
Received: 5 May 2021   Revised: 7 March 2022   Accepted: 11 May 2022

DOI: 10.33012/navi.529

NAVIGATION, 69(3).	 Licensed under CC-BY 4.0� © 2022 Institute of Navigation

O R I G I N A L  A R T I C L E

Deterministic Heading-Independent Celestial Localization 
Measurement Model

Ilija Jovanovic  John Enright

1  INTRODUCTION

Most planetary rover missions rely, at least in part, on dead reckoning to navigate. 
By their nature, these methods accumulate errors over time resulting in position 
estimate drift. On Mars, this has been mitigated using orbital landmark tracking to 
occasionally provide absolute state estimation by identifying and matching land-
marks visible to both the rover and an orbiting satellite (Li et al., 2004, 2005, 2007). 
Star-based celestial navigation provides an alternative method for localization that 
does not require orbiting infrastructure or extensive image databases.

The Mars Pathfinder missions used images of the Sun to measure heading 
(Eisenman et al., 2002) but instantaneous observations of the Sun are limited 
in their accuracy and the information they provide. In contrast, star trackers 
typically offer improved measurement accuracy and complete inertial attitude 
knowledge (Wertz et al., 2011). Inclinometers relate this attitude measurement 
to the local-horizontal frame permitting the direct calculation of sensor position 
(Enright et al., 2012). We  refer to this particular system as a digital star sextant 
(DSS). This paper presents a suite of estimation equations based on a deterministic 
heading-independent forward measurement model for use with a DSS.
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Abstract
Planetary rover navigation frequently relies on dead reckoning and exter-
nal infrastructure such as orbiting satellites. Celestial navigation techniques 
combine measurements of the Sun, stars, and gravity to provide autonomous 
absolute localization. This study examines the performance of digital star sex-
tants (DSS)—a suite of sensors combining a star tracker and an inclinometer—
on estimating position on the planetary surface. In particular, we discuss the 
estimation, calibration, and error analysis for an elevation-only measurement 
formulation that does not rely on ground-truth heading information. Field 
tests and Monte Carlo simulations provide validation of the proposed tech-
niques. The real-world performance of the experimental system gives a mean 
single-orientation error of 296 m. The relative agreement between the predicted 
and observed error reveals a clear roadmap to help evaluate the impact of pro-
spective sensor improvements on DSS performance.
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The recent study of DSS systems in literature has revolved around their calibra-
tion. Recent works in this field include that of Wei et al. (2019), Zhan et al. (2020), 
and Jovanovic and Enright (2017). These authors examined DSS calibration taking 
particular concern with accurate longitude and latitude estimates, but not heading. 
A DSS is capable of providing all three, but because the precision of star tracker 
heading measurements is often much better than available ground-truth, it is 
challenging to assess the heading errors in the calibration process. Ning and Fang 
(2009) conducted simulated trials under this principle which, along with Zhan 
et al. (2020), recognized that heading was unnecessary in the general position solu-
tion. Ning and Fang (2009) developed a measurement model that converted global 
position into star tracker and inclinometer measurements (which we refer to as a 
backwards measurement model) that was independent of heading for use in their 
Kalman filter. Zhan et al. (2020) developed a heading-independent measurement 
model based on star elevation that required a-priori information about global posi-
tion. By contrast, the measurement model we present in this paper is deterministic.

In this paper, we present a DSS measurement model that also utilizes star eleva-
tion measurements to achieve heading independence. Together with this model, 
we include the derivation of a least-squares localization solution, a covariance 
model, and a calibration framework. Finally, we validate our models using field 
and simulated data. Although our results do not directly improve upon the accu-
racy reported by other sextant studies, our approach offers a more rigorous analysis 
of the calibration process and system error characteristics. Our covariance models 
directly relate the DSS performance to the sensor specifications and present a clear 
roadmap for improving DSS accuracy.

2  MATHEMATICAL FRAMEWORK

This section presents the governing mathematical framework for our local-
ization solution. We include a general discussion of the celestial localization 
problem and measurement models for the DSS component sensors. The sensor 
models then allow us to derive our elevation-only localization estimate and a 
corresponding parametric model of system covariance. Due to the sensitivity of 
the DSS output to even small angular errors, our system models depend on a 
variety of calibration parameters for proper operation. We conclude this section 
with analysis and discussion of parameter observability and present a strategy for 
effective calibration.

2.1  General Celestial Localization

The primary components of our DSS system are a star tracker (used to mea-
sure and identify stars) and an inclinometer (used to measure gravity direction). 
Calculating planetary orientation corresponding to each measurement is also 
essential—for instance, the Earth’s rotation amounts to approximately 465 m/s 
on the equator—so a precise time reference is also needed. Although a deployed 
DSS system would require a standalone precision time reference, an onboard GPS 
receiver is an acceptable timing source for our experiments. Timekeeping on any 
extraterrestrial mission would not be possible using GPS, however, meter-level 
position accuracy requires relatively coarse millisecond-level clock accuracy. This 
synchronization requirement is not considered particularly challenging over stan-
dard radio links (Mills, 2016).
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The localization process relies on relating quantities between a number of refer-
ence frames. The frames relevant to DSS operations are shown in Figure 1. Between 
important pairs of frames are notes explaining the corresponding rotational rela-
tionship. Beginning with star tracker frame S ,  the rotation CIS  is derived from 
the star tracker attitude measurement, where I  is the inertial frame. The rotation 
from I  to the planetary fixed frame, F ,  represents the rotation of the planetary 
body. For this paper we calculate CFI  from the observation time stamp (recorded as 
a UTC time), and the Earth Orientation Parameters provided by the International 
Earth Rotation and Reference Systems Service (IERS) using the IAU 2000/2006 
reduction (Petit & Luzum, 2010). From F  to the topocentric frame, T ,  requires 
knowledge of global position, which is the goal of the DSS. This solution can be 
obtained by solving for the remaining rotations.

FIGURE 1 Frames of reference and associated transforms

FIGURE 2 Illustration of celestial localization showing the topocentric frame
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Going from the star tracker’s frame, S ,  to the inclinometer frame A  requires 
the mounting rotations, CSA .  The rotation between A  and N  relies on knowl-
edge of the DSS roll and pitch angles as well as the sensor mounting geometry. The 
former are obtained from a gravity vector calculated from inclinometer measure-
ments. The T  frame, shown in Figure 2, is defined as North-East-Down (NED) in 
which the x-axis always points north, the y-axis points east, and the z-axis points 
down. The T  frame does not move relative to the F  frame if the DSS is station-
ary on the planet’s surface.

With these transformations defined, the rotation that defines global position can 
be expressed as:

	 C C C C CFN FI IS SA AN= � (1)

This same rotation can also be expressed directly in terms of longitude λ,  geo-
detic latitude φ,  and heading ψ .  Adopting the North-East-Down (NED) definition 
for the topocentric frame and using s( )⋅  and c( )⋅  as shorthand notations for sine 
and cosine, we have:
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Equating this result to Equation (1) allows for the recovery of position and head-
ing estimates from the elements ci j,  of CFN :
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2.2  Star Tracker Measurement Model

At a top level, the star tracker’s processing sequence consists of turning imaged 
stars on the detector plane into star vectors, sS ,  and then matching those star 
vectors to a catalog of inertial star vectors, sI .  From corresponding pairs of star 
vectors, the sensor computes its own inertial orientation, CSI .  The small error 
rotation between the measured orientation and true orientation is expressed as a 
three-element angular error vector, .δθ  Thus the approximate expression for the 
error rotation is:

	 ( )SI SI
×= −C I C δθ � (4)

In addition to the inertial attitude, CSI ,  the star tracker provides the sensor-frame 
star vector measurements, ′sS i, ,  and the corresponding catalog identifiers for each 
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observed star. When used within the atmosphere, these star vectors are refracted 
and, hence, are regarded as the apparent vectors.

To obtain airless star vectors on Earth, sS i, ,  atmospheric refraction corrections 
are calculated according to Bennett (2009) and applied to the ′sS i,  vectors using the 
method outlined in Enright et al. (2012). The airless star vectors still contain mea-
surement errors not associated with refraction effects.

2.3  Inclinometer Measurement Model

The inclinometer measurement model produces a rotation, CAN ,  between 
the inclinometer and navigation frames, the latter of which is always level by 
definition. Biaxial inclinometers like the one used in this study are commonly 
constructed from two orthogonally mounted single-axis inclinometer subsensors 
(see Figure 3). These subsensors are nominally mounted with a 90° z-rotation 
between them. We refer to the individual subsensor frames as A x,  and A y,  
for the x and y axes, respectively. We define these frames as nominally aligned 
to one another, not rotated by 90°, as well as the inclinometer’s body frame, A .  
The subsensor frames A x,  and A y,  are identified individually and may be mis-
aligned relative to A .

The navigation frame is defined with the z-axis pointed down, however, many 
manufacturers define inclinometer sensor frames with the z-axis in the nominal up 
direction. Introducing L  as a virtual frame representing a level inclinometer, we 
can account for the z-axis change and any inclinometer mounting misalignment 
with a constant CLN  matrix:

	 C C CAN AL LN= � (5)

Our choice of model is based on Jovanovic and Enright (2020) in which the grav-
ity vector in A  is:

	 g
n n
n nA
x y

x y
=

×

×
� (6)

FIGURE 3 Diagram demonstrating the inclinometer subsensors
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Each subsensor defines a sensing plane with normals constructed according to:
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where θx  and θ y  are the inclinometer measurements. Note that nx  and n y  are 
defined in A x,  and A y, ,  respectively. Since these frames, along with A ,  are 
nominally aligned, no transformation is necessary in this derivation.

Expanding the cross product gives the inclinometer measurement model as:
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We then use the model in Equation (8) to produce the rotation between A  and 
L .  If we define our rotation CAL  as:

	 C R RAL x y= ( ) ( )γ β � (9)

then:
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By equating Equation (8) to Equation (10), we arrive at:
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2.4  Elevation-Only Measurement Formulation

We now present a novel heading-independent forward measurement model for 
the DSS. This localization solution relies on a least-squares minimization of the 
errors between observed and predicted elevation angles. The elevation angles are 
computed from the star and gravity vectors when expressed in a common reference 
frame. These angles are independent of the working frame of reference.
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Expressed in a given frame, a star’s elevation, i ,  is a function of the angle 
between the gravity and star vectors:

	 i i
T= −
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
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
acos s g π

2
� (12)

Thus the airless elevation can be computed directly in S  using the DSS mea-
surements of star and gravity vectors. In I ,  the corresponding inertial star vec-
tors are corrected for stellar aberration1 and then rotated into F .  This gives the 
true (geometric) vector sF i, .  When working in this frame, the gravity vector, gF ,  
encodes global position:
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To simplify the navigation solution, we replace the explicit elevation calculations 
with the modified error metric ei  based on the s gT  terms alone:

	 ei S i
T

S F i
T

F= − s g s g, , � (14)

This also allows us to solve for gF  rather than λ  and φ  explicitly.
Although each error component compares a single star vector with the gravity 

vector measurement, calculating position requires a batch of star measurements. 
Normally, these batches would reflect the multiple stars identified in a single star 
tracker image, but they can also include the vectors collated from multiple expo-
sures collected at the same location.

An array of N star vectors can be compactly represented as:
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which, when substituted into Equation (14), gives:

	 e = −

S C g S gS SA A F F ( ),λ φ � (16)

Solving for position now requires us to calculate the optimal gF  vector. As this is 
a unit vector, two stars would be sufficient to solve the component parts of this set 
of equations2. However, we will focus on a general case of three or more stars which 
we can solve as a least-squares problem. We can define a least-squares cost function 
gF  and introduce a Lagrange multiplier, ,  to enforce a unity constraint on gF :
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1We use the relations developed by Shuster (2003) for stellar aberration correction
2In the two star case, there is a 2 : 1 solution ambiguity.
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where:

	 S SA A= S C g

γ � (19)

Taking the derivative with respect to gF  and setting the left-hand side to zero 
gives:

	 0 T T
F F F F F= − −S S g g S 

  γ � (20)

	 ,( )F λ φ +=g S 

 γ � (21)
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and gF
  is the optimal gravity vector.

This is a ridge regression problem that must be solved iteratively by varying   
to find a unity magnitude gF  vector. In many cases, the optimal Lagrange multi-
plier is zero or very close to it and converges after only a few iterations. On occa-
sion, our implemented solver converges to a local minima in the   solution space. 
Therefore, in practice, we simply set the Lagrange multiplier to zero to emphasize 
reliability over accuracy.

It is important to ensure that S S IF
T

F −( )  is invertible. If   is set to zero, only 
S SFT F  needs to be positive definite for this to be the case.
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Conversely, were positive definiteness not satisfied, then we must have:

	 S aF = 0 � (24)

for some nontrivial a. Recall that the rows of SF  are the star vectors and a mini-
mum number of three star vectors is implied. This means that for Equation (24) to 
be satisfied, a would need to be orthogonal to all the vectors simultaneously, some-
thing which is only possible if all the star vectors are coplanar. Therefore, S SFT F  is 
invertible if the constituent star vectors are not coplanar.

Combining the results of this section, we can say that the vector gF
 ,  which 

encodes global position, can be calculated from measurements according to:

	 g S S S S C gF F
T

F F
T

S SA A
 ( ),λ φ = ( )−1

   � (25)

2.5  Elevation-Only Covariance

To complement the position solution presented in Section 2.4, this section exam-
ines the error characteristics of the position estimates. Our goal with this derivation 
is to obtain the covariance P  of g  in terms of the measurement error character-
istics. For this derivation, we assume that both the star tracker and inclinometer 



    JOVANOVIC and ENRIGHT

measurements are corrupted by independent error components confined to small 
regions tangent to the measured vectors. Thus:

	 SS S S= +S Sδ � (26)

	 g g gA A A= +δ � (27)

We also apply this concept to the estimated gravity vectors and γ  values:

	 F F δ= +g g η � (28)

	 δ= +γ γ γ � (29)

where ,δη  ,δγ  δg A , and δSS  are the error components.
The Equation (19) and Equation (21) relations can then be expanded, dropping 

the F and S subscripts for notational simplicity:
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where δγ  is a function of δg A  and δS,  but γ  is not.
The covariance is then:
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Recognizing that [ ]E δη  is zero and +S γ  and g  are equivalent allows us to sim-
plify the covariance expression to be:

	 ( )( )E T T Tδ δ+ + = + + −  
P S S ggγ γ γ γ � (33)

The full expression for γγ  is:

	 ( ) ( )( ) S S SA A Aδ+ = + +S S C g gγ γ δ δ � (34)

and, dropping the second-order error term, results in further simplification:
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The covariance between star measurements Ps  is:

	 P S g S gs SA A SA A
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E δ δC C � (37)

Each element of this matrix can be expressed in terms of contributions from 
individual stars:
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where:

	 R s ss i j i
T

, =  E δ δ � (40)

It is reasonable to assume that star vector errors are uncorrelated, so:

	 P i js ij, �� ��= ∀ ≠0 � (41)

and, hence, Ps  is a diagonal matrix.
If we define the gravity vector error covariance, R g ,  as:

	 R g gg A A
TE=  δ δ � (42)

and recognize from our definitions:

	 SA A= SC gγ � (43)

we can then substitute these results into Equation (33) and simplify the expression 
to be:

	 ( )T T T T T
s SA g SAR+ += + + −P S P SC C S S ggγγ � (44)

To eliminate the dependence on global position g,  we recall that:

	 T T T+ +=gg S Sγγ � (45)

from which it follows that:

	 P S P SC R C S S= +( )+ +
s SA g SA

T T T � (46)

An important note is that the elements of Rs i,  and Rg  represent the covariance 
of their respective vectors’ elements. They do not represent the rotational noise 
along each sensor’s principal axes that is typically provided by sensor manufac-
turers. These two quantities can be related using the QUEST measurement model 
(Crassidis et al., 2007; Shuster & Oh, 1981):

	 R g gg g A A
TI= −( )σ 2 � (47)

	 R s ss i
s

i
T

if
I, =

∆
−( )σ 2

� (48)
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where σs is the star tracker centroid noise, f is the star tracker focal length, ∆ is 
the star tracker pixel pitch, and σg is the per-axis measurement noise of the 
inclinometer.

We now wish to relate the covariance P  of gF
  that we derived in the previous 

section to a localization error along the planet’s surface, σ geo .  In order to do this, 
we need to project P  onto the plane tangent to the planet’s surface at the estimated 
global position. This derivation is made easier since gF

  is normal for such a plane.
We accomplish this by constructing a projection matrix defined by two arbitrary 

linearly independent vectors orthogonal to gF
 ,  a and b. The projection matrix, ,  

is then:

	  = ( )−A A A AT T1
� (49)

where:

	 A a b=   � (50)

The covariance P  projected onto the plane normal to gF
  is:

	 P Pproj =  T � (51)

If we look at the eigenvalues of Pproj ,  we find that one of them is zero. Total local-
ization error, σ geo ,  can now be estimated by taking the root sum of the non-zero 
eigenvalues l1  and l2 :

	 σ geo l l= +1 2 � (52)

The eigenvalues can also be considered independently as the principal variances 
of the localization noise.

3  CALIBRATION METHODOLOGY

In developing our localization solution, we had to also be aware of the need for 
system calibration. Many of the component transforms used in the position solu-
tion must be measured through a calibration process. This section examines the 
calibration parameterization along with a detailed discussion on compatible test-
ing procedures and cost-function metrics.

3.1  Cost Functions

The calibration cost function quantifies the difference between an estimated 
position and the known position. DSS calibration is performed at a single known 
location and at several orientations. The resulting residual calculation can be for-
mulated in terms of several different quantities that include star vector elevation, 
global position, star tracker quaternions, and inclinometer measurements. Having 
tested these error formulations in practice, cost function optimizations based on 
star-vector elevation tend to exhibit fewer local minima and lower localization 
error than other approaches. Thus, during calibration we use the known position 
and Equation (16), varying the calibration parameters in order to minimize e2 .
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3.2  Calibration Parameters

This section introduces the calibration parameters of the DSS. These include the 
mounting rotation error, measurement timing error introduced by clock offsets and 
latency, and latitude bias introduced by errors in the planet’s gravitational model.

3.2.1  Mounting Error

The mounting rotation errors between the star tracker and inclinometer are 
captured in the CSA  rotation used in the measurement model in Equation (21). 
In practical applications, this rotation represents both the nominal rotation and 
misalignment. The mounting rotation parameters correct misalignment between 
the inclinometer frame, A ,  and individual inclinometer subsensors frames, A x,  
and A y, .

The resulting mounting angle model augments Equation (7) to be:

	
( )
( )

,

,

ˆ ˆ

ˆ ˆ
x A x x x

y A y y y

=

=

n C r n

n C r n
�

(53)

Both CA x,  and CA y,  are rotation matrices with three degrees of freedom defined 
by the small angle rotation vectors ˆxr  and ˆ ,yr  respectively. The implication of this 
formulation is that any measurement bias in the x and y subsensors is equivalent to 
the mounting error along the respective subsensor’s measurement axis.

3.2.2  Timing

Timing information is used to determine planetary rotation such that any timing 
error could manifest as bulk longitude error. This error could be introduced by 
improperly synchronized clocks or, more likely, data latency between sensors and 
the central data acquisition computer. Such latency could result from processing 
time, transmit times, or poor clock resolution.

To calculate CFI  on Earth, we derive International Atomic Time from GPS time 
and use it to compute the IAU 2000/2006 reduction (Petit & Luzum, 2010). This 
reduction provides CFI  by accounting for variations in the Earth’s rotation and 
precession about its axis.

To simplify calculations, following an initial IAU 2000/2006 reduction, rotation 
was treated as a pure z-rotation between I  and F ,  neglecting the effects of polar 
motion, nutation, and precession over the acquisition interval.

	 ˆ 2 ˆ
FI z FI

d

t
t
πδ 

=   
 

C R C � (54)

where t̂δ  is the timing error and td  is the duration of a sidereal day.
This assumption was tested by comparing the average difference in ˆ

FIC  when 
calculated using the method in Equation (54) versus using the IAU 2000/2006 
reduction. Our results are from 100 data points collected over the course of an 
hour. The result had an average difference of 0.0005° or an equivalent error at 
Earth’s equator of 55 m. Additionally, there is no measurable difference in the cal-
ibration cost function residual from this approximation.
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Although it is possible to include the timing error parameter directly in the IAU 
2000/2006 reduction, such a solution adds significant computation to the calibra-
tion optimization. For our DSS system, the simplification in Equation (54) provides 
a substantial speedup with little impact on the final residuals. A two-stage opti-
mization would likely be a good compromise when calibrating a real DSS system.

3.2.3  Latitude Bias

The DSS is dependent on Earth’s geodesy and how it is modeled. While GPS uses 
the WGS 84 model, the new EGM2008 standard offers a typical 1.1 to 1.3 arc sec-
ond improvement in local gravity corrections over the entire globe relative to the 
WGS 84 standard Pavlis et al. (2012). To account for this, a latitude bias, ˆ,δφ  was 
added to allow for approximately one arc second of constant error:

	 ˆ ˆφ φ δφ= + � (55)

Correcting longitudinal differences between EGM2008 and WGS 84 is handled 
by the timing bias.

3.2.4  Temperature Correction

The manufacturer of the electrolytic inclinometer used in this paper (Jewell 
Instruments) suggests a correction model for each of the two subsensors of the 
biaxial inclinometer (Jewell Instruments, 2018) of:

	 ( ) ( )1ˆ ˆ ˆ ˆ
S cal Z calS K T T K T Tθ θ  = + − + − 


  � (56)

where ˆ,S  ˆ ,SK  and ˆ
ZK  are calibration parameters, T  is the measured temperature, 

and Tcal  is a reference temperature at which the unit was calibrated. For a given 
test, Tcal  is the temperature at which the inclinometer is calibrated. The details of 
inclinometer calibration are discussed in Jovanovic and Enright (2020).

3.2.5  Parameter Summary

Table 1 lists the calibration parameters as well as the equation number in which 
they are applied for convenience. All of these parameters have nominal values of 
zero except S, which has a nominal value of one.

TABLE 1
List of Calibration Parameters

Parameter 
Symbol 

Dimensions Description Equation 

rx

ry
3

Inclinometer x subsensor misalignment 
Inclinometer y subsensor misalignment 

(53)

δ t  1 Time offset (54)

δφ  1 Latitude offset (55)

S
KS

KZ

2 
Linear measurement coefficient 

Linear temperature-angle measurement coefficient 
Linear temperature measurement coefficient

(56)
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4  CALIBRATION

DSS calibration was done using field data collected from a Sinclair Interplanetary 
ST-16RT star tracker and a Jewell Instruments Tuff Tilt digital D801 wide-angle 
inclinometer. The calibration procedure discussed in this section involves rotating 
the DSS through a number of orientations. Measurements from the inclinometer 
and star tracker are recorded at each orientation while static. The goal of calibra-
tion is to find a set of parameters that make location estimates of the DSS invari-
ant to changes in orientation. Two mechanizations were considered, a strapdown 
mechanization in which a DSS is on the body of a rover allowed to incline by 
approximately 10°. The other was an articulate mechanization in which the DSS 
is on an articulate boom on the rover and held level. Each of these were evaluated 
against a common set of error metrics.

4.1  Test Hardware

For DSS field testing, we used a Jewell Instrument (formerly Applied Geomatics) 
Tuff Tilt digital electrolytic biaxial inclinometer and a Sinclair Interplanetary 
ST-16 star tracker. Key performance metrics for each are tabulated in Table 2 
and Table 4.

TABLE 2
Inclinometer Quoted Performance

Sensor Type Electrolytic 

Precision 0.01° 

Resolution 0.004°

Range ±50°

Dimensions 120 × 80 × 60 mm

Thermal Constant 0.004° ∕ °C

TABLE 3
Star Tracker Quoted Performance

Cross-Boresight Accuracy 7.2 arc seconds 

Focal Length 16 mm 

Resolution 2592 × 1944 

Pixel Size (Pitch) 2.2 μm

Dimensions 62 × 56 × 38 mm

Update Rate 2 Hz 

TABLE 4
Inclinometer Quoted Performance

Sensor Type Electrolytic 

Precision 0.01°

Resolution 0.004°

Range ±50°

Dimensions 120 × 80 × 60 mm

Thermal Constant 0.004° ∕ °C
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4.2  Optimizer

For this paper, we chose to use the Matlab lsqnonlin. We compared this solver 
to the Matlab fmincon and fminsearch solvers, observing significant differences in 
the final solution. The lsqnonlin solver arrived at a solution faster than the other 
two, offering similar positioning estimates. All the solvers performed consistently 
and did not find better solutions which would be indicative of local minima influ-
encing the solution.

4.3  Error Metrics

Inadequate calibration of a DSS at multiple orientations tends to produce posi-
tion estimates that are clustered by orientation. To track this aspect of performance 
as well as overall error with respect to a known truth, we developed multiple error 
metrics. Each of these metrics were derived from error along the planet’s surface 
between any points ( , )λ φ  and ( , )λ φ  ,  expressed as:

	 Jll λ λ φ φ φ φ φ φ λ λ, , ,    ( ) = + −( ))(acos sin sin cos cos cos 	�  (57)

Given an orientation indexed by k, the error metrics considered are illustrated in 
Figure 4. For individual system measurements with a common orientation indexed 
by m, the error within each orientation is given by:

	 σ λ λ φ φw
k

K

m

M

ll k m k k m kMK
J

k

= ( )
= =
∑ ∑

1

1 1

2
, ,, , , � (58)

where λk  and φk  are the mean positions at orientation k.
The error between orientations is:

	 σ λ λ φ φb
k

K

ll k kK
J= ( )∑

1 2
, , , � (59)

where λ  and φ  are true positions provided by GPS.

FIGURE 4 Illustration of error metrics



JOVANOVIC and ENRIGHT    

Finally, the total error is represented as:

	 σ λ λ φ φT
k

K

m

M

ll k m k mMK
J= ( )∑∑

1 2
, ,, , , � (60)

4.4  Strapdown Mechanization

The strapdown calibration data collection involved changing the DSS heading 
and inclination in multiple combinations. This process, illustrated by Figure 5, 
used a motorized telescope mount to acquire data from multiple combinations of 
tip, tilt, and heading. The exact procedure was:

1.	 The DSS was placed approximately level and a set of system measurements 
were recorded. 

2.	 The system was titled by approximately 10° and Step 1 was repeated. 
3.	 The system was leveled and Step 2 was repeated for three other rotation axes 

approximately 90° apart. 
4.	 The system was rotated about the zenith by approximately 90° and Steps 1, 2, 

and 3 were repeated. 
5.	 Once four distinct headings were completed, data acquisition was complete. 

Following the procedure described above, σw  was 527 m while σb  was 1.78 km 
(see Table 5). This level of error is expected based on the inclinometer validation 
described in Jovanovic and Enright (2020) in which pockets of the inclinometer’s 
validation space had residuals in excess of 0.01° (equivalently 1 km on Earth’s 
surface).

4.5  Articulate Mechanization

Another popular approach to calibrating a DSS is to constrain the range of 
motion of the inclinometer (Wei et al., 2019; Ning & Fang, 2009; Zhan et al., 2020). 
We refer to this as articulate mechanization. This method mounts the DSS to a 
motorized platform to ensure that the inclinometer remains level despite any 
orientation changes experienced by the rover body. In this study, the motorized 
telescope mount used to tilt the platform is, instead, used to level the DSS using 

FIGURE 5 Field calibration procedure
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feedback from the inclinometer. This keeps the DSS z-axis within 0.02° of the local 
vertical. Over this range, the inclinometer has a standard deviation on repeated 
measurements of 0.001°.

This mechanization effectively removes systematic inclinometer errors from the 
DSS measurements, significantly improving performance. Extensive testing with 
several types of inclinometers reveals that accuracy nonuniformities of 0.01° are 
common across wide-angle inclinometers and are extremely challenging to remove 
without time-consuming and dense characterization.

The articulate mechanization relies on a modified calibration procedure during 
which the DSS is held level at six unique headings. This reduces the degrees of 
freedom captured in the calibration data and renders some calibration parame-
ters redundant. Table 5 shows the performance for an articulate calibration data 
set using different parameter combinations. From these results, the detrimental 
effect of utilizing the inclination dependent parameters in an articulate mecha-
nization are apparent. Their omission reduced systemic errors, σb ,  by a factor 
of two. Conversely, omitting any parameters in the strapdown mechanization 
increases σb .

4.6  Parameter Observability

Calibration parameters generally reflect physical models of device operations. 
Although these models are distinct, their effects on the calibration cost function 
are sometimes similar. We can look at the parameter observability and separability 
to assess the extent to which distinct parameters have similar effects in the cali-
bration models. The latter quality contributes to a well-behaved calibration with 
well-defined parameter effects. To do this, we analyzed the singular value decom-
position (SVD) of the calibration Jacobian:

	 H e
x

=
∂
∂

� (61)

where e is the cost function and x is the parameter set. The SVD of H can be 
writtten:

	 H U V= Σ T � (62)

where U  and V  are unitary matrices and Σ  is a diagonal matrix. By these defi-
nitions, the values in Σ  (known as singular values) represent the sensitivity of the 
cost function to combinations of parameters while V  encodes those combinations.

Figure 6 is a visual representation of the elements of VT  with the columns cor-
responding to parameters and the rows corresponding to singular values.

There is an unexpected relationship between ˆ
yS  and ,

ˆ .S yK  Such a relationship 
would be expected in the presence of a correlation between temperature and, in 
this case, the y-axis inclinometer reading. Testing the correlation between these 

TABLE 5
Summary of DSS Performance Using Different Parameters

Articulation Type Parameters Omitted Error Between [km] Total Error [km] 

Strapdown None 1.78 1.75 

Articulate None 0.69 1.29 

Articulate Ŝ  ˆ
SK  rx ,2  ry,1  rx ,3  ry,3  0.30 0.64 
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two factors shows a correlation coefficient of 0.63. This correlation is rather sig-
nificant and is the likely explanation for the observed relationship between ˆ

yS  
and ,

ˆ .S yK  There is no clear cause for such a correlation other than coincidence. 
The test data was collected over a 35-minute period, during which the controlled 
temperature experienced two sudden drops. The first drop was 0.45°C and made 
up the majority of the 0.81°C variability in temperature during the test. This drop 
coincided with the inclinometer being moved from a y-axis inclination of 10° to 
one of −10°. The second temperature drop was 0.18°C and coincided with the incli-
nometer y-axis measurement going from 10° to 0°. The temperature drops were 
anomalous and likely caused by sudden changes to convective cooling such as sus-
tained gusts of wind.

Additionally, the rx ,2  and ry,1  parameters were coupled but separable. The cost 
function was expected to be the least sensitive to these parameters and this is borne 
out of the experiments. The omission of these parameters degrades global local-
ization accuracy. For these reasons, we included these parameters with the under-
standing that potential qualitative effects of these parameters coupling would be 
minimal due to the cost function’s insensitivity to them.

With the exception of these two coupling parameters, we see from Figure 6 that 
the parameters were observable and well separated.

5  MONTE CARLO VALIDATION COVARIANCE MODEL

The covariance model was validated using a Monte Carlo simulation which var-
ied the noise statistics and orientation of both the inclinometer and star tracker. 
Using the star tracker’s onboard star catalog, synthetic inclinometer and star 
tracker measurements were generated for global position, orientation, and time.

The parameters of the simulated star tracker are tabulated in Table 6. Complete 
star tracker images were not synthesized; rather, catalog stars were passed through 
a pinhole camera model and had centroid noise applied. Individual star centroid 
noise was not adjusted for each star’s visual magnitude. A conservative value indic-
ative of dim stars was used.

FIGURE 6 Graphic representation of the VT matrix of an SVD for the strapdown data set
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In the first Monte Carlo simulation, the values of σ g  and σ s  varied together 
such that the angular noise in the measured star and gravity vectors were equiva-
lent. This represents a scenario in which neither sensor acts as a substantial per-
formance bottleneck. Figure 7 shows the simulation predictions with input and 
output noise values expressed in equivalent distance along the Earth’s surface.

The trial, shown in Figure 7, sampled equivalent3 measurement noise in the range 
of 6 m to 1.8 km in 300 equal intervals. Each interval was evaluated using a ran-
dom heading (uniform over 360°) and the star tracker boresight was randomly per-
turbed from zenith (normal distribution with standard deviation σ = 2 ).  At each 
interval, 500 star tracker images and inclinometer measurements were generated.

Centroid and inclinometer noise were added to each measurement according to 
the assumed instrument covariance values. A maximum of 10 star vectors were 
generated for each exposure, selected on the basis of star brightness. This process 
mimicked the star tracker’s selection logic4. The two non-zero eigenvalues of Pproj  
were used to predict measurement covariance and the close agreement between 
synthetically generated data and analytical predictions demonstrates the accuracy 
of our covariance model.

The sensor represented in these simulations was oriented to point near the 
zenith, giving a near-isotropic uncorrelated error distribution in the easting and 

3Sensor angular error converted to angular error along the Earth’s geoid
4�Adding additional stars can give some accuracy improvements but this quickly reaches the point of diminishing 
returns. Moreover, these star-rich areas are found in only some parts of the sky.

TABLE 6
Simulated Star Tracker Parameters

Field of view 15°

Resolution 1944 × 2592

Maximum star visual magnitude +9 

FIGURE 7 Comparison of Monte Carlo and covariance model predictions of surface 
localization error (random orientations); standard deviations are derived from the eigenvalues of 
Pproj and the eigenvectors lie close to the (a) easting and (b) northing directions.
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northing directions. When pointed at extreme angles near the horizon, there was 
more asymmetry and correlation in the error distributions.

The random variations in orientation allowed stars to enter and exit the field of 
view between intervals such that favorable star geometries were transient. This 
introduced variability in both the synthetically generated eigenvalues as well as 
the predicted ones. Figure 8 shows the same results as Figure 7, but with fixed 
orientations. We still wished to ensure the solution was heading-independent, so 
instead of fixing the heading to a single value, four pre-determined headings were 
simulated at each interval. This is in contrast to the previously discussed process 
using random headings and a 2° random variation in inclination. In doing so, the 
same stars would always be visible and the variability in predicted positioning error 
would vanish.

We note that the bias visible in Figure 8 is an artifact of the smallest observable 
eigenvalue, described in Section 2.5, having a small non-zero value. Its removal via 
projection imparted a small in-plane rotation between the remaining predicted and 
generated eigenvectors shown in Figure 9. This rotation was random and varied 
from interval to interval and so, too, did the visible bias in both magnitude and 
sign. Note, the ellipse in Figure 9 is a hand-picked sample which is representative 
of typical performance but these plots vary from showing near-perfect agreement 
between predicted and generated data, to as much as 15% disagreement in princi-
pal axes magnitudes. A bias resulting from this rotation implies that if one direc-
tion under-predicts, the other will tend to over-predict, which we see in other trials 
as well as in Figure 8. This random rotation also implies that the eigenvectors do 
not exactly represent east-west and north-south, but rather tend to be predomi-
nantly in those directions.

In practice, the best performance achievable with our formulation had an accu-
racy of 296 m between orientations using articulate mechanization. Using the star 
tracker manufacturer’s quoted performance estimate of 7.2 arc seconds and the 
inclinometer’s x- and y-axis repeatability of 0.001° (3.6 arc seconds), which we’ve 
confirmed across multiple data sets, a 500-sample simulation was conducted and 

FIGURE 8 Comparison of Monte Carlo and covariance model predictions of surface 
localization error (fixed orientations); standard deviations are derived from the eigenvalues of 
Pproj and the eigenvectors lie close to the (a) easting and (b) northing directions.
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the covariance was predicted to have an error of 241 m, a notable under-prediction. 
We have confirmed that this error was not the result of our simplification of ˆ .FIC

We are aware that our inclinometer calibration resolution was inadequate for a 
range of motion of ± 0.02° (Jovanovic & Enright, 2020), creating the potential for 
systemic errors in addition to measurement noise. Fine-scale surveys of our incli-
nometer calibration’s residual space around measurement values of 0° revealed 
that unmitigated curvatures exist that could introduce up to 0.0005° of error over 
a ± 0.02° range of motion. This happens to be the amount of noise that was needed 
to bring our prediction up to 294 m, however, the manner in which we discovered 
this value was not rigorous and we will therefore refrain from drawing conclusions 
based on it.

For the strapdown articulation, our model predicted σb  of 1.58  km versus 
the experimental 1.78 km. In this case, we used the inclinometer wide-range 
root-mean-square error (RMSE) validation accuracy of 0.0038° (Jovanovic & 
Enright, 2020). The over-prediction of performance was likely due to a fine-scale 
systemic errors in our inclinometer which exceeded our validation resolution.

Figure 10 shows performance predictions obtained by independently varying the 
noise of both sensors and averaging them over multiple trials. Since inclination 
away from the zenith has a predicted adverse effect on performance, Figure 10 was 
generated for the two cases captured by our field tests. The combined error, σ geo ,  
was the root-sum of the two non-zero eigenvalues of Pproj ,  converted to an equiv-
alent linear distance error. Each data point represented the RMSE across 500 trials 
with randomized orientations. The quantity modeled by this figure need not neces-
sarily be temporal noise. The listed inclinometer error was the per-axis error while 
the star tracker error was the individual centroid error.

The red dots in Figure 10 represent the predicted DSS performance for our sys-
tem for each mechanization. The difference between predicted performance of the 
red dots is the realized improvement of using a smaller region of our inclinome-
ter’s measurement space, exposing less of the inclinometer’s systemic errors. We 
also plotted on this figure a black line to indicate the threshold at which improving 
a single sensor would come with diminishing benefits to overall DSS performance. 
This threshold corresponds to:

	 σ σs g= 1 3. � (63)

FIGURE 9 Localization error 3σ ellipses from synthetic Monte Carlo data in F ;  the solid 
lines present the projected eigenvectors and the scatter data are the generated synthetic position 
estimates.
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FIGURE 10 Global positioning performance on Earth at different star tracker and 
inclinometer performance levels shown for two cases of leveling: (a) a strapdown system leveled 
to within 10° and (b) an articulate system leveled to within 0.02°. The red dots indicate our DSS’s 
predicted performance for each case.
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for the strapdown (± 10°) case and:

	 σ σs g= 1 5. � (64)

for the articulate (± 0.02°) case.
Further improvement to our DSS system from the articulate mechanization, 

since it is close to this threshold, is only possible by improving both the star tracker 
and inclinometer.

6  CONCLUSION

This study presents a suite of mathematical tools based on a forward measure-
ment model for conducting DSS calibration without the use of heading truth. 
Using SVD, we demonstrate that the accompanying cost function produces param-
eter estimates that are observable and uncoupled in a strapdown implementation. 
Presented data suggests that the set of parameters must be reduced for an articu-
late mechanization in order to maximize localization accuracy. For calibration, an 
articulate mechanization provides superior performance with a simpler calibration 
model. Our results did not achieve the same accuracy as other research in this field, 
but we believe this to be a limitation of our choice of hardware and not a deficiency 
of our approach.

As presented, this localization method relies on GPS truth for calibration. 
Near-term interplanetary missions cannot count on any such positioning system, 
so some modifications of the outlined procedures would be necessary to make this 
approach practical. Two observations can be used to guide designers. First, we noted 
that other sources of localization could be substituted for the GPS positioning with-
out any procedural modifications. Thus, even a single-point observation—using 
radio ranging, orbital imagery, etc.—would be sufficient to replicate this calibra-
tion in situ. Second, we recognized that the primary purpose of the calibration was 
to compensate for inter-sensor geometry and sensor biases. We expect that careful 
design and validation (e.g., athermal mechanical design, temperature regulation, 
ground-based calibrations) would greatly reduce the need for post-launch recali-
bration. Some technical risks may remain but these would be present in any system 
dependent on autonomous localization.

The accompanying covariance model was shown to be effective by a Monte Carlo 
analysis. When used to predict field test data, the deficiency of our inclinometer 
calibration likely detracted from our ability to make accurate predictions. Based 
on this Monte Carlo study, we provided a framework for predicting DSS perfor-
mance. Our results also identified the threshold at which further DSS performance 
improvement would be equally limited by star tracker centroid noise and inclinom-
eter subsensor noise.

Using Figure 10, we can conclude that in order to optimally achieve a strapdown 
DSS localization accuracy of 100 m, a star tracker with a star vector accuracy of 
2.1 arc seconds and an inclinometer with a subsensor accuracy of 1.4 arc seconds 
would be required. This level of performance lies within reach of contemporary 
technology. With careful calibration of an inclinometer, such a system would be 
practical. Improving the performance further to 25 m would require additional 
improvements to the star tracker and inclinometer. The necessary 0.55  arc sec-
ond star tracker accuracy is within reach of current technology, but achieving 
0.4 arc second performance will be a challenge for inclinometers without substan-
tially limiting an inclinometer’s functional range of motion. Further innovations 
in calibration and measurement technologies would be required to advance DSS 
systems to this level of performance.
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