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O R I G I N A L  A R T I C L E

Robust Modeling of GNSS Orbit and Clock Error Dynamics

Elisa Gallon1  Mathieu Joerger2  Boris Pervan1

1  INTRODUCTION

Global navigation satellite systems (GNSSs) can provide continuous worldwide 
absolute positioning but require visibility of four or more satellites, which is not 
always achievable in sky-obstructed environments. Also, GNSS is vulnerable to 
radio-frequency interference. In contrast, inertial sensors are not directly impacted 
by these external factors. Inertial navigation systems (INSs) can be used as dead 
reckoning sensors to estimate displacements over time, but state estimation errors 
drift due to the temporal integration of IMU errors. Combining INS and GNSS, 
for example, using a Kalman filter (KF) can simultaneously limit the drift in INS 
positioning error and provide continuity through sky obstructions and robustness 
against GNSS jamming and spoofing attacks (Tanil et al., 2018). GNSS/INS inte-
gration is accomplished through measurement filtering, which requires the robust 
modeling of stochastic errors over time to ensure navigation integrity.

Another application in which GNSS measurements can be filtered over time is 
Advanced Receiver Autonomous Integrity Monitoring (ARAIM). For aircraft navi-
gation, the baseline version of ARAIM uses carrier smoothed code (CSC) measure-
ments at one instant in time to provide a snapshot navigation solution (Working 
Group C, 2012, 2014, 2016). However, in Joerger and Pervan (2020), we showed that 
the additional leverage of satellite motion over time provides superior positioning 
performance and tighter protection levels (PLs) than baseline ARAIM. Sequential 
ARAIM algorithms (using banks of KFs, for example) open the possibility to extend 
the scope of ARAIM beyond aircraft navigation to rail, harbor, or arctic operations.

To implement sequential ARAIM or inertial-GNSS integration, one must ensure 
that the error models implemented in the KF properly account for time correlation. 
In both applications, dynamic models for the three main error sources affecting 
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ionosphere-free GNSS signals are needed: orbit and clock errors, tropospheric delay, 
and multipath. This paper focuses on GNSS satellite clock and orbit ephemeris errors, 
which are major contributors to ranging errors for dual-frequency GNSS users.

Building on the prior work of DeCleene (2000) and Rife et al. (2006), Perea Diaz 
(2019) employed an overbounding theory to define upper bounds on the variances 
of orbit and clock errors for both GPS and Galileo satellites. These error models are 
sufficient for snapshot positioning, but not for time-sequential implementations 
because they do not address the stochastic dynamics of the errors over time.

Langel (2014) derived an analytical bound on integrity risk for time-sequential 
linear estimators using autocorrelation function (ACF) bounding. We used exper-
imental data to evaluate ACF bounds for GPS and Galileo orbit and clock errors 
in Gallon et al. (2019). But Langel’s ACF-based approach requires continuous, 
cumulative storage of all data and estimator coefficients over time and, except for 
short finite-horizon intervals, is unsuitable for KF implementations. More recently, 
Langel et al. (2020) introduced the concept of power spectral density (PSD) bound-
ing, which we used for tropospheric error modeling Gallon et al. (2020). The PSD 
bounding method, unlike ACF bounding, is not restricted to fixed-interval imple-
mentations and is compatible with Kalman filtering.

In this work, we develop new, robust, sequential models for GNSS satellite orbit 
and clock errors using PSD bounding. Clock errors are analyzed per satellite clock 
type: Rubidium versus Cesium for GPS, and Rubidium versus passive Hydrogen 
masers for Galileo.

The paper is organized as follows. In Section 2, we describe the experimental data 
used throughout the paper, which includes three full years of orbit and clock errors 
for both GPS and Galileo. In Section 3, we analyze the errors’ stationarity, which is 
required for PSD bounding. We derive robust GPS and Galileo orbit and clock error 
models over time in Section 4. Concluding remarks are given in Section 5.

2  ORBIT AND CLOCK ERROR CHARACTERIZATION 
OVER TIME

In this section, we describe the databases and processes used to compute GPS 
and Galileo satellite orbit and clock errors. Orbit and clock estimates from broad-
cast navigation data are compared to a reference source (truth) after interpolation 
and coordinate transformation. In addition, we partition the data with respect to 
satellite clock type. 36 months of data were processed from 2018 through 2020.

2.1  Reference Orbit and Clocks

Truth data is obtained from the Multi-GNSS EXperiment (MGEX) repositories 
accessible at the National Aeronautics and Space Administration (NASA CDDIS, 
2020). The MGEX service was initiated by the IGS to create a single GNSS data ser-
vice for multiple core constellations. MGEX is comprised of several analysis cen-
ters (ACs) that independently compute their own GNSS orbit and clock products. 
For this work, we used precise orbit and clock data from two ACs: CODE for GPS 
and CNES for Galileo, both available at the IGS (2020) repository, and we con-
sider them to be our truth reference. These reference products have an accuracy of 
2.5 centimeters (specified as the one-dimensional mean root-mean-square (RMS) 
value over the three geocentric position components). A more detailed analysis 
of the consistency and accuracy of the MGEX orbit and clock products, as well as 
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references for the GPS and Galileo reference files, can be found in Steigenberger 
and Montenbruck (2020).

Because we are interested in accurately characterizing orbit and clock errors over 
time periods of a few hours, the files’ nominal 15-minute sampling period is insuffi-
cient. The data was, therefore, interpolated at 30-second intervals. For this purpose, 
we used an 8th-order Lagrange polynomial following the analysis in Schenewerk 
(2003). Clock errors are random walk processes and should not be interpolated. 
Instead, we directly use the IGS reference clock products, which are provided with 
RMS errors lower than 70 picoseconds at 30-second sample intervals. Note that 
each clock product is aligned to their AC’s realization of the system time. This 
means that each AC product will be impacted by its own clock bias. Therefore, a 
common clock bias for the AC product in use must be removed from all satellites.

2.2  Broadcast Ephemerides

Broadcast ephemerides are stored in Receiver Independent Exchange (RINEX) 
formats that contain 24 hours of navigation messages. We used Stanford University’s 
sugl files for GPS satellites and brdc from CNES for Galileo, respectively, obtained 
from the Stanford University (2020) and CNES (2019) repositories. These institu-
tions were chosen among several others because their data cleaning and validation 
algorithms ensure a minimal amount of residual file recording, storing, and label-
ing errors.

2.3  GPS and Galileo Orbit and Clock Errors

Satellite orbit and clock errors are obtained by taking the difference between the 
estimates of the broadcast ephemerides and those of the reference orbits, as shown 
in Figure 1. Reference orbits are provided with respect to the center of mass (CoM) 
of the satellite, whereas broadcast ephemerides are recorded with respect to the sat-
ellite’s antenna phase center (APC). Thus, they need to be converted to the same 
reference point—in this case, the reference orbits are expressed at the APC. Note that 

FIGURE 1 Error generation diagram
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there are two conventions to define the APC: The IGS convention and the satellite 
metadata.

The offset for these conventions can be found at the International GNSS Service 
(IGS, 2020), National Oceanic and Atmospheric Administration (NOAA, 2021), 
and the European GNSS Service Centre (2021). More details on these offset cor-
rections can be found in Montenbruck et al. (2014). After correcting for the off-
sets, orbit and clock errors were obtained by differencing reference and broadcast 
orbit and clocks. The final errors were then converted to the satellite-referenced 
local-level radial, along-track, and cross-track frame. Note that each clock product 
was aligned to their AC’s realization of the system time. This means that each AC 
product would be impacted by its own clock bias. Therefore a common clock bias 
must be removed from all satellites.

The user ranging error (URE) is the projection of the satellite’s orbit and clock 
errors for any user on Earth and is the combination of three components:

	 URE x w vc x c w c v( ) ( ) ( ) ( )η η η η= + + � (1)

where x, w, and v are the radial+clock, along-track, and cross-track compo-
nents, respectively. The weighting factors cv  and cw  are described below with 
c c cx w v= − −1 2 2 .

We consider three scenarios. Given Re ,  the Earth radius in kilometers, and RSV ,  
the satellite’s altitude in kilometers, the following limiting cases respectively maxi-
mize the contributions of radial+clock, along-track, and cross-track errors to URE:

•	 Case 1: c cv w= = 0  

•	 Case 2: cv = 0  and cw
R
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=

+
 and cw = 0  

These cases are represented in Figure 2.
We processed the orbit and clock errors of GPS (31 active satellites) and Galileo 

(18 active satellites) over 2018, 2019, and 2020, at a 30-sec sampling rate, which 
represents about 180 million data points. Figure 3 shows the orbit and clock errors 
of the 31 GPS (grey) and 18 Galileo (black) satellites in December 2018. Orbit and 
clock error time series for the entire month, for all satellites in Case 1, are plotted 
on top of each other.

FIGURE 2 Projection of radial, along-track, and cross-track errors onto the user’s line 
of sight
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GPS ephemerides are nominally broadcast every 2 hours. When a new set of 
ephemerides is received, the GPS Interface Specifications document stipulates 
that the previous one is still valid (U.S. Air Force, 2020), but most users choose to 
use the most recently received set. The switch of ephemerides causes an abrupt 
change in the estimated satellite positions, which can be cumbersome to model in 
a KF. In response, we adopted an ephemeris switch-over method more amenable 
to dynamic modeling. We interpolated the broadcast ephemerides in the position 
domain over the 2-hour overlap between the previous and current sets to ensure 
continuous transitions at ephemeris switch-overs.

Figure 4 shows an example of radial error for GPS PRN07 interpolated (grey) 
versus not interpolated (red). The ephemeris jump can be observed for the 

FIGURE 3 Orbit and clock errors for all GPS and Galileo satellites in all three cases at 30-s 
intervals in December 2018

FIGURE 4 Example ephemerides interpolation (radial errors) of GPS PRN07 in 
December 2018 (upper), as well as its impact on radial+clock error ACF (lower)
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non-interpolated case at the 2-hour time tag. The process used for Galileo ephe-
merides is similar, and both are further explained in Appendix A.

Although the interpolated switch-over method does produce much smoother 
error transitions and is more amenable to modeling in a KF, it does not lead to error 
spectral characteristics significantly different from those resulting from abrupt 
switch-overs. The lower part of Figure 4 shows the (normalized) ACF for inter-
polated (grey) and not interpolated (red) orbit as well as the clock errors of GPS 
PRN07. The x-axis was limited here to 7 hours since it has the longest satellite pass 
duration (longer correlation times do not impact the user). The choice of interpo-
lation method has minimal influence on the ACFs and, therefore, will not limit the 
general applicability of the final error models.

The error models developed in the rest of this paper are intended for implemen-
tations in which the ephemerides are interpolated. However, these error models 
also apply to applications in which the difference between interpolated versus 
non-interpolated ephemerides is negligible, even if the user does not interpo-
late ephemerides. For residual error modeling in space-based and ground-based 
augmentation systems (SBAS and GBAS, respectively) that rely on corrections 
of the un-interpolated ephemerides, this methodology could be reiterated with 
un-interpolated ephemerides in order to obtain appropriate models.

2.4  Impact of Satellite Clock Type on Orbit and 
Clock Errors

There are three main types of space-qualified atomic clocks used in GPS and 
Galileo: Rubidium or Rubidium Atomic Frequency Standard (Rb or RAFS), 
Cesium  (Cs), or passive Hydrogen masers (PHMs). GPS satellites have been 
equipped with several combinations of clocks. GPS Block II/IIA carried two Cs 
and two Rb clocks, Blocks IIR and IIR-M contained three Rb clocks, and Block IIF 
carried two Rb and one Cs clock. Galileo satellites, on the other hand, use PHMs 
as their primary clocks and RAFS as secondary. Tables 1 and 2 summarize the GPS 
and Galileo clocks and block numbers associated with each PRN during the time 
period of the data we processed. Table 1 shows that most GPS satellites used a Rb 
clock as their main clock. Only two GPS satellites used Cs clocks. Table 2 shows 
that most Galileo satellites were PHM satellites and, even though all of them car-
ried RAFS, only three used them for broadcast signals.

A comparison in Teunissen and Montenbruck (2017) of atomic frequency stan-
dards was performed among the GPS and Galileo constellations over timescales 
ranging from 1 second to 1 day. It showed that stability could vary by as much as a 
factor of 10 and was generally better for the Rubidium and PHM clocks.

TABLE 1
Clocks and Blocks of Each GPS Satellite (2018–2020)

PRN 01 02 03 05 06 07 08 09 10 11 12 13 14 15 16 17 

Clock Rb Rb Rb Rb Rb Rb Cs Rb Rb Rb Rb Rb Rb Rb Rb Rb 

Block IIF IIR IIF IIR IIF IIR IIF IIF IIF IIR IIR IIR IIR IIR IIR IIR

PRN 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Clock Rb Rb Rb Rb Rb Rb Cs Rb Rb Rb Rb Rb Rb Rb Rb 

Block IIA IIR IIR IIR IIR IIR IIF IIF IIF IIF IIR IIR IIF IIR IIF
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We can illustrate this observation with Figure 5, which shows example error 
time series at 30-second intervals for each satellite clock type in March 2018 for 
GPS (top-two charts) and Galileo (bottom-two charts). For GPS, the upper and 
lower plots show errors for the Rb and Cs clocks on PRN01 and PRN08, respec-
tively. The Rb clock error oscillates within ±1 m. The Cs clock has larger error 
variations that reach up to ±2 m. For Galileo, both PHM and RAFS clock errors 
have similar behavior and remain between ±0.5 m. The variations in satellite clock 
errors are significantly larger in GPS than in Galileo satellites.

In order to model orbit and clock errors using PSD bounding, we must first 
ensure that they are stationary over the model’s duration.

3  ERROR STATIONARITY ANALYSIS

Consider a zero-mean random process X with autocorrelation function:

	 R X t X tX ( ) [ ( ) ( )]ξ ξ= + � (2)

TABLE 2
Clocks and Blocks of Each Galileo Satellite (2018–2020)

PRN 01 02 03 05 07 08 09 11 12 13 14 15 18

Clock PHM PHM PHM PHM PHM PHM PHM RAFS PHM PHM PHM PHM PHM

PRN 19 20 21 22 24 25 26 27 30 31 33 36 

Clock PHM RAFS PHM RAFS PHM PHM PHM PHM PHM PHM PHM PHM 

FIGURE 5 GPS and Galileo orbit and clock errors over December 2018
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Perea Diaz (2019) established bounds on the variance, RX ( ),0  of GNSS orbit and 
clock errors. By contrast, in our work, we are interested not only in RX ( ),0  but in 
the entire ACF.

The following dilemma arises when dealing with sample ACFs. On the one hand, 
if we use too little data, the estimation of the expectation function in Equation (2) 
may be inaccurate. On the other hand, if we use long sets of data, the process may 
not be stationary over the entire data collection period.

To get some guidance on how much data is needed to get an accurate ACF 
estimate (and later, an accurate PSD estimate), let us analyze the example of a 
zero-mean first-order Gauss-Markov random process (FOGMRP) with an ACF 
expressed as:

	 �� ( ) | |/R t eX X
t= −σ τ2 � (3)

where:
•	 τ : 	 the time constant of the FOGMRP
•	 σ X

2 : 	the variance of the random process X

The variance of the sample ACF ( ˆ )XR  is given by: 

	 ττ τσ σ − + 
≈ + 

 
4 /

ˆ
2 2( ) 2

X

t
XR

tt e
T T

� (4)

(where t  is the lag time, τ  is the process time constant, and T  is the length of data 
used in the estimation of the ACF). This result is derived in Appendix B.

Figure 6 presents the standard deviations of the ACF estimates for an example 
FOGMRP in Equation (4) with τ = 6 h  and σ X = 1 5. .m  The curves are shown for 
various lengths of data T  (color-coded curves) as a function of lag time (x-axis). Let 
us assume, for now, that this FOGMRP can be used as a rough approximation of 
GNSS satellite orbit and clock errors. The standard deviations of the ACF estimates 
(y-axis) are expressed in meters squared because the curves represent variations in 
orbit and clock error ACF estimation. For example, at lag time zero, the different 
curves capture the uncertainty in sample variance estimation error as a function 
of the length of data used. As T increases towards infinity, σ ˆ

XR  decreases towards 
zero: The longer the data set, the more accurate the ACF estimate.

Using 14 days of data, the standard deviation of the ACF estimate is close to 
0.3 m2 at a lag time of 20 hours, whereas using 1 year of data, the standard deviation 

FIGURE 6 Upper bound on standard deviation of ACF estimate (τ = 6 h, σ = 1.5 m)
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is about 0.06 m2 at the same lag. Figure 6 shows that the longer it is, the lower the 
uncertainty becomes. However, there appears to be diminishing benefit in using 
data lengths much longer than 3–6 months.

To test for the stationarity of the data, we use a combination of the Levene test 
and the two-sample Kolmogorov-Smirnov test. The Levene test (Levene, 1960) 
compares two or more sample populations to determine whether they have equal 
variance (homoscedastic). The two-sample Kolmogorov-Smirnov test (Massey Jr., 
1951) determines whether two samples come from the same distribution. Both 
tests are performed with a 95% confidence level (i.e., p-value of 0.05). If both tests 
come back positive, the data is considered stationary.

However, both tests assume that the samples are independent. This is not the 
case for the actual orbit and clock error data. To approximate the effective number 
of independent samples, we use the properties of a FOGMRP. While the sample 
data processes are obviously not known to be FOGMRP a priori, the data will later 
verify that it is a reasonable approximation. Two samples of a FOGMRP with time 
constant τ  can be considered independent if they are separated by a period larger 
than or equal to 2τ  (see Gallon et al. [2021]). Therefore, to test stationarity, the 
data is re-sampled at regular 2τ  intervals, where τ  is the estimated FOGMP time 
constant of the data set.

Note that, for a FOGMRP, the lag time associated with an ACF estimate value of 
1/ e  is the estimated time constant τ  used in the re-sampling mentioned above. 
If after final analysis of the data, the FOGMRP approximation turned out to be 
inappropriate, a similar approach to the one described in Gallon et al. (2021) would 
need to be performed to determine the number of independent samples for the 
specific process type.

For each PRN, the orbit and clock errors of a given satellite over 36 months of 
data are tested for stationarity. If the data set is deemed non-stationary, the data is 
subdivided into stationary data sets. Figure 7 shows the statistics of each stationary 
sub-data set for 2018 only (for clarity purposes). In some cases, the x-axis shows 
repeating PRNs. GPS PRN01, for example, is present six times. This means that 
stationarity tests failed until the data set was split into six different sets. Once sta-
tionarity is asserted, the partitioned data sets are treated separately.

4  ROBUST MODELING OF ORBIT AND CLOCK ERRORS

Unlike prior work that provided bounds on the variance of orbit and clock errors 
for GPS and Galileo (Perea Diaz et al., 2020), we present an approach to modeling 
these errors over time.

4.1  Zero-Mean Assumption

Figure 7 shows box plots of the error data for each satellite in the GPS (upper) 
and Galileo (lower) constellations. For clarity in exposition, the figure shows results 
limited to 2018; the rest of this work uses data from 2018, 2019, and 2020. The 
x-axis indicates the satellite’s PRN number. The color code designates the length of 
data used to generate the box representation as determined using the stationarity 
test. The red line inside each box represents the sample median and the upper and 
lower limits of the box represent the 75th and 25th percentiles, respectively. The 
dotted lines reaching away from the boxes represent the lowest and highest data 
points, excluding the outliers, which are represented by colored dots. A point is 
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considered to be an outlier if it is greater than q q q3 3 12 7+ −. ( )σ  or smaller than 
q q q1 3 12 7− −. ( ),σ  where q1  and q3  are the 25th and 75th percentiles of the sample 
data. Note that ±2.7σ  corresponds to 99% of the data if it is normally distributed. 
For both GPS and Galileo, the box plots appear to be consistent with a zero-mean 
assumption but will be verified below. It is worth noticing that GPS PRNs 8 and 24, 
the two Cesium satellites, have much larger error spreads than the rest of the GPS 
satellites. In addition, we can obtain the ensemble mean x̂  over n  stationary data 
sets for a given constellation.

For each stationary data set xi ,  we can take independent samples every 2τ i ,  and 
the estimates of the mean xi  and variance σ xi

2  for the data set can, respectively, be 
expressed as: 

	 x
N

xi
i k

N

i k

i

=
=
∑

1

1
, � (5)

	 σ x
i k

N

i k ii

i

N
x x2

1

21
1

=
−

−
=
∑ ( ), � (6)

where Ni  is the number of independent samples in stationary set xi  and xi k,  is 
the k-th independent sample within xi .  The variance of the error on the mean 
estimate xi  can be written as (Bendat & Piersol, 2010):

	 σ
σ

x
x

ii

i

N
2

2

= � (7)

FIGURE 7 Statistics of the 2018 GPS/GAL orbit and clock errors
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The weighted least-squares estimate of the ensemble mean for samples within a 
constellation is then computed as: 

	
σσ

= ∑∑ 22
ˆ 1

ii

i

i xxi

x
x � (8)

Using orbit and clock error data from 2018 to 2019 (more data points for a 
more accurate estimation), we obtained mean estimates per constellation of 

= 1.7 cmˆ 9GPSx  and = 0.8 c .ˆ 4 mGALx  It is important to remember that the IGS ref-
erence files were provided with an accuracy of approximately 2.5 cm. Therefore, 
the mean estimates obtained here are negligible. These results are consistent with 
those independently obtained in Perea Diaz (2019), which show that GPS and 
Galileo radial+clock errors for individual satellites are zero mean over one year. 
Therefore, we model orbit and clock error as a zero-mean process.

It is worth pointing out that we do not assert that the errors are zero-mean over 
the duration of a satellite pass at a given location. Often they are not, because their 
correlation time is typically of length similar to that of the longest satellite pass. It 
is the underlying parent process that is zero-mean. This is a necessary condition for 
evaluating PSDs in the next section.

4.2  Power Spectral Density Bounding

When it comes to estimating the PSD of stationary data, several methods exist 
(Bendat & Piersol, 2010). Our approach was to take the Discrete Fourier Transform 
(DFT) of the stationary sample ACFs. Langel et al. (2020) shows that error ACF 
values at time lags exceeding the duration of the Kalman filter’s operation are not 
relevant and can, therefore, be set to any value (zero, for example). This claim is 
only strictly true for zero-mean processes, which is the case in this application. To 
estimate the orbit and clock error PSDs, we use data collected over the entire years 
of 2018, 2019, and 2020, broken up into stationary segments.

We implemented the PSD estimation algorithm used in Langel et al. (2020). In 
order to limit spectral leakage, a tapered rectangular window (later called a tapering 
window) was applied to the orbit and clock error ACFs prior to performing the DFT. 
The red curve in Figure 8 represents the tapering window. The two other curves 
show an example ACF with windowing (black) and without windowing (grey). The 

FIGURE 8 Tapering window and its impact on an ACF
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sharp cutoffs in a simpler rectangular window would generate spectral leakage that 
would impact the estimated PSD (Langel et al., 2020). Instead, the tapering win-
dow smooths out the edges of an initial rectangular window to reduce spectral 
leakage. The window function is flat over the time interval of interest—in this case, 
the longest expected satellite pass duration, T1. ACF values associated with lags 
larger than T2 are set to zero. The farther apart T1 and T2 are from each other, the 
less spectral leakage is observed in the estimated PSD. Because the longest satellite 
pass lasts 7 hours, we used 7 and 14 hours, respectively, for T1 and T2. A sensitivity 
analysis on these two parameters is provided in Appendix C.

The left-hand side plot in Figure 9 shows the estimated orbit and clock error 
PSD curves for GPS satellites over the years 2018 to 2020 and for each of the three 
line-of-sight limit cases selected in Section 2.3. The Cs satellites are represented 
with blue curves and the Rb satellites are represented with green ones. The two 
clock types can again be clearly distinguished with Cs curves above the others. 
The fact that Rb clock curves are lower means that the standard deviation of their 
errors is also lower, which matches our previous observations as well as those in 
Perea Diaz (2019).

FIGURE 9 PSDs of orbit and clock errors for (a) GPS and (b) Galileo



    GALLON et al.

The right-hand side plot in Figure 9 shows the same curves for Galileo satellites. 
As observed before, no clear distinction can be drawn between the PHM and the 
RAFS Galileo satellites.

To robustly model the dynamics of orbit and clock errors over time, we 
upper-bound their PSD using a FOGMRP model. We chose a FOGMRP that is fully 
determined by two parameters, a time constant τb  and a standard deviation σb

2 ,  
because it can easily be incorporated into a KF. Its PSD can be expressed as: 

	 S f
f

b b

b
( )

/
/

=
+

2
1 4

2

2 2 2
σ τ

τ π
� (9)

Since the two GPS clock types clearly show different trends in the frequency 
domain, the user may implement different bounding models for each. Figure 10(a) 
shows the PSD curves for the Rb satellites and its FOGMRP bound. Figure 10(c) 
shows the same for the Cs satellites. Figures 10(b) and 10(d), respectively, show 
the bounds for the Galileo satellites RAFS and PHM. If future ARAIM integrity 
support messages (ISMs) do not identify clock types by satellite, users could access 
this information via Notice Advisories to Navigation Users (NANUs). However, we 
only processed data for two GPS Cs satellites and three Galileo RAFS satellites. The 
bounds for satellites with these two clock types could benefit from validation using 
more data, either from more satellites or over a longer duration.

FIGURE 10 PSD bounding of (a) GPS Rb, (b) GAL RAFS, (c) GPS Cs, and (d) GAL PHM
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Table 3 summarizes the parameters of the PSD-bounding Gauss-Markov random 
process (GMRP) models. For the GPS constellation, the PSDs of orbit and clock 
errors were bounded using τb  = 5 hours and σb  = 1.8 meters. Galileo errors were 
bounded using τb  = 2 hours and σb  = 0.65 meters.

These models can be readily implemented in a KF by state augmentation 
(Bryson, 2002).

5  CONCLUSION

In this paper, we developed new stochastic models to bound the dynamics of 
global navigation satellite systems (GNSSs) orbit and clock errors. The models are 
needed to ensure integrity in time-sequential GNSS navigation systems integrated 
with inertial sensors or using dual-frequency, multi-constellation, sequential 
Advanced Receiver Autonomous Integrity Monitoring (ARAIM).

We processed and partitioned three years of empirical GPS and Galileo orbit and 
clock error data. We performed stationarity analyses using two statistical tests: one 
on the variance of the errors, and another on their distribution.

Then, to robustly model orbit and clock errors, we used a frequency-domain 
bounding approach, in which the error PSDs were upper-bounded using 
first-order Gauss-Markov random process (GMRP) models. We derived separate 
high-integrity, PSD-bounding models for GPS and Galileo satellites and for their 
different clock types.
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APPENDIX A  EPHEMERIS INTERPOLATION

GPS satellites typically broadcast a new set of ephemerides every 2 hours. Each 
set is valid for at least 4 hours. Hence, when a new set of ephemerides is received, 
the previous one is still valid for another 2 hours. Section 2.3 shows that ephem-
eris updates introduce jumps in the orbit and clock errors. If we were to account 
for the jumps in a batch or KF implementation, we would need to model their 
dynamic behavior, which would require a cumbersome hybrid continuous/dis-
crete process model. Since smoother dynamics are more convenient to model, 
and since we would ideally, for ease of implementation, like to model errors 
using simple models (e.g., as FOGMRP), we instead use interpolated broadcast 
ephemerides.

A.1  GPS Ephemeris Interpolation

GPS ephemerides are valid for (at least) 4 hours—2 hours before and after the 
specified time of ephemeris (toe). A new set of ephemerides is normally received 
by the receiver every 2 hours. When the new set is received, the current one is still 
valid for some time (2 hours after toe [U.S. Air Force, 2020]). Users who are not 
concerned with stochastically modeling ephemeris error would typically decide to 
use the new one immediately. However, our goal was to produce such a model, 
so we instead interpolated the current ( )Xcur  and next ( )Xnext  sets of ephemeri-
des in the position and velocity domains over a window Wint  of 2 hours. This 
interpolation is represented in Figure A2, where the blue curves are the original, 
non-interpolated ephemerides and the green curve represents the interpolated por-
tion over the time in which both ephemerides were valid. The equation describing 
this interpolation is:

	
τττ τ τ

−
− = − + −( )ˆ ( ) ( )int

next cur
int int

W
X t X t X t

W W
� (A1)

where:
•	 ˆ :X 	 the interpolated output 
•	 Wint : 	the interpolation window
•	 t : 	 the time of the jump between Xcur  and Xnext
•	 τ : 	 a dummy variable within the interpolation window: τ ∈[ : ]0 Wint

Figure A1 shows the radial errors of GPS PRN07 in December 2018. The focus is 
on the ephemeris jump occuring at t = 2 hours. The blue dashed curve represents 
the set of ephemeris currently in use and whose toe was t = 0 hours. The black 
dashed curve represents the set of ephemeris that was just received by the user, 
whose toe was at t = 2 hours, but whose validity window starts at t = 0 hours. The 
green curve represents the result of their interpolation between t = 0 and 2 hours. 
At t = 0 hours, the user is currently using the blue set but has just received the 
black one as well; the interpolation begins at this point. At t = 1 hour, both sets 
are equally weighted to generate the interpolated curve (green). At t = 2 hours, the 
current set time of applicability has expired, and the user is now using 100% of the 
new set.
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A.2  Galileo Ephemeris Interpolation

Galileo ephemerides are valid for 4 hours after the toe which, in this case, also 
represents the time of reception of the new ephemeris. Therefore, the interpolation 
process is slightly different than for GPS. It is expressed with the following formula:

	
τττ τ τ

−
+ = + + +( )ˆ ( ) ( )int

next cur
int int

W
X t X t X t

W W
� (A2)

where the interpolation window is now defined (in seconds) as: 

	 W toe toeint = × − −10 60 2 1( ) � (A3)

Note that Galileo’s interpolation window is different to cope with the fact that the 
broadcast rate isn’t necessarily fixed and can be as short as 10 min. Additionally, 
unlike GPS, the toe is located at the beginning of validity period (see Galileo OS-SDD 
[2021]).

FIGURE A1 GPS PRN07 ephemerides interpolation

FIGURE A2 GPS and Galileo ephemerides interpolation diagram
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APPENDIX B  VARIANCE OF AUTOCORRELATION 
ESTIMATES 

Let us define the autocorrelation estimate of a random process X t( )  as: 

	 δ= +ˆ ( ) ( ) ( )X X XR t R t R t � (B1)

where R tX ( )  is known and δR tX ( )  is unknown. In the following, we derive an 
approximate expression for the variance of autocorrelation estimate ˆ ( ).XR t

Equation (8.103) of Bendat and Piersol (2010) show that the variance on the ACF 
estimate ˆ

XR  can be expressed as:

	 σ ξ ξ ξ ξ
+∞

−∞

= + + −∫2
ˆ ( )

2 ( ) ( )1 ( )
X

X X XR t
R R t R t d

T
� (B2)

Approximating that the errors are derived from a zero-mean FOGMRP, the parent 
autocorrelation function can be expressed as:

	 �� ( ) /R eX Xξ σ ξ τ≈ −2 � (B3)

Substituting Equation (B3) into Equation (B2) and solving the integrals, we obtain: 

	 τσ
σ τ τ −≈ + +

4
2 2 /
ˆ ( )

( ( 2 ) )
X

X t
R t

t e
T

� (B4)

APPENDIX C  SENSITIVITY OF PSD ESTIMATION TO 
PARAMETER SELECTION 

The PSD estimation method used in this paper is described in Langel et al. (2020) 
and relies on a tapering window applied to the ACF of the errors prior to the Fourier 
transform computation. The tapering window, as described in Section 4.2, relies on 
two parameters: T1 and T2. On top of that, the length of data T plays an important 
role in the PSD estimation process since it drives the ACF accuracy. Hence, when 
estimating PSDs, we need to take into account all three time parameters: T1, T2, 
and T. In this appendix, we analyze the sensitivity of the PSD estimation process to 
our choices of T1, T2, and T.

In Section 3, we showed that the parameter T influences the overall accuracy 
of the ACF estimate. Since the PSD estimation approach chosen here relies on 
first estimating error ACFs, the same conclusion applies: The longer the data, the 
more accurate the ACFs and, hence, the more accurate the PSD estimate will be. 
Therefore, using as much data as possible would be ideal (i.e., 1 year). Note, how-
ever, that the choice of T will be entirely determined by the stationarity tests. For 
this analysis, we assume an average value T = 6 months.

Additionally, we know that the T1 parameter represents the lag values until 
which the ACF will remain unchanged. In our case, because a satellite pass lasts 
about 7 hours maximum, it is in our best interest not to modify correlation values 
during that period of time. We, therefore, chose T1 = 7 hours.

The only parameter left to analyze is T2, which will define how rectangular the 
tapering window will be. If T1 and T2 are close to each other, the window will be 
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nearly rectangular, and it will result in spectral leakage in the frequency domain, 
decreasing the quality of our PSD estimate. Example windows are represented in 
Figure C1. The following section analyzes the impact of different T2 values on the 
PSD estimate of a FOGMRP process.

C.1  Impact of the Window Shape on a FOGMRP 
PSD Estimate

Let us begin by looking at the impact of various tapering windows on the PSD 
estimate of a first-order GMRP. For that, we generated 6 months of FOGMRP data 
at a 30-sec sampling rate with a time constant of 6 hours and a standard deviation 
of 1.5 m. Because we know the theoretical expression of a FOGMRP PSD, we can 
compare it to the various PSD estimates. Figure C2 shows the PSD estimates using 
the various tapering windows represented in Figure C1.

The red dashed curve represents the theoretical PSD curve of a FOGMRP. 
The grey curve represents the PSD estimate obtained when using a rectangular 
window (T1 = T2 = 7 h). Rectangular windows are known for inducing spectral 
leakage in the frequency domain. At high frequencies (right part of the plot), 
spectral leakage induces a divergence of the PSD estimate from the true PSD 
curve. We can see that the more T2 is increased, less spectral leakage is visi-
ble (bumpiness of the curves) and the closer the PSD estimates get to the true 
GMRP PSD curve.

These results suggest that PSD estimates with increasing T2 values will converge 
to the true GMRP PSD curve. To test this theory, Figure C3 shows PSD estimates 
using tapering windows whose T2 values range from 24 hours to 1 month of data. 
Beyond a certain length of time for T2, the curves can be seen to become noisier at 
all frequencies. Indeed, for values higher than 48 hours, the spectral leakage seems 
to be replaced by noise, most likely due to noise in the ACF estimate.

The results of this section suggest that T2 = 48 h is an ideal value for the PSD 
estimation of a FOGMRP.

FIGURE C1 Example of tapering windows used in the PSD estimation process
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C.2  Impact of the Window Shape on Real Orbit and 
Clock Error Data

In this section, we verify that this theory applies to the orbit and clock errors 
using an example data set of PRN 01 for 2018.

The grey curve of Figure C4(b) shows the PSD estimate of this data set with 
T1 = 7 h and T2 = 48 h, as suggested by the analysis in Section C.1. If we were 
to upper bound this curve with a FOGMRP (see Section  4.2), the associated 
sigma would have to be inflated to upper bound the frequency bump observed at 
f = × −2 4 10 5.  Hz. That frequency is equivalent in the time domain to a period of 
11.5 hours.

Note that GPS satellites have an orbit period of half a sidereal day (23 hours, 
56 minutes, and 4 seconds) and will, therefore, take about 11.9 hours to orbit the 

FIGURE C2 Impact of tapering window on PSD estimate of FOGMRP in terms of spectral 
leakage in (a) original figure and (b) the zoomed figure
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Earth. Note also that this orbital period can be observed on the grey ACF curve 
in Figure C4(b). The grey curve represents the tapered ACF of the data set, with 
T1 = 7 h and T2 = 48 h. Therefore, the ACF lobe located at the 11.9-hour time lag is 
barely tapered and will result, in the PSD domain, in a frequency bump that will 
drive the PSD bounding process.

Since a satellite pass lasts 7 hours at the maximum, tapering the ACFs after this 
time lag will not impact the robustness of our model. Smaller T2 values will result 
in an attenuated orbital period frequency bump and, therefore, a better, less con-
servative PSD bounding model.

Any 14 482h h T  would ensure limited spectral leakage and noise. To reduce 
the impact of the orbital period on our PSD estimate, we chose T2 to be as small as 
possible within this interval.

Therefore, in this work, we set T1 = 7 h and T2 = 14 h.

FIGURE C3 Impact of a tapering window on PSD estimate of FOGMRP in terms of data 
noise in (a) the original figure and (b) a zoomed-in version
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APPENDIX D  GPS AND GALILEO ORBIT AND CLOCK 
MEAN ERRORS 

The tables provided in this section support the results presented in Section 4.1.

FIGURE C4 (a) Tapered ACF and (b) PSD estimates for GPS PRN 01 orbit+clock errors

TABLE D1
GPS Radial+Clock Means Over Stationary Data Sets From 2018

GPS PRN Mean [m] Std. Dev. [m] Length [mths]

1 0.15181 0.52102 ≤12

2 0.211 0.31693 ≤12

3 −0.59562 0.41451 ≤3

3 0.19369 0.35442 ≤3

3 0.032022 0.2914 ≤3

3 −0.33754 0.28413 ≤9

5 0.22566 0.33265 ≤12

(Continued)
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GPS PRN Mean [m] Std. Dev. [m] Length [mths]

6 0.042776 0.30049 ≤12

7 0.023768 0.47918 ≤12

8 −0.029357 1.1326 ≤12

9 0.064882 0.36227 ≤12

10 −0.10917 0.2902 ≤12

11 −0.04991 0.46482 ≤12

12 −0.095559 0.30714 ≤12

13 −0.070358 0.44447 ≤12

14 −0.0053735 0.33284 ≤12

15 0.12453 0.26539 ≤12

16 0.18851 0.30236 ≤12

17 −0.011678 0.74955 ≤12

18 −0.10958 0.79282 ≤9

19 0.24324 0.27517 ≤12

20 0.16795 0.27282 ≤12

21 0.16503 0.38677 ≤12

22 0.24805 0.2823 ≤9

22 0.044398 0.27601 ≤3

22 0.35408 0.27412 ≤3

23 −0.10955 0.27479 ≤12

24 −0.11647 1.4026 ≤12

25 −0.15957 0.30715 ≤9

25 −0.2088 0.26378 ≤6

26 −0.27604 0.37371 ≤3

26 0.12675 0.24348 ≤3

26 −0.22616 0.31531 ≤9

27 −0.16267 0.18802 ≤3

27 0.017111 0.23106 ≤6

27 0.19058 0.29172 ≤3

27 −0.046387 0.32942 ≤3

27 0.19249 0.26256 ≤3

28 −0.0059212 1.0776 ≤12

29 0.15855 0.61683 ≤12

30 −0.080241 0.29056 ≤12

30 0.18593 0.26506 ≤3

31 −0.15851 0.48574 ≤12

32 −0.043364 0.28695 ≤12

TABLE D1 (Continued)
GPS Radial+Clock Means Over Stationary Data Sets From 2018
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TABLE D2
GAL Radial+Clock Means Over Stationary Data Sets from 2018

GAL PRN Mean [m] Std. Dev. [m] Length [mths]

1 0.091214 0.24568 ≤6

1 0.078555 0.21544 ≤3

1 −0.42204 0.22004 ≤3

1 −0.038823 0.21709 ≤3

1 −0.42519 0.23084 ≤3

1 −0.019701 0.23685 ≤3

2 0.015409 0.2775 ≤3

2 0.012696 0.21544 ≤6

2 −0.12253 0.22308 ≤9

3 −0.026017 0.22428 ≤6

3 −0.18805 0.18314 ≤9

4 −0.017809 0.23644 ≤6

4 −0.18604 0.18491 ≤9

5 −0.072306 0.24484 ≤6

5 −0.2584 0.1949 ≤9

7 0.048784 0.21218 ≤12

8 −0.1201 0.22493 ≤12

9 −0.021583 0.24177 ≤6

9 −0.15546 0.2156 ≤9

11 0.075113 0.28793 ≤12

12 −0.0031322 0.25776 ≤6

12 −0.11856 0.23787 ≤9

19 0.036388 0.2193 ≤12

21 −0.37697 0.25023 ≤3

24 0.05825 0.23793 ≤6

24 −0.061414 0.21475 ≤9

25 −0.22988 0.23432 ≤6

26 −0.045681 0.31476 ≤6

26 −0.25812 0.22305 ≤9

27 −0.12651 0.24678 ≤6

30 0.061876 0.28908 ≤6

30 −0.054281 0.25925 ≤9

31 −0.16386 0.23093 ≤6
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