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O R I G I N A L  A R T I C L E

High-Precision Positioning Using Plane-Constrained 
RTK Method in Urban Environments

Chen Zhuang1,2  Hongbo Zhao*1,2  Yuli He1  Shan Hu1  Wenquan Feng1 
Bing Hou3

1  INSTRUCTION

Global navigation satellite systems (GNSS) have been widely employed in vehic-
ular applications to conduct real-time position estimation (Dabove, 2019; Du & 
Barth, 2008). One of the most competitive and promising positioning methods, 
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Abstract
High-precision positioning methods have drawn great attention in recent years 
due to the rapid development of smart vehicles as well as automatics driving 
technology. The Real-Time Kinematic (RTK) technique is a mature tool to 
achieve centimeter-level positioning accuracy in open-sky areas. However, the 
users who drive under dense urban conditions are always confronted with harsh 
global navigation satellite system (GNSS) environments. Skyscrapers and over-
passes block the signals and reduce the number of visible satellites, making it 
difficult to achieve continuous and precise positioning. Considering that the 
road is relatively smooth in most urban areas, vehicles are expected to travel on 
the same plane when they are close to each other. The road plane information 
is a promising candidate to enhance the performance of the RTK method in 
constrained environments. In this paper, we propose a plane-constrained RTK 
(PCRTK) method using the positioning information from cooperative vehicles. 
In a vehicle-to-vehicle (V2V) network, the positions of cooperative vehicles 
are used to fit a road plane for the target vehicle. The parameters of the plane 
fitting are treated as new measurements to enhance the performance of the 
float estimator. The relationship between the plane parameters and the state 
of the estimator is derived in our study. To validate the performance of the pro-
posed method, several experiments with a four-vehicle fleet were carried out in 
open-sky areas and dense urban areas in Beijing, China. Simulations and exper-
imental results show that the proposed method can take advantage of the plane 
constraint and obtain more accurate positioning results compared to the tradi-
tional RTK method.
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the Real-Time Kinematic (RTK) technique (Hofmann-Wellenhof et al., 2001), is 
feasible to provide centimeter-level positioning accuracy once carrier-phase ambi-
guities have been correctly resolved. However, frequent signal blockages caused 
by skyscrapers and overpasses lead to degradation in satellite visibility (Alam & 
Dempster, 2013). In a harsh environment, the positioning accuracy of the RTK 
method may decrease significantly, leading to unacceptable positioning errors 
for some safety-critical vehicular applications (Alam et al., 2012; MacGougan 
et al., 2010).

To achieve reliable and precise positioning in urban scenarios, a feasible approach 
is to extend the RTK method by fusing other positioning sensors (Zhao et al., 2016). 
Lassoued et al. (2016) proposed a tightly coupled integrated system using inertial 
navigation system (INS) and GNSS data, which realized robust positioning in vari-
ous urban environments. Similarly, Qian et al. (2020) proposed a cooperative RTK 
algorithm by jointly using INS and light detection and ranging (lidar) data, which 
achieved a higher fixed rate and position accuracy compared to the traditional 
RTK method. Xiong et al. (2020) integrated ultra-wideband (UWB) sensors into the 
RTK method to improve the robustness of positioning. However, these methods 
require additional and expensive sensors to obtain accurate sensing information, 
which is inapplicable to low-cost vehicles (hereinafter referred to as common vehi-
cles). Common vehicles and sensor-rich vehicles coexist in current traffic scenarios 
(Li et al., 2020). How to improve the positioning performance of common vehicles 
is still worth studying.

Owing to the fast development in the field of inter-vehicle communication 
(Zhang et al., 2018), vehicles equipped with communication devices are able to 
share navigation data with each other (Hu et al., 2021). The cooperative position-
ing (CP) method based on vehicle-to-vehicle (V2V) communication is a promising 
approach to enhance the positioning accuracy and reliability of common vehicles 
(Xiong et al., 2020; Song et al., 2020; Xiong et al., 2019). The theoretical features 
of achievable performance for CP have been deduced by Penna et al. (2010) and 
Schloemann and Buehrer (2015). Alam and Dempster (2013) discussed the feasi-
bility of conventional and modern CP systems in vehicular applications. Inspired 
by their studies, we previously proposed a cooperative positioning algorithm that 
combined the benefits of the RTK method and the CP method (Zhuang et al., 2021). 
The accuracy of float solutions can be improved by fusing GNSS observations from 
neighboring vehicles. Thus, a higher ambiguity fixed rate can be achieved com-
pared to the conventional RTK method. However, the computational load would be 
relatively high because additional ambiguities between the ego vehicle and cooper-
ative vehicles must first be resolved.

As many researchers focus on the integration of cooperative GNSS measure-
ments, some sensor-free environmental features that can also improve the posi-
tioning performance are seldom considered in CP methods (Alam & Dempster, 
2013). In urban scenarios, the road conditions are generally good and the roads are 
relatively smooth (Múčka, 2017), which means neighboring vehicles are usually 
traveling on the same plane that the ego vehicle is located. Therefore, we can use 
the plane information obtained from cooperative vehicles as new measurements to 
constrain the float estimator of the traditional RTK method.

In this paper, we propose a plane-constrained RTK (PCRTK) method using posi-
tioning solutions from cooperative vehicles. By collecting positioning data of coop-
erative vehicles traveling on the same road, we derive a plane equation and use 
the parameters of the plane equation to constrain the float estimator. The main 
contributions of our work include the design of a plane construction method using 
the positioning solutions shared by cooperative vehicles and the derivation of a 
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float estimator based on an adaptive Kalman filter that fuses the plane parameters 
with GNSS observations. We carried out several field tests involving four vehicles to 
collect real data to verify the proposed method. Numerical simulations and experi-
mental results validate the feasibility and superiority of our method.

The paper is organized as follows: In Section 2, we introduce the construction 
of the height plane; in Section 3, we describe the main procedure of the PCRTK 
method; then, the proposed method is validated by several simulations and experi-
ments in Section 4 and Section 5; discussions on the limits of the proposed method 
are presented in Section 6; and finally, we conclude our work in Section 7.

2  THE CONSTRUCTION OF THE HEIGHT PLANE

Consider the following scenario: Vehicles traveling on a smooth road can share 
their positioning data and the distance of their GNSS antennas from the ground 
through inter-vehicle communications. A vehicle can receive the data and then 
use them to fit a plane where the neighboring vehicles are traveling. To make it 
easier to understand the process of plane fitting, we define a target vehicle in this 
section and the others are regarded as cooperative vehicles. The process of plane 
construction can be divided into two parts: the construction of the road plane and 
the construction of the antenna height plane.

A GNSS antenna is generally placed on the roof of a vehicle. The height of a 
vehicle is generally different, which is determined by their brands. If the plane is 
constructed using the positions of the antennas directly, larger errors are inevitable 
for fitting the plane where the vehicles are truly located. In this case, the positions 
of the target vehicle are likely to incline to a faulty plane. Therefore, a road plane 
is first constructed by removing the height of the antennas of the vehicles. Then, 
we introduce the height of the antennas into the plane again. In this way, a plane 
expression that constrains the positions of the vehicles can be obtained.

Generally, the Earth-centered, Earth-fixed (ECEF) coordinate system is used. To 
deal with the height information of vehicles, the coordinate system is converted 
from ECEF to the local Cartesian coordinate system (East-North-Up or ENU) 
through an S matrix. Then, the baseline ′bi k,  between the position of a vehicle cast 
to the road plane and the reference station can be expressed as:

	 ′ = ⋅ −b S b hi k i k i, , � (1)

where bi k,  represents the baseline between the cooperative vehicle i and the refer-
ence station at the k-th epoch and hi  is the antenna height of vehicle i. After elim-
inating the influence of vehicle height, we add the location of the reference station 
bo  and calculate a new conversion matrix ′S  from the projection of the vehicle on 
the road to the center of the Earth, and then convert the ENU coordinate system 
back to ECEF again:

	 ′′ = ′ ⋅ ′ +b S b bi k i k o, ,( ) � (2)

Relative positions are used rather than absolute ones, as it is more convenient for 
us to introduce the plane constraint into the float estimator.

According to Equation (2), a point set V b bk n k= ′′ ′′{ , ..., }, ,1  can be obtained at 
epoch  k. Only the data of one epoch may not be enough for fitting a plane. In 
our study, we selected the data of five consecutive epochs closest to the current 
time to fit a plane. The set for fitting a plane is defined as ′V  in this paper. We, by 
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default, utilized all the available positioning solutions in ′V  to fit the plane. The 
least-squares method (Hurt & Colwell, 1980) was used to fit the plane α ,  whose 
distance to these positioning solutions was minimal:

	 b mean V= ′( ) � (3)

	 [ , , ] ( )U S V = ′ −SVD V b � (4)

where mean( )⋅  is the mean function, SVD( )⋅  is the singular value decomposi-
tion (SVD) function, and U, S, V are the corresponding matrices.

After the SVD, the eigenvector corresponding to the minimum singular value is 
the normal vector of the plane, which is expressed as:
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where end  represents the index of the minimum singular value. Meanwhile, the 
normal vectors also satisfy the following relationship:

	 P P PA B C
2 2 2 1+ + = � (6)

The constant term can be expressed as:

	 P P P P bD A B C= − ⋅[ , , ]  � (7)

Then, the expression of the road plane is defined as:

	 α : P x P y P z PA B C D+ + + = 0 � (8)

where x, y, z are the three-dimensional coordinates under the ECEF frame.
After the construction of the road plane, we can obtain the plane of the target 

vehicle by translating the road plane up by the height of the target vehicle ho  as:

	 β : P x P y P z PA B C D+ + + ′ = 0 � (9)

where:

	
′ −

+ +
=

P P

P P P
hD D

A B C
o2 2 2

� (10)

where the left side of Equation (10) does not have the sign of absolute value since 
the direction of translation is known. This equation can be further simplified 
according to Equation (6) as:

	 ′ − =P P hD D o � (11)

It is worth noting that the premise of using the plane constraint is that the vehi-
cles are traveling on the same plane and the positioning solutions used to fit the 
planes are accurate enough. Therefore, it is necessary to check whether the posi-
tioning solutions used for fitting the planes meet this requirement before introduc-
ing the plane constraint into our method. In this paper, a plane detection procedure 
was conducted by comparing the residual of plane fitting with a preset threshold. 
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In our study, we focus on the average value of the residuals in fitting a plane, which 
is calculated by:

	 Res
N k k

d
end start i

N

k k
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i k
start

end

α = × − +( ) = =
∑ ∑
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1 1

, � (12)

where:
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Here, N  is the number of cooperative vehicles. It is recommended that at least 
two vehicles participate in fitting the plane and they are best traveling in different 
lanes. In this way, the plane can be constructed from the perspective of geometry. 
kstart and kend  represent the starting epoch and the end epoch for selecting posi-
tioning results. di k,  is the distance between the position ′′ = ′′ ′′ ′′b x y zi k i k i k i k, , , ,( , , )  and 
the fitted plane. If all the cooperative vehicles travel on the same plane and their 
positions are accurate enough, the residual of plane fitting would be small, which 
is regarded as a normal case in our study. Otherwise, the positions of some cooper-
ative vehicles would be far away from the plane and the residual would be larger, 
which is regarded as a faulty case. Therefore, whether the positioning solutions 
used for plane fitting belong to the same plane or not can be determined by:
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where Tfitting  is the threshold for plane detection. The value of the threshold 
depends on the distribution of the residuals of plane fitting and the false alarm 
rate. In our study, precise positioning results collected in a flat and open-sky area 
are used to calculate the distribution function and the threshold. The details on 
how to use the distribution of the residuals and false alarm rate to calculate the 
threshold are given in Section 4. If the plane fitting cannot pass detection, an iter-
ative procedure is implemented to remove the positioning result with the largest 
residual in plane fitting one by one, which is similar to the fault exclusion proce-
dure in the Receiver Autonomous Integrity Monitoring (RAIM) method (Hsu et al., 
2017). The removal procedure is repeated until the plane detection has passed or 
the number of remaining positioning results used to fit the plane is less than a pre-
set value, which is set to 10 in this paper.

The positions of the target vehicle can be constrained by this plane. Based on 
the constructed plane, a Kalman filter is employed to calculate float solutions. 
However, in high dynamic scenarios, multipath, non-line-of-sight (NLOS), and 
other types of interference make it challenging to determine the noise covariance 
matrix Q and R correctly, which may greatly affect the accuracy of estimation (Liao 
et al., 2017). Thus, we employ an adaptive Kalman filter to update the noise matrix 
and improve the stability of the estimator.

3  PLANE-CONSTRAINED RTK METHOD

The architecture of the proposed method is illustrated in Figure 1. In the first 
stage, the vehicle plane is constructed by the positioning results of cooperative 
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vehicles. Then, an adaptive Kalman filter estimator is used to resolve the float solu-
tions. Finally, the float solutions are sent to an integer ambiguity resolution model 
to calculate the fixed solutions. The final solutions are saved and used for the plane 
construction of other vehicles in the next epoch.

3.1  GNSS Double-Differenced (DD) Observation Model

Double-differenced (DD) pseudorange and carrier-phase observations can be 
expressed as:

	 ∇ =∇ +∇ = − − ⋅ +∇∆ ∆ ∆ ∆ρ ε εur
ij
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where ∇∆  represents the DD calculation. ρ  and φ  are the original observation 
of pseudorange and carrier phase, respectively. p  is the actual distance between 

FIGURE 1 Architecture of plane-constrained RTK method
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the satellite and receiver. λ  and N  are the wavelength and integer ambiguity of 
carrier phase. The subscript rb  denotes the difference between the corresponding 
terms of rover and base, while the superscript ij  denotes the difference between 
the j-th satellites and the i-th (reference) satellite. As the baseline between the 
vehicles and base station is usually short, the ionospheric and troposphere delay is 
neglectable in DD equations.

To further excavate the baseline vector from the DD equations, we linearize 
∇∆purij  and save the first-order term:

	 ∇ = − − ⋅∆purij u
j

r
j T

ur( )l l b � (17)

where lrj  represents the unit line-of-sight vector from the receiver to satellite and 
bur  represents the baseline vector.

3.2  Float Estimator Based on Adaptive Kalman Filters

In our proposed method, the state vector is defined as:

	 X = [ , , , ]b v a Nur
T

ur
T

ur
T

ur
T T
 � (18)

where bur ,  vur ,  and aur  are the baseline, velocity, and acceleration vectors between 
the rover and base station. Nur  represents the DD float ambiguity vector.

The system model is defined as:

	 X FX Qk k k k N, , ( , )− −= + ∼1 1 0ω ω � (19)

	 P FP F Qk k k
T

, − −= +1 1 � (20)

where Xk k, −1  is the current state vector and Xk−1  is its previous state vector. F rep-
resents the system state transition matrix and ωk  is the process noise at epoch k  
while Q is its covariance matrix. Pk k, −1  is the estimated covariance matrix of the 
previous epoch.

The state transition matrix is written as:

	 F F F= diag( , )1 2 � (21)
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	 F I2 = diag m( ) � (23)

where τ  is the filtering period and Im  is the identity matrix with size m.
The observation vector is defined as:

	 Z = ∇ ∇ − ′[ , , ]∆ ∆ρ λ φur
ij

ur
ij

D
TP � (24)

where ∇∆ρurij  and λ φ∇∆ ur
ij  are the DD pseudorange and carrier-phase observa-

tions and ′PD  is the constant coefficient in Equation (9). Then, the observation 
model is defined as:

	 Z HX v v Rk k k k N= + ∼, ( , )0 � (25)
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where Zk  is the current observation vector, H is the observation matrix, and vk  is 
the observation noise, while R is its covariance matrix.

The observation matrix is written as:

	 H
H 0 0 0
H 0 0 H
H 0 0 0
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where:
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	 HG mdiag= ×([ , , ] ) λ 1 � (28)

	 HP A B CP P P= [ ] � (29)

where PA ,  PB ,  and PC  are the corresponding coefficients in Equation (9).
The basic equations of the Kalman filter are written as:

	 Kk k k
T

k k
T= +− −

−P H HP H R, ,( )1 1
1 � (30)

	 X X K Z HXk k k k k k k= + −− −, ,( )1 1 � (31)

	 P I K H Pk k k k= − −( ) , 1 � (32)

where Kk  represents the Kalman gain, Xk  is the posterior state vector, and Pk  is 
the estimated covariance matrix.

In a general Kalman filter estimator, the process noise matrix Q and the obser-
vation noise matrix R are preset values. Thus, the influence of the surrounding 
environments has been ignored. In order to obtain a more accurate noise matrix, 
we adopted the innovation-based adaptive Kalman filter method proposed by 
Mohamed and Schwarz (1999) to update the noise matrix at each epoch. If Q and 
R are estimated simultaneously, the estimator can be misled by their relation and 
even diverge. To avoid this problem, a feasible solution is to estimate just one of 
them instead of both of them. Therefore, we only estimate the update measure-
ment noise matrix R while the system noise matrix Q is regarded as a constant 
matrix.

The elements of the innovation-based sequence are defined as the difference 
between observations and prediction values, which is written as:

	 e Z H Xk k k k k= − −, 1 � (33)

The variance of innovation-based sequence is defined as:

	 C e ek k k
T TE= ( ) � (34)

In practical situations, it can be calculated by:
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k
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k i i

i k L
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where k represents the current epoch and L is the window size of the 
innovation-based sequence. Since divergence may occur if the number of equations 
required to estimate the unknown adaptive parameters is smaller than the number 
of unknowns, themselves, a window size larger than the number of update mea-
surements is needed when adapting R and a window size larger than the number 
of filter states is required when adapting Q.

The theoretical value of such variance is defined as:

	 C R H P Hk k k k k
T= + −, 1 � (37)

Let = ,ˆ
k kC C  then Q and R matrices can be estimated by:

	 Q K C K P FP Fk k k k
T

k k
T= + − −1 � (38)

	 R C H P H= − −k k k k k
T

, 1 � (39)

Although we give the derivation of both Q and R, only the update measurement 
noise matrix R is estimated while the system noise matrix Q is regarded as a con-
stant matrix.

It worth noting that if Q is not positive semi-definite or R is not positive defi-
nite, the estimator may diverge. This phenomenon occasionally occurs in 
severe multipath-affected areas. If R is not positive definite or Q is not positive 
semi-definite, we use a constant R or Q instead. The output of this filter is the float 
baselines and float ambiguities. The next step is to convert the float carrier-phase 
ambiguities into integer carrier-phase ambiguities.

3.3  Integer Ambiguity Resolution

After the Kalman filter, the float state vector S b v abr br br br
T= [ , , ]  and the float 

ambiguity vector N  can be obtained. To fix the DD float ambiguities, the common 
least-squared ambiguity decorrelation (LAMBDA) method is used (Teunissen, 
1995). By searching over a set of integer grid points near the float resolution, 
LAMBDA finds some candidates that satisfy the equation:

	 F T( ) ( ) ,,N N N= − −( ) ≤ ∈−
 

 

N P N N ZN N
1 2χ � (40)

where PN N ,  is estimated covariance matrix for float DD ambiguities. χ 2  is the 
size of searching space. After the searching step, a ratio test is employed as the 
acceptance test:

	 Accept if
F
Fst

nd

st
N

N
N1
2

1
:

( )
( )

≥ξ � (41)

where N1st  and N2nd  are the best and second-best candidates, respectively. ξ  is 
the threshold of ratio test, which is set to 3.

When the best candidate passes the ratio test, we can get the fixed solutions by 
updating Sbr  as:



ZHUANG et al.    

	 S S P P N NS N N Nbr br br
= − − 

   , , ( ) � (42)

where PS N 

br ,  is the estimated covariance matrix between the float state vector and 
DD ambiguity vector and N is the fix ambiguity vector.

In our study, we adopt an instantaneous mode rather than a fix-and-hold mode 
for handling the integer ambiguity resolution. This means that the integers are 
resolved in each epoch independently and the integer fixes are not maintained. 
At each epoch, we try to fix all the ambiguities rather than just some part of them.

3.4  Extending the PCRTK Method to a Cooperative 
Network

In the above subsections, we focus on how to apply the plane-constrained method 
to a specific vehicle. Only the target vehicle is assumed to conduct the proposed 
PCRTK method, while the others are regarded as information providers that calcu-
late their positions by using a non-cooperative method. In this section, we discuss 
how to apply the proposed method to each vehicle in a cooperative network.

Figure 2 depicts the structure of a cooperative network involving a total of M 
vehicles. All the vehicles in this network belong to peer nodes, which means these 
vehicles will share information between each other and conduct the same posi-
tioning algorithm. bi k,  represents the positioning results of vehicle i at epoch k. 
hi  denotes the distance from the GNSS antenna of vehicle i to the ground, which 
is a fixed value measured for each vehicle. We assume that all the vehicles have 
obtained their positioning results of epoch k.

Taking Vehicle i as an example, it will broadcast its own positioning data bi k,  of 
epoch k to the others and receive the positioning data b j ij k, | ≠{ }  from peer nodes 
simultaneously. The positioning results of peer nodes from epoch k N fitting− +1  
to k −1  are also stored by Vehicle i, where N fitting  is the number of positioning 
solutions provided by each vehicle for fitting the planes. Vehicle i utilizes these 
positioning solutions to fit a plane, and calculates its position of epoch k +1  using 
the PCRTK method. Once Vehicle i obtains its position solution of epoch k +1,  it 
will broadcast the latest positioning solution to the others and then receive new 
positioning solutions from peer nodes for calculating its own position at the next 
epoch.

The same process can be applied to the other vehicles in this network. In this 
way, all the vehicles in this network can benefit from the proposed method. Since 
the proposed method is distributed and adopts the time series of positioning 

FIGURE 2 The extension of the plane-constrained method to a cooperative network
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solutions to fit the planes, the demand for time delays is reduced compared to other 
ranging-based cooperative positioning methods.

It is worth noting that the resulting error correlation is inevitable due to the feed-
back from the other receivers in the network. If the PCRTK position solution of 
vehicle A suffers from a large error, vehicle B cooperating with vehicle A will be 
affected when fitting the plane without any fault exclusion. Then the position solu-
tion of vehicle B will be contaminated and affect vehicle A in turn, resulting in 
error correlation. Fortunately, the plane detection algorithm proposed in Section 2 
can effectively reduce the influence of the resulting error correlation. An iterative 
procedure is implemented to remove the outliers in plane fitting one by one. In this 
way, we can avoid utilizing position solutions with large errors to fit the plane to 
ensure the reliability of the plane constraint and the stability of PCRTK method.

4  SIMULATIONS BASED ON GNSS DATA COLLECTED 
IN OPEN-SKY AREAS

To evaluate the feasibility of the proposed method, simulation results are given 
in this section. These simulations were based on GNSS data collected in a ground 
vehicle test, which was conducted in open-sky areas in Beijing, China. The road 
was extremely smooth with few bumps and there were few cars traveling in the test 
areas, so we could drive the test vehicles in different formations.

Figure 3 presents the test route in which the red star denotes the location of the 
reference station. Four vehicles (referred to as V1, V2, V3, and V4, respectively) 
were involved in the test and traveled along the same route during the test. Each 
car was equipped with a GNSS receiver to collect GNSS measurements. In this 
test, V1 was equipped with a GNSS receiver named M300, which belongs to a 

FIGURE 3 The test route in open-sky areas
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consumer-grade receiver. V2, V3, and V4 were equipped with NovAtel OEM628, 
OEM7500, and Trimble BD992 receivers, respectively. The data of GPS L1/L2 and 
BeiDou B1/B2 were collected at 1 Hz during the test. The distance of the GNSS 
antennas from the ground was measured for each vehicle before the test.

The INS data were also collected by each vehicle as an input to the post-processing 
system (NovAtel Inertial Explorer). The raw GNSS observations of all-in-view sat-
ellites together with INS data and the precisely known location of the reference 
station were processed using NovAtel Inertial Explorer to calculate the absolute 
reference solutions for each vehicle. Since all the GNSS data were collected under 
good observation conditions, the horizontal root-mean-square error (RMSE) of the 
reference solutions could reach 0.01 m using RTK corrections under standard vehi-
cle dynamics.

The sky plot of visible satellites observed by the reference station is shown in 
Figure 4. The initial G  denotes GPS satellites and C  denotes BeiDou satellites. 
The average number of satellites observed by the reference receiver was about eight 
for GPS and 15 for BeiDou. To simulate signal blockages in urban areas, the mea-
surements of the satellites whose elevation angles were less than 45 degrees were 
removed from the positioning process of both the proposed method and traditional 
RTK method in the following simulations.

4.1  Simulations on Plane Uncertainty

We imposed a constraint on the float estimator of the traditional RTK method by 
introducing a plane in which the vehicles would be traveling. The accuracy of this 
plane determines the performance of the proposed method. Therefore, the influ-
ence of plane uncertainty on the performance gain for the PCRTK method is ana-
lyzed in this subsection.

Since the plane is constructed using the positioning results of cooperative vehi-
cles, the precision of the positioning results provided by these cooperative vehi-
cles would definitely affect the uncertainty of the constructed plane and determine 
the benefit of using our method. To verify that the proposed method can benefit 
from the constraint of an accurate plane, we first adopted the reference solutions 

FIGURE 4 The sky plot of visible satellites received by the reference station during the test
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of the test vehicles to construct the planes and conduct the PCRTK method. Since 
the post-processed reference solutions are extremely precise and the vehicles were 
traveling on a flat road, the constructed planes would be quite accurate and the 
proposed method was expected to show its best performance in this case.

Considering that the vehicles can be treated as peer nodes and all the vehicles 
traveled under the same conditions, we only take Vehicle 4 (V4) as an example 
in this section. Figure 5 depicts the positioning errors’ cumulative distribution 
function (CDF) of PCRTK for V4 in the case that the plane was constructed using 
the reference solutions of cooperative vehicles. To make a comparison, the posi-
tioning errors of traditional RTK using the same data are also presented in this 
figure. Both PCRTK and RTK solutions were computed with a 45-degree mask 
angle to simulate signal blockages. Compared to the traditional RTK method, the 
proposed method shows an improvement in positioning accuracy. The proportion 
of positioning errors less than 1 m was 88.48% for the RTK method, rising to 96.76% 
for the proposed method. The plane constraints can be treated as additional mea-
surements, which make a great contribution to the improvement in positioning 
accuracy.

To simulate the uncertainty of the constructed planes, white Gaussian 
noise  (WGN) with various standard deviations was added to the reference solu-
tions of the test vehicles when we constructed the planes. More specifically, the 
WGN with various standard deviations was added to the three directions of refer-
ence solutions in ENU coordinates. In simulations, the standard deviation of the 
WGN ranged from 0 m to 3.5 m at intervals of 0.5 m. Figure 6 shows the RMSE 
of the PCRTK method for V4 in which the plane was constructed using reference 
solutions contaminated by WGN with various standard deviations. For comparison, 
the RMSE of traditional RTK is also marked in this figure, which is equal to 1.72 m.

The proposed method saw an upward trend in RMSE when the standard devia-
tion increased from 0 m to 3.5 m, with the figure climbing from 0.58 m to 2.06 m. 
The reason for the degradation of positioning accuracy is that the inaccurate posi-
tioning solution used for constructing the plane resulted in an increased uncer-
tainty of the constructed plane. If the plane parameters are treated as additional 
measurements in the float estimator, the increased uncertainty of the plane means 
an increase in observation noise. The magnitude of plane uncertainty can be 
reflected by the residuals of plane fitting, which was introduced in Equation (12). 

FIGURE 5 The positioning performance of PCRTK for V4 in the case that the plane was 
constructed using reference solutions of cooperative vehicles
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Figure 7 depicts the mean residuals of plane fitting when we introduced WGN with 
various standard deviations to reference solutions. It can be seen that the mean 
residuals of plane fitting increase with the growth of standard deviation.

Since the positioning solutions provided by cooperative vehicles may not be accu-
rate enough and we cannot rule out the possibility that vehicles travel on different 
planes, the method of selecting an appropriate threshold for constraining the plane 
uncertainty is extremely important. It worth noting that the RMSE of the proposed 
method is larger than the traditional RTK method when the standard deviation of 
the WGN added to reference solutions is greater than 3 m, which can be found in 
Figure 6. To ensure that the proposed method can benefit from the constraint of 
the plane, it is better to set a threshold for plane fitting, which was originally men-
tioned in Section 2. The threshold can be set according to the distribution of the 
residuals of plane fitting and a false alarm rate. We recorded the residuals of plane 
fitting in the case that WGN with a standard deviation of 2.5 m was introduced into 
the reference solutions. Since the RMSE of the PCRTK method was still lower than 
the RTK method in the case of a standard deviation of 2.5 m, the distribution of the 
residuals in this case was selected to calculate the threshold. Figure 8 presents the 

FIGURE 7 The mean residuals of plane fitting in the case that the plane was constructed 
using reference solutions contaminated by WGN with various standard deviations

FIGURE 6 The RMSE of the PCRTK method for V4 in the case that the plane was constructed 
using reference solutions contaminated by WGN with various standard deviations
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residuals of plane fitting in the case that WGN with a standard deviation of 2.5 m 
is added to the reference solutions. In our study, the false alarm rate was set to 1%. 
The final threshold was set to 2.6 m, which is used in the following simulations.

4.2  Performance of Extending PCRTK Method to a 
Cooperative Network

In Section 3, we introduced how to extend the PCRTK method to a cooperative 
network. If the cooperative vehicles of a vehicle also use the PCRTK method rather 
than non-cooperative methods such as traditional RTK, this vehicle would be 
expected to obtain more accurate positioning results since the positioning results 
used to fit the planes would be more accurate. To verify the benefit of extending the 
proposed method to a cooperative network, we make a comparison between the 
positioning results with and without access to a cooperative network. Taking V4 as 
an example, all the cooperative vehicles would adopt the traditional RTK method 
in the case that they are without access to a cooperative network, while the PCRTK 
method would be used by all the cooperative vehicles in the case that a cooperative 
network was available.

Table 1 gives the statistical results of V4 for the PCRTK method with and with-
out cooperative network access. The results of the traditional RTK method are 
also given in this table so that we are able to see if the proposed method could 
benefit from the constructed planes in two cases. CEP95 represents the circular 
error at probability of 95%. It can be seen that the proposed method shows better 

TABLE 1
Horizontal Position Statistics of V4 for PCRTK Method With and Without Cooperative Network

Method RMSE (m)
Mean 

error (m) 
CEP95 (m) 

Probability  
(error<1m) 

Fixed rate

RTK 1.72 0.59 5.15 88.48% 82.72% 

PCRTK without 
cooperative network 

1.01 0.34 1.50 90.7% 87.14% 

PCRTK with cooperative 
network 

0.63 0.15 0.57 96.4% 92.8% 

FIGURE 8 The residuals of plane fitting in the case that WGN with a standard deviation of 
2.5 m is added to the reference solution
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positioning performance than the traditional RTK method whether the cooperative 
network was used or not. Compared to the case without a cooperative network, the 
PCRTK method with a cooperative network shows a drop in positioning errors, 
with the figure of RMSE decreasing from 1.01 m to 0.63 m. The improvement in 
positioning accuracy can be attributed to the improved precision of plane fitting. 
When the cooperative vehicles also use the PCRTK method, it is feasible to pro-
vide a more accurate positioning solution for V4 to fit the plane. The reason that 
CEP95 and RMSE cannot reach centimeter-level accuracy is that there are still 
some float solutions with relatively large errors. Therefore, it is difficult to achieve 
centimeter-level positioning accuracy overall.

Since we verified the benefit of cooperative networks, we adopted the PCRTK 
method with a cooperative network in the following simulations and experiments. 
This means that all the vehicles utilized the proposed method to calculate their 
positions simultaneously.

4.3  Comparisons Between Different Formations

During the experiment, we attempted to drive the vehicles in different forma-
tions to evaluate the performance of the proposed method. Four kinds of forma-
tions were considered in the experiment that are shown in Figure 9. Since Vehicle 4 

FIGURE 9 The driving formations during the experiment
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was used in the previous simulations, we also take V4 as an example in this section. 
The green represents V4 and the blue denotes the other vehicles.

Table 2 gives the statistical results for V4 under different driving formations. It 
can be seen that the proposed method with formation (a) shows the worst posi-
tioning performance. Theoretically, points on the same line cannot be used to fit 
a specific plane. However, the positions of GNSS antennas are unlikely to keep a 
line even if the vehicles were traveling in a line. Therefore, the positioning results 
can also be used to fit the planes. In this case, a slight increase in the errors of the 
provided positioning solution might result in a great uncertainty of the constructed 
plane. Since the plane was constructed inaccurately, the positioning accuracy for 
formation (a) was also degraded. As for the cases of formations (b), (c), and (d), the 
proposed method shows similar positioning performance. The results of formation 
(b) show the best performance among these four cases because the vehicles trav-
eled in formation (b) had better geometric distribution. The constructed plane was, 
thus, more accurate and reliable in this case.

5  GROUND VEHICLE TEST IN DEGRADED 
ENVIRONMENTS

To evaluate the performance of the proposed method under degraded environ-
ments, several dynamic experiments were carried out in Zhongguancun E-park in 
Beijing, China, on the November 24, 2021. The test routes are depicted in Figure 10. 
A reference station with exact positioning was set in an open-sky area within 2 kilo-
meters of the test routes to collect raw observations for differential GNSS. Four 

TABLE 2
Horizontal Position Statistics of V4 for the PCRTK Method in Different Formations

Formation RMSE (m) 
Mean 

error (m) 
CEP95 (m) 

Probability 
(error<1 m) 

Fixed rate 

(a) 1.53 0.50 1.91 92.36% 84.31% 

(b) 0.58 0.13 0.46 97.11% 94.72% 

(c) 0.74 0.23 0.70 95.87% 90.44% 

(d) 0.65 0.18 0.62 96.18% 91.60% 

FIGURE 10 The experimental routes in Zhongguancun E-park
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vehicles (also referred to as V1, V2, V3, and V4) traveled along the same routes in 
the experimental areas where high-rise buildings strongly challenge GNSS-based 
positioning performance.

During the experiments, V1 was equipped with a NovAtel SPAN-ISA-100C inte-
grated navigation system as shown in Figure 11. The other three vehicles were also 
equipped with an integrated navigation system named NPOS220, which consisted 
of a NovAtel OEM7500 receiver and an EPSON G320N inertial measurement 
unit  (IMU). The collected raw GNSS measurements, together with IMU data of 
the vehicles, were sent to the post-processing software NovAtel Inertial Explorer to 
calculate the reference solution for each vehicle using RTK corrections. Only GNSS 
data were used to analyze the positioning performance of the proposed method 
and the control group.

Figure 12 presents the satellite visibility of V4 during the experiments; the ini-
tial G denotes GPS satellites, the initial J represents Quasi-Zenith Satellite System 
(QZSS) satellites, and the initial C indicates BeiDou satellites. The green points 
represent the epochs when L1/2 or B1/2 could be received. The yellow points 
denote the epochs when only L1 or B1 could be received. The red points indicate 
the epochs when only L2 or B2 were available. It can be seen that the loss of lock on 
GNSS signals occurs frequently in highly degraded environments. Figure 13 shows 
the number of visible satellites (GPS and BeiDou) observed by V4.

The statistical results of all the vehicles are listed in Table 3. The RMSE in the 
vertical direction is also included in the statistics. To make a comparison, the 
results of the traditional RTK method are given in this table. It is noted that we 
adopted the PCRTK method with access to a cooperative network, which means all 
the vehicles conducted the PCRTK method simultaneously. Besides, the Receiver 
Autonomous Integrity Monitoring (RAIM) method was used to detect and isolate 
the multipath-affected measurements with large ranging errors before positioning. 
It can be seen that all the vehicles could achieve better positioning performance by 
using the proposed plane-constraint method.

Taking Vehicle 2 (V2) as an example, the proposed method shows a decline in hori-
zontal RMSE compared to the traditional RTK method, with the figure dropping from 

FIGURE 11 The test vehicles participating in the experiments
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TABLE 3
Positioning Statistics of RTK and PCRTK Methods for Experimental Data

Method Vehicle 
Horizontal  
RMSE (m)

Vertical  
RMSE (m)

Horizontal  
CEP95 (m)

Proportion<1 m  
(Horizontal)

Fixed 
rate

RTK 

1 3.55 8.25 5.61 81.94% 72.75% 

2 6.74 14.93 6.88 71.51% 61.89% 

3 6.45 13.46 6.69 72.15% 63.43% 

4 6.91 15.57 6.97 70.17% 60.71% 

PCRTK 

1 1.20 2.10 2.20 86.52% 73.14% 

2 2.14 2.36 3.31 79.45% 62.12% 

3 2.10 2.38 3.17 80.47% 64.01% 

4 2.37 2.41 3.44 78.14% 60.77% 

FIGURE 12 The visibility of V4 during the test

FIGURE 13 The number of visible GPS and BeiDou satellites observed by V4
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6.74 m to 2.14 m. The PCRTK method also saw a remarkable improvement in vertical 
positioning accuracy with the figure of vertical RMSE decreasing from 14.93 m to 
2.36 m for V2. The performance gain in the vertical direction was greater than that 
of the horizontal direction. For the traditional RTK method, the position errors in 
the vertical direction were obviously larger than those in the horizontal direction. 
However, for the PCRTK method, the position errors in the vertical direction were 
closer to those in the horizontal direction. The greater benefit in the vertical direction 
can be attributed to the constraint of the plane on the float estimator in this direction.

The fixed rate of the PCRTK and traditional RTK methods was almost the same 
for the four vehicles in the experiment. This means that the integer ambiguities 
were still difficult to resolve in multipath-affected scenarios, even if the float solu-
tion was constrained to a plane. This phenomenon does not occur in simulations 
because the raw measurements used in simulations are relatively clean and not 
contaminated by multipath signals. Although the ambiguities were still difficult to 
resolve, the overall positioning accuracy definitely improved, because the precision 
of float solutions increased owing to the constraint of the road plane. Vehicle 1 
showed the best positioning performance among the four vehicles, as its receiver 
had a stronger ability to resist multipath effects.

6  DISCUSSION

We imposed a constraint on the float estimator of the conventional RTK method 
by introducing a plane in which the vehicles were traveling. The accuracy of this 
plane determined the performance of the proposed method. Since this plane was 
constructed using the positioning results of cooperative vehicles, the precision of 
the positioning results provided by these cooperative vehicles affected the benefits 
of our method.

In our experiments, the vehicles kept close to each other so that they were more 
likely to travel on the same plane. These vehicles were likely to observe the same 
satellites and, thus, the observation quality of the vehicles was similar to each other. 
In urban canyons, closely traveling vehicles suffer from similar signal blocks and 
multipath. The cooperative vehicles might, at times, provide some inaccurate posi-
tioning results for plane fitting. In this case, the proposed method can be limited. 
Fortunately, we can detect the presence of inaccurate positioning solutions using 
the plane detection algorithm from Section  2. In this case, the plane constraint 
would not be introduced to the float estimator and we would, instead, only adopt 
the traditional RTK method.

A feasible way to solve this problem is to cooperate with the vehicles that keep 
a certain distance from the host vehicle, since these cooperative vehicles might 
have better observation conditions and could potentially provide more accurate 
positioning solutions for plane fitting. However, vehicles that are too far away from 
each other may belong to different planes. The maximum separation between the 
host vehicle and the cooperative vehicle depends on the road conditions, which 
will be studied in future work.

Although the proposed method is mainly aimed at vehicles traveling on a flat road, 
it can also be applied to some hilly urban areas. This is the reason that we introduced 
a plane, rather than the mean altitude of vehicles, into the float estimator to con-
strain the RTK method. As long as the slope of the ramp changes slowly and the vehi-
cles driving on the ramp keep close to each other, the proposed method would also 
be available. If the slope of the road were to change rapidly, however, vehicles might 
belong to different planes and the benefit of the proposed method would be limited.
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As for the plane detection algorithm, a much tighter threshold is recommended 
if we focus on fixing the ambiguities. It is true that using centimeter-level posi-
tioning to fit the plane can improve the ability of fixing ambiguities to the great-
est extent. However, it is unnecessary to have a standalone vertical position at a 
centimeter-level to fit the plane. It is worth noting that the overall positioning 
accuracy is between the decimeter level and meter level before integer ambiguity 
resolution. Even if the standalone vertical position cannot reach centimeter-level 
accuracy, the possibility of fixing ambiguities would still increase as long as the 
accuracy of the float estimator could be improved by using plane constraint.

The test results show that the fixed rate of the PCRTK method can still reach 87% 
in the case that the standalone vertical position error is 1.5 m (standard deviation), 
which is higher than that of traditional RTK (82.7%, as shown in Table 1). The 
fixed rate of the PCRTK method climbs to 92% when the standalone vertical posi-
tion error is reduced to 1 m (standard deviation). Conservatively, a recommended 
threshold of 1 m is given to better fix the ambiguities. The performance of the pro-
posed method under a tighter threshold will be evaluated with more experimental 
data in the future.

The performance may be different when the size of the cooperative network is 
enlarged, so a much larger-scale field test or simulation will be carried out in future 
work. Compared to moving vehicles, roadside units (RSUs) are more competent for 
providing precise and reliable positioning information for target vehicles (Li et al., 
2018). We will consider employing RSUs to validate the performance of our method 
in a vehicle-to-everything (V2X) scenario.

7  CONCLUSION

This paper describes a plane-constrained RTK method that can be applied to 
connected vehicles. By employing positioning data from cooperative vehicles, a 
height plane is constructed and the parameters of this plane are used as new mea-
surements for improving positioning accuracy. The results of field tests verify the 
feasibility and superiority of the proposed method.

This method is applicable to many dense urban scenarios in which vehicles can 
be connected to each other easily and the road conditions are good enough for plane 
fitting. We will further discuss the possibility of applying this proposed method to 
more complicated scenarios such as environments that are uphill and downhill.
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