 3D 
light detection and ranging (lidar; Hess et al., 2016) sensors due to their robustness 
compared with the vision-based SLAM methods (Qin et al., 2018). Vision-based 
SLAM based on a passive sensor like a camera can be sensitive to illumination and 
viewpoint changes. Conversely, an active sensor like 3D lidar can provide distance 
measurements for surrounding environments which are invariant to illumination. 
The outstanding robustness and precision make 3D lidar an indispensable sensor 
for large-scale mapping and localization.

3D lidar-based SLAM (Koide et al., 2019; Lin & Zhang, 2020; Shan & Englot, 
2018; Wen et al., 2020; Zhang & Singh, 2014; Zhao et al., 2019) has been extensively 
studied over past decades. In general, the 3D lidar SLAM algorithm can be grace-
fully divided into two parts, the front-end (Grisetti et al., 2010) and the back-end 
(Grisetti et al., 2010). The front-end focuses on point cloud registration (Pang et al., 
2019; Saarinen et al., 2013). The back-end integrates multiple constraints, such as 
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Abstract
3D lidar-based simultaneous localization and mapping (SLAM) is a 
well-recognized solution for mapping and localization applications. However, 
the typical 3D lidar sensor (e.g., Velodyne HDL-32E) only provides a very limited 
field of view vertically. As a result, the vertical accuracy of pose estimation suf-
fers. This paper aims to alleviate this problem by detecting the absolute ground 
plane to constrain vertical pose estimation. Different from the conventional rel-
ative plane constraint, this paper employs the absolute plane distance to refine 
the position in the z-axis and the norm vector of the ground plane to constrain 
the attitude drift. Finally, relative positioning from lidar odometry, constraint 
from ground plane detection, and loop closure are integrated under a proposed 
factor graph-based 3D lidar SLAM framework (AGPC-SLAM). The effectiveness 
is verified using several data sets collected in Hong Kong.
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positioning from the front-end, positioning from the global navigation satellite sys-
tem (GNSS; Dow et al., 2009; Shetty & Gao, 2019), and loop closure (Magnusson 
et al., 2009). 

The accuracy of point cloud registration, which is the major part of the front-end, 
dominates the performance of 3D lidar SLAM. Therefore, numerous works have 
been studied to improve the point cloud registration process, such as the itera-
tive closest point (ICP; Kuramachi et al., 2015), the normal distribution transform 
(NDT; Magnusson et al., 2007), and lidar odometry and mapping (LOAM; Zhang & 
Singh, 2017). The LOAM algorithm obtained top accuracy in the KITTI data set 
odometry benchmark (Geiger et al., 2012) until December 2020 due to its feature 
extraction and impressive data association structure. Unlike the point-wise regis-
tration methods (e.g., ICP and NDT), the LOAM algorithm extracts meaningful 
edge and planar features from raw 3D point clouds, leading to lower computational 
load and decreased sensitivity to the local minimums. Instead of simply relying 
on finding the transformation between consecutive frames of point clouds (Low, 
2004; Pang et al., 2019; Saarinen et al., 2013) via scan-to-scan manner, the LOAM 
algorithm decouples the registration problem into two parts, coarse odometry and 
fine mapping. 

First, the coarse odometry conducts scan-to-scan matching of the edge and pla-
nar features, respectively, to estimate a coarse relative transformation. Second, the 
innovative fine-mapping process is conducted to map the current frame of point 
clouds to the continuously generated global map (scan-to-map) based on an ini-
tial guess derived by the coarse odometry. The mapping process helps to mitigate 
the accumulated relative drift from lidar odometry in the first step. In short, the 
LOAM algorithm obtains better performance compared with the listed ICP and 
NDT. However, due to the limited field of view (FOV, typically +10° ~ − 30° verti-
cally, 0~360° horizontally) for typical 3D lidar, the available features in the vertical 
direction are significantly fewer than those in the horizontal direction. As a result, 
inevitably, the 3D lidar SLAM can drift in the vertical direction. To find out the 
major challenge of 3D lidar SLAM in urban canyons, we extensively evaluated the 
performance of 3D lidar SLAM in diverse urban canyons (Wen et al., 2018). The 
results showed that the vertical drift due to a limited FOV of 3D lidar was one of 
the major problems to be solved for the application of 3D lidar SLAM in urban 
canyons.

According to our evaluations (Wen et al., 2018), in numerous urban scenarios, it 
was shown that the ground surface is usually available for ground vehicles installed 
with 3D lidar. Furthermore, the 3D lidar scanning could provide sufficient ground 
points even in dense traffic scenes that make ground surface detection possible. 
Inspired by this remarkable feature, this paper proposes to detect and apply the 
Absolute Ground Plane Constraint (AGPC) to constrain the state of the vehicle to 
further mitigate the vertical drift. In other words, the AGPC is employed to improve 
the geometry of the constraint. To mitigate the overall drift over time, the loop 
closure detection method is applied to exploit the loop closure constraint. Finally, 
a factor graph-based 3D lidar SLAM framework (AGPC-SLAM) is proposed to 
fuse relative positioning from LiDAR odometry, constraints from AGPC, and loop 
closure.

The major contributions of this paper are listed as follows:

•	 We propose to exploit the AGPC to mitigate the vertical drift of 3D LiDAR 
SLAM. 

•	 We propose a general 3D SLAM framework (AGPC-SLAM) to integrate the 
constraint of relative positioning from lidar odometry, the AGPC, and the 
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constraint from the loop closure. The proposed AGPC-SLAM is a general 
framework that can easily fuse additional information from sensors such as 
the GNSS receiver and magnetometers.

•	 The proposed method is validated using two challenging large-scale data sets 
collected in Hong Kong. We believe that the proposed method can have a 
positive impact on both the academic and industrial fields.

The remainder of the paper is structured as follows. The related work is reviewed 
in Section 2. Then, the overview of the proposed method is introduced in Section 3. 
The detail of the methodology is introduced in Section 4 before the experimental 
evaluation presented in Section 5. The conclusion and future work are given in 
Section 6.

2  RELATED WORK

To handle this problem, the LeGO-LOAM (Shan & Englot, 2018) method pro-
poses optimizing z-axis related states based on planar features. The drift in the 
z-axis and pitch angle is slightly mitigated compared with the LOAM algorithm 
(Zhang & Singh, 2017). However, as the vertical states are estimated relatively con-
cerning the planar points, the drifted error can still accumulate over time with the 
vertical positioning error reaching more than 10 meters (Shan & Englot, 2018) in 
the evaluated data set. 

Recently, the authors extended their LeGO-LOAM to lidar/inertial (Shan et al., 
2020) integration to mitigate the overall drift where the high-frequency pose esti-
mation from inertial measurement unit (IMU) pre-integration was used as the ini-
tial guess of the mapping process. Meanwhile, the motion distortion was handled 
with the help of the IMU pre-integration. However, improvement relied on the 
cost of the IMU. In other words, the additional IMU could not essentially solve the 
problem of weak constraint in the vertical direction.

The recent work of the team from the Hong Kong University of Science and 
Technology (HKUST; Ye et al., 2019) proposed to tightly integrate lidar and IMUs 
to mitigate the overall drift. The tight integration scheme could effectively improve 
the geometry of the constraints arising from the raw point clouds. With the help 
of inertial measurements, the overall accuracy was improved compared to stand-
alone lidar SLAM. According to their evaluation, the vertical drift was improved 
compared with the LOAM. However, the performance relied on the quality of 
the applied IMU, and the tightly coupled integration process introduced a signifi-
cantly higher computational load. Meanwhile, the problem of vertical drift was 
still unsolved. Instead of simply basing their work on relative positioning, the work 
(Zheng et al., 2019) utilized the Global Positioning System (GPS) to mitigate the 
drift of lidar SLAM. Nevertheless, the performance of GPS solutions relies heavily 
on environmental conditions, and the high-rise buildings in urban canyons signifi-
cantly degrade their performance leading to large positioning errors (Wen et al., 
2019a, 2019b). Similar works were also done in Chang et al. (2020) and He et al. 
(2020).

The work by Lin and Zhang (2020) included loop closure into LOAM to fur-
ther reduce drift. Unfortunately, the loop closure was difficult to detect due to 
the distinct vertical drift. Interestingly, the work of Zuo et al. (2019) made use of 
both camera and lidar to derive improved odometry accuracy. The camera could 
help the standalone lidar odometry to survive in a sparse area because the camera 
could capture texture information. Despite this, our previous work (Bai et al., 2020) 
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showed that the visual-based positioning shared a similar drawback of being sen-
sitive to dynamic objects in urban canyons. In short, the existing work tends to 
employ additional sensors to improve the overall accuracy of 3D lidar SLAM, 
which can only partially reduce the speed of the vertical drift (Shan et al., 2020; Ye 
et al., 2019) or rely on the GNSS positioning accuracy (Chang et al., 2020; He et al., 
2020; Zheng et al., 2019). 

3  OVERVIEW OF THE PROPOSED METHOD

3.1  Notations and Coordinates

Matrices are denoted as uppercase bold letters. Vectors are denoted as lowercase 
bold letters. Variable scalars are denoted as lowercase italic letters. Constant scalars 
are denoted as lowercase letters. To make the proposed framework clearer, the fol-
lowing notations are defined and followed by the rest of this paper. 

•	 The local world frame (W{ , , })X Y ZW W W  is fixed to the world at the start 
point of the vehicle, which can also be fixed to the GNSS absolute frame when 
GNSS is available. 

•	 The local base frame (L{ , , })X Y ZL L L  originates at the starting point of the 
local lidar odometry. 

•	 The vehicle body frame (B{ , , })X Y ZB B B  is fixed at the center of the 3D lidar 
sensor.

The considered coordinate system is shown in Figure 1. TB
L  denotes the trans-

formation from the body frame to the local base frame, encoding the information 
of the lidar odometry during the experiment. The transformation TL

W  denotes the 
transformation between the local base frame and the local world frame, which 
is the drift compensation estimated by the additional constraints (e.g., the loop 
closure constraints and the AGPC constraint). In other words, the local-based 

FIGURE 1 Overview of the applied coordinate systems 
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frame is fixed on the local world frame if there are no ground and loop closure 
constraints. Note that the definition of the coordinates is referred to in the work of 
Mascaro et al. (2018) which is commonly used in the SLAM field with loop closure 
constraint. 

Therefore, the state of the ego-vehicle at epoch k is encoded by the transforma-
tion from the body frame to the local world frame, TB k

W
, ,  as follows:

	
T p q
T
B k
W

k
W

k
W T

B k
W

L k
W

B k
L

,

, , ,

( , )=

=With T T
� (1)

where the pk
W  represents the position and the qk

W  represents the orientation in the 
local world frame with quaternion form.

3.2  Overview of the Proposed AGPC-SLAM

The overview of the proposed AGPC-SLAM framework is shown in Figure 2. 
The input of the AGPC-SLAM is the 3D lidar point cloud ( Sk,  the raw point cloud 
at epoch k). The outputs of the proposed AGPC-SLAM are the vehicular trajectory 
and the consistent point cloud map. 

The AGPC-SLAM framework can be divided into two major parts, the front-end 
(the light green shaded boxes in Figure 2), and the back-end (the light blue shaded 
boxes in Figure 2). The light red shaded box denotes the AGPC proposed in this 
paper. Finally, the constraints from the front-end and the AGPC are integrated 
using factor graph optimization in the back-end. The details of the major parts are 
presented in the following sections.

FIGURE 2 Overview of the proposed AGPC-SLAM; the input is the 3D point cloud from 3D 
lidar. The outputs include the points map and pose estimation of vehicular trajectory.
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4  METHODOLOGY

4.1  Front-End

The performance of the front-end is dominated by lidar odometry whose objec-
tive is to make the best use of the consecutive point clouds to estimate the relative 
motion. Lidar odometry is implemented based on the LOAM algorithm proposed 
in Zhang and Singh (2017) in which three steps are included for lidar odometry: 
feature extraction, coarse odometry, and fine mapping. Although lidar odometry, 
itself, is not a contribution of this paper, we still briefly present the formulation for 
the sake of completeness.

4.1.1  Feature Extraction

Different from the point-wise registration method (e.g., NDT and ICP), the fea-
ture definition and extraction proposed in Zhang and Singh (2014) explores the rep-
resentative primitives before the data association process. The input of the feature 
extraction is the P P P P Pk k k k i k N{ }, , , , � ., , , ,1 2   The variable N denotes the number 
of points inside a frame of point cloud. A point is classified as a planar or an edge 
point depending on the roughness of its local region. The roughness of the local 
region is determined as follows (Zhang & Singh, 2017):

	 ck i j j i k j k i
k i

, | | || || , , ,
,
|| ( ) ||= ∑ −

⋅ ∈ ≠
1

S P S P P � (2)

where ck i,  represents the roughness of the point. The variable S denotes the small 
local region near the given point Pk i,  and, usually, five points are involved in the 
local region. Pk j,  indicates the point belonging to the local region S. If the calcu-
lated roughness is larger than a pre-determined threshold tc ,  the point is classi-
fied as an edge point. The point with roughness that is smaller than the threshold 
is classified as a planar point. The output of the feature extraction process is the 
feature set F F Fk k

p
k
E{ },,  where the Fk

p  and FkE  represent the feature set contain-
ing all the planar and edge points, respectively. Meanwhile, the authors (Zhang & 
Singh, 2017) also proposed careful feature point selection strategies to avoid unre-
liable points. For example, points that are on the boundary of the occluded regions 
should not be selected as those points can be unobservable in the coming epochs. 
Meanwhile, the points that lie on local planar surfaces that are roughly parallel to 
the lidar beams should not be selected as well. We strictly follow these strategies to 
select feature points from the raw 3D point clouds. 

4.1.2  Coarse Odometry

Based on the features extracted in the last section, coarse odometry is per-
formed to efficiently estimate the relative motion between consecutive frames of 
point clouds. The relative motion is calculated by conducting point-to-edge and 
point-to-plane scan-matching. In short, the objective is to find the correspond-
ing features for points in F F Fk k

p
k
E{ },  from the feature points set F F Fk k

p
k
E

− − −1 1 1{ }.,  
Detailed steps can be found in Zhang and Singh (2017). We formulated the point 
cloud registration process as follows using: 

	 m F F F F F Fk B
k B

k k
p

k
E

k k
p

k
EPCR− − − −=1 1 1 1,

, ( , , , ){ } { } � (3)
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where PCR denotes the point cloud registration function. The output of the point 
cloud registration process is the coarse relative motion, denoted by mk B

k B
−1,
, .  Note 

that mk B
k B
−1,
,  is the motion between the frame k −1  and k. Since the mk B

k B
−1,
,  is esti-

mated based on scan-to-scan matching, the efficiency is guaranteed. Meanwhile, 
the coarse motion estimation is applied as the initial guess for the fine mapping in 
the next section.

4.1.3  Fine Mapping 

To refine the relative motion estimation, the fine-mapping process is applied 
to refine the mk B

k B
−1,
, .  The principle of the mapping process is that the extracted 

F F Fk k
p

k
E{ },  is mapped onto the incrementally built map to refine the motion 

estimate mk B
k B
−1,
, .  Note that the map here is generated incrementally. This was 

one of the major contributions of the work by Zhang and Singh (2017) that pro-
vided impressive performance locally. The output of the mapping process is Tk B

L
,� .  

However, the mapping process is conducted at a low frequency circle due to com-
putational cost. Therefore, the local transform integration is applied to integrate 
the high frequency but rough relative motion estimate ( ),

,mk B
k B
−1  and the low fre-

quency but locally accurate motion estimation ( ).,�Tk B
L  Details of the mapping pro-

cess can be found in Zhang and Singh (2014).

4.2  AGPC Detection

This section presents the detection of the AGPC based on the raw 3D point clouds 
from 3D lidar. For a given epoch k, the clouds Pk  usually involve abundant points 
scanned from the ground surface for ground vehicles installed with 3D lidar. For a 
typical 3D lidar sensor installed on the roof of a vehicle, the sensor height relative 
to the ground surface is approximately known. Numerous works (Choi et al., 2014; 
Yang & Förstner, 2010) were done to extract the ground plane based on the raw 3D 
point clouds. The Random Sample Consensus (RANSAC) is one of the most effi-
cient algorithms for detecting the ground plane parameters from the raw 3D point 
clouds. In this paper, we define the model parameters of a ground plane as: a) the 
Euclidean distance from the center of 3D lidar to the detected ground surface; and 
b) the norm vector of the surface as follows:

	 Gk k
x

k
y

k
z

k
TG G G d= [ ] � (4)

where the ( ,� , )G G Gk
x

k
y

k
z  represents the norm vector and dk  denotes Euclidean dis-

tance. Therefore, the ground plane detection problem using the RANSAC can be 
defined as follows:

	 G G PPk k k ik i k
f*

,,
( , )= ∑ ∈argmin  � (5)

where Gk
*  denotes the optimal parameters of the ground plane. The variable 

k  denotes a set of the given points on the ground surface. The operator f ( )∗  is 
employed to evaluate the distance between a given point Pk i,  and the plane Gk .  
Given a point Pk i k i k i k ix y z, , , ,{ , , }=  and ground plane Gk ,  the distance can be cal-
culated as follows:

	 f G x G y G z dk k i k
x

k i k
y

k i k
z

k i k( , ), , , ,G P = + + − � (6)
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where f k k i( , ),G P  represents the Euclidean distance. The detail of the plane detec-
tion is given in the following Algorithm 1. Note that Pk  is filtered before being 
input to the algorithm by only keeping the points with z-axis values ranging from 
−2.5 to 2.5 meters. The parameters required in Algorithm 1 include the minimum 
number of points ( )tnp  required to detect the ground plane, the maximum number 
of iterations ( )titer  allowed in the RANSAC, a threshold value ( )tdis  of distance 
for judging whether a point fits the ground plane, and a threshold of the number of 
points ( )ta  belonging to the close data indicating that the estimated ground plane 
model fits well to the points.

The ground detection results based on Algorithm 1 are illustrated in Figure 3 
which shows the ground detection with data collected from typical intersections 
and roadways. Figure 3(a) shows ground detection results in an intersection 
case. The white points denote the non-ground points and the red points denote 
the ground points. For the roadway case in Figure 3(b) with the dynamic vehicles 
located on both sides, the ground points in the front and back of the ego-vehicle are 
also effectively detected and annotated with red points. 

4.3  Back-End: Loop Closure Detection

Loop closure (Magnusson et al., 2009) is an effective approach for reducing accu-
mulated error over time. The principle of loop closure is to detect the frames of the 

ALGORITHM 1 
Ground Plane Detection Using RANSAC

Input: �Point clouds Pk 
Output: �Ground plane parameters Gk

*

Step 1: �Initialize t ← 0,  Gk ←  0 0 1 2, , ,  and Et ←∞.
Step 2: �while t > titer

•	 Step 2.1: Select Tnp points randomly from Pk getting Qk. Fit the Gk using the selected 
points (Qk). Initialize an empty set Ak.

•	 Step 2.2: For every point Rk,i inside a set Rk = {Pk − Qk}, evaluate the distance (ek,i) 
between the Rk,i and the plane Gk. If ek,i < tdis, add Rk,i to Ak.

•	 Step 2.3: If the number of points inside Ak is larger than ta, fit the parameters Gk again 
based on the Qk and Ak. Calculate the fitting error Et based on Equation (6). If Et < Et–1, 
assign G Gk k

* .=
Step 3: Finish the algorithm and the ground plane parameters are estimated as Gk

*

FIGURE 3 Illustration of ground detection using Algorithm 1 (the white points represent 
the raw point cloud from 3D lidar and the red points denote the detected ground point cloud).
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point cloud with a large percentage of overlap. The accumulated driving distance is 
denoted as Dk  from the first epoch to the current one. The loop closure detection 
is performed only when the Dk  exceeds a threshold tD  that is tuned heuristically. 
Then, the loop closure is checked by matching the current keyframe and historical 
keyframes using the NDT in Magnusson et al. (2009). Loop closure is found when 
the fitness condition (Magnusson et al., 2009) is smaller than a given threshold tF .  
The output of the loop closure is the relative constraint between the current frame 
and the historical keyframe as follows:

	 T p qi j
loop

i j
loop

i j
loop T

, , ,( , )= � (7)

where Ti j
loop
,  denotes the transformation between the two keyframes corresponding 

to the detected loop closure, frame i and j. The pi j
loop
,  value denotes translation and 

qi j
loop
,  represents the rotation in quaternion form.

4.4  Back-End: Factor Graph-Based Optimization

This section presents the factor graph construction based on the previously 
derived constraints and optimization. To effectively integrate measurements 
from lidar odometry (Section  4.1), APGC detection (Section  4.2), and loop clo-
sure (Section  4.3), we made use of the state-of-the-art factor graph (Indelman 
et al., 2012) to formulate sensor fusion as a non-linear optimization problem. 
Conventional filtering-based sensor fusion such as the extended Kalman filter and 
its variant (Li et al., 2015) which exploits the first-order Taylor expansion only 
once prone to get into sub-optimal solutions. The major advantages of the fac-
tor graph are the re-linearization and iteration which can enable the optimized 
states to approach the optimal iteratively. The graph structure of the proposed 
AGPC-SLAM is shown in Figure 4, which lists three kinds of constraints and 
ego-vehicle states. Note that the state of the ego-vehicle at epoch k is represented 
by the TB k

W
,  based on Equation (1), which encodes the transformation between the 

body frame and the local world frame.

FIGURE 4 Graph structure of the proposed AGPC-SLAM 
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Following Indelman et al. (2012), the objective of factor graph optimization is 
to minimize the error function between the observations and the states. The error 
function for lidar-odometry-derived relative measurements are expressed as:

	 ( ) ( ) 22 1 1
, 1 , , 1 ,LiDAR LiDARk k

LiDAR W W L L
k B k B k B k B k

− −
− −=e T TT T

Σ Σ
� (8)

where ekLiDAR  represents the error function for the relative motion between node 
k and k +1  for lidar odometry (front-end). LiDAR

kΣ  denotes the information matrix 
of the error function which is tuned experimentally. TB k

W
,  and TB k

W
, −1  denote the 

states at epoch k and k −1. TB k
L
,  represents the motion which is derived from lidar 

odometry in Section 4.1. The operator   is the minus operation of the homoge-
neous matrix in SE(3).

Similarly, the error function for the loop closure between node i and j is as follows:

	 ( )
, ,

22 1
, , , , ,loop loop

i j i j

loop loopW W W
i j B i B j L i i j

−
=e T T T T

Σ Σ
� (9)

where the ,
loop
i jΣ  denotes the information matrix for the loop closure constraint 

Ti j
loop
,  between nodes i and j.
Regarding constraint from the ground plane detection, the measurement con-

tains the distance (dk) from the center of lidar to the detected ground surface and 
the norm vector ( , , )G G Gk

x
k
y

k
z  of the ground surface. dk does not suffer from drift 

over time as it is relative to the absolute ground plane. Note that this is satisfied 
under the assumption that the vehicle is driving on almost plane ground.

Given the pose estimation TB k
W

,  at a given epoch k, the Gk  can be transformed into 
the local world frame as Gk

W :

	 Gk
W

k
w x

k
w y

k
w z

k
TG G G d= ′′ ′ ′[ ], , , � (10)

where the following are satisfied:

	 [ ] [ ], , ,G G G G G Gk
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k
w y

k
w z T

k
W

k
x
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y

k
z T′ ′ ′ = q � (11)

	 d d G G Gk k k
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k
w x

k
w y

k
w z T′ = − ′ ′ ′p [ ], , , � (12)

After transforming Gk  into the local world frame, this paper applies the min-
imum parameterization proposed in Ma et al. (2016) τ( ) ( , , ),Gk

W d= θ ϕ  where 
θ ϕ, , d  are the azimuth angle, elevation angle, and distance with respect to Gk

W ,  
respectively. τ( )Gk

W  can be derived as follows (Koide et al., 2019; Ma et al., 2016):

	 τ( )
( )

Gk
W G

G
G

G G G

k
y

k
x

k
z

k
x

k
y

k
z

= 











′
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′
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arctan arctan
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















′dk

T

� (13)

Therefore, the error function for the ground plane constraint can be expressed 
as follows:

	
2 2

0( ) ( )ground ground
k k

ground W W
k k= τ − τe G G

Σ Σ
� (14)

where the ground
kΣ  is the information matrix of the τ( )Gk

W  which is experimen-
tally determined. G0 0 0 1 0W T= [ ]  is the expected prior concerning the ground 
constraint. 
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In this case, we formulate three kinds of error functions for constraints. Therefore, 
the optimal state set T T T T TB

W
B
W

B
W

B
W

B k
W= … …{ , , , , , }, , , ,0 1 2  can be solved as follows:

	
,

2 22*
0,.. ,argmin groundloopLiDAR

k ki j

loop groundW LiDAR
B k K k i j k=

 = ∑ + + 
 

T e e e
Σ ΣΣ

� (15)

where TB
W *  denotes the state set to be estimated. The variable K denotes the num-

ber of epochs involved in the optimization. The operation 0,.. *k K=∑  denotes the 
summation of all the error functions. The ,LiDAR

kΣ  , ,loop
i jΣ  and ground

kΣ  denote the 
information matrix of the three listed types of constraint.

4.5  Global Mapping and Global Transformation 
Integration

The point clouds map relative to the local world frame can be obtained by reg-
istering all the frames of point clouds based on the state’s set TB

W  optimized in 
Section 4.4. 

To guarantee real-time performance, factor graph optimization was conducted 
at a frequency of 1 Hz. Each time the optimization finished, the transformation 
between the local world frame and the local base frame could be derived as follows:

	 T T TL k
W

B k
W

B k
L

, , ,( )= −1 � (16)

Note that TB k
L
,  was obtained by tracking the relative motion from lidar odometry 

at a frequency of 10 Hz (the frequency of the raw 3D point clouds). Once TB
L  is 

obtained at epoch l and l k> ,  TB l
W

,  is derived as follows:

	 T T TB l
W

L k
W

B l
L

, , ,= � (17)

Therefore, TB
W  can be obtained at a frequency of 10 Hz which is significant for 

the application with real-time performance requirements.

5  EXPERIMENT RESULTS AND DISCUSSIONS

To validate the performance of the proposed AGPC-SLAM, we conducted two 
real experiments in Hong Kong. The first location was Nathan Road, which is 
an example of one of the typical scenes in Hong Kong. The road was almost flat 
throughout the test and the driving distance was about 4.2 kilometers. We were 
fully aware that the proposed method relied on the assumption that the ground was 
almost flat during operation. Therefore, we conducted the other experiment valida-
tion in another location (where the driving distance was about 2.1 kilometers with 
a partial ramp road) to further evaluate how the proposed method could perform.

During the experiment, 3D lidar (Velodyne 32) was used to collect 3D point 
clouds. Besides, the NovAtel SPAN-CPT, a GNSS (GPS, GLONASS, and Beidou) 
RTK/INS (fiber-optic gyroscopes) integrated navigation system was used to pro-
vide the ground truth of positioning. The gyro bias in-run stability of the FOG was 
1 degree per hour and its random walk was 0.067 degrees per hour. The baseline 
between the rover and the GNSS base station was within 7 km. 

All the data were collected and synchronized using a robotic operation system 
(ROS; Quigley et al., 2009). All the data were post-processed using a desktop (Intel 
Core i7-9700K CPU, 3.60Ghz) computer. Please note that the performance of the 
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proposed method was evaluated by aligning the pose from SLAM and the NovAtel 
SPAN-CPT to the east, north, and up (ENU) coordinates. The extrinsic transforma-
tion matrix between the ENU frame and the local world frame was provided by the 
NovAtel SPAN-CPT. The parameters used in the proposed AGPC-SLAM are given 
in Table 1.

5.1  Experimental Validation in Location 1

The experimental setup is shown in Figure 5. During the evaluation, we com-
pared the proposed AGPC-SLAM framework with the state-of-the-art LeGO-LOAM 
(Shan & Englot, 2018). 

5.1.1  Evaluation Metrics

As Figure 5(b) shows, the fixed solution was hard to obtain using NovAtel 
SPAN-CPT throughout the evaluated Location 1. This was caused by low satellite 

TABLE 1
Parameters Used During Experimental Validation

Para. tnp tdis ta titer tD

Values 800 0.25 500 1000 20.0

Para. tF
LiDAR
kΣ ,

loop
i jΣ ground

kΣ tc

Values 0.80 10 I6×6 10 I6×6 4 I3×3 0.1

FIGURE 5 (a) Data collection vehicle with all the sensors installed in a compact sensor kit; 
(b) tested scenarios; and (c) trajectory with a driving distance of 4.2 km
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visibility due to the dense and tall buildings. However, we found that the position-
ing status of the NovAtel SPAN-CPT was healthy in several road intersections (see 
A, B, C, D, E, and F in Figure 5[c]) where the satellite geometry was better. We care-
fully checked the positioning results of the NovAtel SPAN-CPT in the selected six 
intersection points and at the very least, the float solution was obtained. Therefore, 
we propose to evaluate the performance of the proposed method based on the fol-
lowing metrics.

•	 Ground control point (GCP) error: Evaluating the accuracy at six selected 
GCPs (A–F in Figure 5); both absolute translation and rotation errors were 
evaluated.

•	 Accumulated error: Evaluating the accumulated error after driving a loop 
with/without the loop closure constraints; without loss of generality, the 
accumulated error metric was also adopted in the KITTI data set (Geiger et al., 
2012) for performance evaluation of lidar odometry.

5.1.2  Performance Analysis

The mean errors of the rotation and translation of the six selected GCPs used are 
shown in Tables 2 and 3, respectively. Regarding the mean rotation error (Table 2), 
the LeGO-LOAM introduced a mean error in pitch angle (6.93°). The error in yaw 
and roll were 2.57° and 2.16°, respectively. With the help of the proposed AGPC, 
the error in pitch angle decreased to 1.35° which shows that the proposed method 
can effectively mitigate the drift in pitch angle. The performance in the yaw and 
roll angle also improved slightly.

Regarding the mean translation error, the errors of LeGO-LOAM in the east and 
north direction were 3.89 and 11.58 meters, respectively. Meanwhile, the error in 

TABLE 2
Performance of Rotation Estimation at Location 1 

Method Roll Pitch Yaw Total %

LeGO-LOAM 
(Shan & Englot, 2018)

2.57° 6.93° 2.16° 7.70° 0.18%

AGPC-SLAM 
(proposed)

1.36° 1.35° 2.61° 3.24° 0.07%

AGPC-SLAM 
(with loop closure)

1.29° 1.21° 1.53° 2.33° 0.056%

Note: %: [Total]/[total driving distance]

TABLE 3
Performance of the Translation Estimation at Location 1

Method East North Up ENU AE %

LeGO-LOAM 
(Shan & 

Englot, 2018)
3.89m 11.58m 43.83m 45.49m 34.80m 1.08%

AGPC-SLAM 1.39m 2.65m 0.41m 3.02m 1.89m 0.04%

AGPC-SLAM 
(loop closure)

1.32m 2.36m 0.40m 2.73m 0.52m 0.065%

Note: AE: accumulated absolute error. %: [ENU]/[total driving distance]
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the altitude (up) was about 43.83 meters. The total mean error in east, north, and 
up directions was 45.49 meters. The accumulated error (the error at the last epoch) 
reached 34.80 meters. The last column represents the percentage of mean error 
concerning the total driving distance. With the help of the proposed AGPC-SLAM, 
the mean error decreased to 3.02  meters and the accumulated error was only 
1.89  meters. A significant improvement in the vertical direction shows that the 
proposed AGPC can effectively constrain the drift. Meanwhile, the detailed perfor-
mances at six GCPs can be found in the Appendix of this paper (see Figure 12 and 
Figure 13).

After applying the loop closure constraint, the LeGO-LOAM could not success-
fully detect the loop closure due to the large drift which can be seen in the top 
panel of Figure 6. Therefore, the loop closure result for LeGO-LOAM is not pro-
vided in Tables 2 and 3. However, the rotation estimation for the proposed method 
improved with the help of loop closure with a mean rotation error of 2.33° and the 
result of the map can be seen in the bottom panel Figure 6. With the help of the 
loop closure, the mean error of translation decreased to 2.73 meters and the accu-
mulated error was only 0.52 meters. The percentage of the error was only 0.065%. 
Although the loop closure detection is not a major contribution of this paper, the 
results show that the proposed AGPC could further enhance the detection of the 
loop closure.

Figure 7 shows the details of the generated point map with the color anno-
tated by the reflectivity. The lane lines and building boundaries are clear which 
can be seen from Figure 7(a) and Figure 7(b). A detailed video of the proposed 

FIGURE 6 Illustration of the map generated by the two methods; the color of the map is 
annotated by the value of the z-axis (height) of each point.
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AGPC-SLAM in Location 1 can be found at the following link: https://www.you-
tube.com/watch?v=3nS895StJUo&feature=youtu.be.

5.2  Experimental Validation in Location 2

5.2.1  Evaluation Metrics

To further evaluate how the proposed method could perform in the scenario with 
a partial ramp road, we performed the other experiment in Tsim Sha Tsui of Hong 
Kong. The location is shown in Figure 8 where the red dots denote the evaluated 
trajectory. The ramp road starts with an altitude of 0 meters (the height is relative 
to the start point), increases to a maximum altitude of 2  meters, and decreases 
to 0  meters by the end of the ramp road. More importantly, the fixed solutions 
were available frequently during the test. Therefore, the pose from the NovAtel 
SPAN-CPT was directly used as the ground truth solution of Location 2.

FIGURE 7 Details of the generated map with reflectivity using the proposed AGPC-SLAM 
in Location 1

FIGURE 8 (a) Environmental condition at the start point (blue shaded circle); (b) the scene 
with partial ramp road (red shaded area)

https://www.youtube.com/watch%3Fv%3D3nS895StJUo%26feature%3Dyoutu.be
https://www.youtube.com/watch%3Fv%3D3nS895StJUo%26feature%3Dyoutu.be
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Lidar SLAM only provides the relative positioning concerning the starting point, 
therefore, we applied the popular evaluating odometry (EVO; Grupp, 2017) toolkit 
to evaluate the relative error (RPE) for translation and rotation. Meanwhile, the 
evaluation metrics are as follows:

•	 RMSE: Root-mean-square error of the relative translation and rotation
•	 MEAN: Mean error of the relative translation and rotation

To further show the effectiveness of the proposed method in mitigating the verti-
cal and overall drift, we added three additional evaluation metrics as follows:

•	 Altitude: the accumulated altitude drift by the end of the trajectory
•	 AE: the accumulated error of translation (meters) and rotation (degrees) by 

the end of the trajectory 
•	 %: calculated by the [accumulated drift]/[total driving distance]; this was 

adopted to evaluate the overall drift of the SLAM algorithm. 

5.2.2  Performance Analysis 

Table 4 shows the performance of the translation and rotation estimation using 
LeGO-LOAM and the proposed AGPC-SALM, respectively. Note that the loop clo-
sure is not applied regarding the results in Table 4 to evaluate the contribution 
of the standalone AGPC. Regarding the translation, both the MEAN and RMSE 
were reduced with the help of the AGPC using the proposed method. Although the 
LeGO-LOAM proposed to estimate the motion of the z-axis and pitch angle using 
ground points, the final altitude drift still reached 7.36 meters by the end of the 
test. Fortunately, the drift in altitude decreased to only 0.21 meters with the help of 
the AGPC, which shows the effectiveness of the proposed AGPC. Meanwhile, the 
overall drift was also reduced using the proposed AGPC-SLAM (see the AE and % 
columns in Table 4).

The continuous 3D trajectories of LeGO-LOAM, AGPC-SLAM, and ground truth 
are shown in Figure 9. Specifically, the altitude during the test is shown in Figure 10. 
The black curve denotes the altitude provided by the NovAtel SPAN-CPT. We can 
see that the altitude estimation using the LeGO-LOAM deviated significantly from 
the ground truth during epoch 150~240 which corresponds to the red shaded area 

TABLE 4 
Performance of the Translation and Rotation Estimation in Location 2 

Method MEAN RMSE Altitude AE %

LeGO-LOAM 
(Shan & Englot, 

2018) (Translation)
0.33 m 0.46 m 7.36 m 8.92 m 0.42%

AGPC-SLAM 
(Translation)

0.27 m 0.38 m 0.21 m 5.26 m 0.26%

LeGO-LOAM 
(Shan & Englot, 
2018; Rotation)

0.69° 1.22° 3.72° 0.19%

AGPC-SLAM 
(Rotation)

0.58° 1.07° 1.87° 0.09%
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in Figure 9. During this period, one side of the road was filled with building surfaces 
which caused it to be a feature-insufficient location. The other side had dense foliage 
with numerous tree leaves that increased the difficulty of finding the correct corre-
spondence of LOAM. As a result, the LeGO-LOAM drift significantly in the altitude 
direction. With the help of the AGPC, the altitude drift was mitigated accordingly. 

The RPE of the translation and rotation estimations are provided in Figure 11. 
Improvements can be seen in the figure for both translation and rotation. The 
red and blue dash curves denote the translation errors of LeGO-LOAM and 
AGPC-SLAM, respectively. The black and cyan dash curves denote the rotation 
errors of LeGO-LOAM and AGPC-SLAM, respectively. 

As shown in Figure 8, Location 2 involved a ramp road with an altitude deviating 
from 0 to 2 meters, which corresponds to the annotated area by the red rectangle 
in Figure 9. The estimated altitude using AGPC-SLAM deviates from the ground 

FIGURE 9 Trajectories of the LeGO-LOAM (red curve), AGPC-SLAM (blue curve), and 
ground truth trajectory (black curve)

FIGURE 10 Altitude of the LeGO-LOAM (red curve), AGPC-SLAM (blue curve), and 
ground truth trajectory (black curve) during the testing area with the ramp road
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truth altitude (black curve). This was caused by the violation of the assumption 
that the ground plane was flat during operation, which is required by the proposed 
method in this paper. In the future, we will study the ramp road surface identifi-
cation and remove the AGPC when the slope surface is detected. A detailed video 
of the test in Location 2 can be found at the following link: https://www.youtube.
com/watch?v=mgLxxlhlscY&feature=youtu.be.

The performance of the translation and rotation angle estimation of AGPC-SLAM 
with loop closure is presented in Table 5. Although the loop closure was enabled 
in LeGO-LOAM, the loop was not successfully detected due to the large drift in the 
z-axis of LeGO-LOAM. However, the loop closure was detected using the proposed 
AGPC-SLAM as the vertical drift was improved. We believe that this is another 
contribution of the AGPC which improves the detection of the loop closure.

6  CONCLUSION AND FUTURE WORK

To mitigate the drift of lidar SLAM in the vertical direction due to the limited 
field of view of the lidar sensor, this paper proposes an AGPC-SLAM method that 
achieved improved accuracy compared to the existing state-of-the-art LeGO-LOAM. 
This paper innovatively proposes to employ absolute ground plane detection to 
mitigate the drift in z-axis related states. Moreover, better-constrained positioning 
in the z-axis and pitch angle can also improve the positioning in the x-axis and 
y-axis. We tested the proposed method in two typical scenarios in Hong Kong. The 
results show that the proposed method can effectively mitigate the drift on the 
z-axis in both the evaluated scenarios.

TABLE 5
Performance of Translation and Rotation Estimation with Loop Closure 

Method Trans. RMSE Rot. RMSE Altitude

LeGO-LOAM (Shan & 
Englot, 2018; Loop closure)

Loop Not 
Detected

Loop Not 
Detected

Loop Not 
Detected

AGPC-SLAM (Loop closure) 0.43 m 0.64° 0.13 m

FIGURE 11 Relative translation and rotation errors for LeGO-LOAM and the proposed 
AGPC-SLAM, respectively 

https://www.youtube.com/watch%3Fv%3DmgLxxlhlscY%26feature%3Dyoutu.be
https://www.youtube.com/watch%3Fv%3DmgLxxlhlscY%26feature%3Dyoutu.be
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One of the limitations of our work is that the proposed method is effective only 
when a flat ground plane is available. In some extreme cases, the ground can be 
fully occluded by surrounding dynamic vehicles which can lead to misidentifica-
tion of the ground surface. The ground surface can also be a slope that cannot be 
simply modeled using a plane function. In the future, we will study the scene with 
slope and derive the corresponding constraints to alleviate the drift of 3D lidar 
SLAM in urban canyons.
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APPENDIX: PERFORMANCE OF AGPC-SLAM AT 6 GCPS

FIGURE 12 Errors of the roll, pitch, and yaw angles for LeGO-LOAM and the proposed 
AGPC-SLAM (the x-axis denotes the ID of the GCPs from 1 to 6 and the y-axis denotes the errors)

FIGURE 13 Errors of the up (altitude) and ENU for LeGO-LOAM and the proposed AGPC-
SLAM, respectively (the x-axis denotes the ID of the GCPs from 1 to 6 and the y-axis denotes 
the errors)
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