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O R I G I N A L  A R T I C L E

Multi-Frequency Simulation of Ionospheric Scintillation 
Using a Phase-Screen Model

Fernando D. Nunes1,2  Fernando M. G. Sousa1,3  José M. V. Marçal1,2

1  INTRODUCTION

Fast varying electron density irregularities cause random variations in the phase 
and amplitude of a wave propagating through the ionosphere. This effect, called 
ionospheric scintillation, generates deep intensity fadings and random phase shifts 
in global navigation satellite system (GNSS) received signals. Strong scintillation 
tends to increase the positioning errors and may even prevent the receiver opera-
tion (Conker et al., 2003; Humphreys et al., 2005). Ionospheric scintillation occurs, 
in general, in the polar regions and in the regions approximately 20 degrees north 
and south of the magnetic equator. The two types of scintillation have different 
characteristics as they are provoked by different physical phenomena (Ghafoori & 
Skone, 2015). Scintillation observed in the equatorial region is generally stronger, 
equally affecting the intensity and phase of the received signals with a maximum 
between sunset and midnight (ITU, 2019). In this contribution, we are mainly 
interested in simulating equatorial scintillation.
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Summary
A fast Monte Carlo technique to simulate equatorial ionospheric scintillation 
on global navigation satellite system signals is proposed. The algorithm uses 
a single-layer phase-screen model of the ionosphere and the scintillation is 
expressed as a Huygens-Fresnel integral (HFI). By assuming a specially-tailored 
random phase screen, the HFI can be expressed in closed form as a combination 
of Fresnel integrals. We statistically characterize the amplitude and phase com-
puted by the HFI for different values of the scintillation index S4. Results for 
the L1, L2, and L5 bands were obtained and compared with real data, showing 
good agreement. Some of the advantages of the proposed technique are: (a) the 
amplitude and phase of the scintillation process are simultaneously obtained; 
(b) arbitrarily long ionospheric scintillation time series with pre-defined sta-
tionary characteristics are synthesized; and (c) several scintillation time series 
corresponding to different carrier frequencies are generated using a common 
phase-screen model.
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Equatorial amplitude scintillation affects both code and phase tracking, thus 
degrading pseudorange and carrier-phase measurements in GNSS receivers. 
Equatorial phase scintillation adversely affects the operation of the receiver’s 
phase-locked loop (PLL) and may lead to carrier cycle slips, navigation bit errors, 
and even the complete loss of carrier lock (Conker et al., 2003; Zhang et al., 2010). 
Several signal processing techniques can be used to improve carrier tracking robust-
ness, including the frequency-lock loop assisted PLL and the adaptive-bandwidth 
PLL (Lin et al., 2014; Zhang et al., 2010). Scintillation is often characterized by a pair 
of indices: the amplitude scintillation index S4  (standard deviation of the received 
power normalized by its mean value) and the phase scintillation index σφ  (standard 
deviation of the de-trended carrier phase). Scintillation strength is typically classified 
as weak ( . ),S4 0 25<  moderate ( . . ),0 25 0 74≤ <S  or strong ( . ).S4 0 7≥

In spite of various campaigns that have been undertaken in the last decade to col-
lect data from GNSS signals disturbed by scintillation, the amount of available data 
may not be sufficient or have the desired features to evaluate the performance of 
GNSS receivers. Recall that the peaks of solar activity (which lead to frequent events 
of strong ionospheric scintillation) are periodic phenomena spaced by approxi-
mately 11 years. Therefore, it is useful to have access to a Monte Carlo simulation 
tool that generates synthetic data simultaneously affected by amplitude and phase 
ionospheric disturbances in various equatorial scintillation scenarios. Note that 
amplitude is often easier to simulate than phase due to the lack of reliable phase 
measurements and models (Jiao et al., 2018), especially for intense scintillation in 
which the phase exhibits excursions outside the interval [ , ]−π π  (Xu & Morton, 
2018) and includes canonical fades, which are deep power fades accompanied by 
fast phase variations of approximately half of a cycle (Humphreys et al., 2010). 
Nevertheless, having reliable models for the phase induced by the ionosphere is 
crucial to test the robustness of GNSS receiver phase tracking loops (Conker et al., 
2003; Ghafoori & Skone, 2015; Humphreys et al., 2005; Vilà-Valls et al., 2020).

There are essentially three different ways to produce such synthetic data 
(Vilà-Valls et al., 2015): physics-based models, statistical models, and phase-screen 
models. Physical models, such as the split-step (Jiao et al., 2018; Rino, 2011), 
although accurate, are in general complicated to use as they have to be tailored to 
each scenario. Statistical models like the Cornell Scintillation Model (Humphreys 
et al., 2009) are easy to apply but, since they are not supported by a physical 
model, the relation between the amplitude and the phase processes is not justi-
fied on physical grounds. Computer simulation of radio wave propagation through 
one-dimensional random phase screens has become an important tool in the 
study of scintillations as simulations provide values for the amplitude and phase 
of a monochromatic wave observed, for instance, on the ground by solving the 
Huygens-Fresnel integral (HFI; Beach & Lovelace, 1997). Moreover, they are able 
to reproduce the canonical fading phenomenon, which is considered the main 
effect that leads to the loss of lock in GNSS receivers (Humphreys et al., 2010). 
The goal of the phase screen model is to replace the interaction of the radio wave 
with an extended medium of scatterers by that with a thin phase-changing screen. 
Although being a simplification of the reality, the single phase screen tends to 
approximate quite well the behavior of multiple phase screens distributed through 
a 200-km thick ionospheric F-region (Carrano et al., 2013).

In general, the evaluation of the HFI requires numerical integration which leads 
to computationally heavy simulations. In Nunes et al. (2018), the authors proposed 
an analytic method to generate amplitude and phase samples of an ionospheric 
scintillation random process based on the phase-screen model. The method is 
computationally efficient as it requires solely the determination of sine and cosine 
Fresnel integrals. The goal of the present work is to statistically characterize the 
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ionospheric scintillation process presented in Nunes et al. (2018). It is shown that 
the statistical distributions of the amplitude and phase vary widely with the scin-
tillation index S4 .  The amplitude distribution is difficult to characterize, although, 
for strong scintillation, there is evidence that the amplitude is well approximated 
by a generalized gamma (or alpha-mu) distribution (Moraes et al., 2013; Nunes & 
Sousa, 2018). The phase distribution is monomodal for weak and moderate scintil-
lation regimes and tends to be multimodal for the strong scintillation regime with 
S4 0 7> .  because the phase range typically exceeds 2π. A simple and robust phase 
unwrapper is developed to determine the phase from the modulo-2π version pro-
vided by the argument of the HFI.

The paper is organized as follows. Section 2 describes the proposed phase-screen 
model and presents expressions for the amplitude and phase of the received signal. 
Section 3 characterizes the amplitude and phase fading processes. Section 4 exhib-
its the most significant statistical results obtained with the proposed technique and 
Section 5 summarizes the main achievements of the contribution including their 
power spectra. Finally, the Appendix describes the adopted fast computation algo-
rithm of the complex Fresnel integral.

2  PHASE-SCREEN MODEL

Plasma instabilities developing in the equatorial ionosphere after sunset can 
generate large-scale depletions in the electron density called equatorial plasma 
bubbles, which are accompanied by intense random density variations occurring 
over a broad range of spatial scales (plasma turbulence). A well-developed bub-
ble structure is associated with irregularity scales ranging from dozens of centi-
meters to hundreds of kilometers, with hundreds of meter sizes responsible for 
very high frequency/ultra high frequency (VHF/UHF) scintillations (Abdu, 2005). 
The multiple-phase screen method is an efficient numerical method for simulat-
ing the propagation of radio waves through extended random media that allows 
both amplitude and phase fluctuations to accumulate within the medium (Carrano 
et al., 2011).

Herein, we consider a single phase-screen model for equatorial scintillation that 
assumes that the profile of the total electron content (TEC), which is the number 
of electrons in a tube of a 1 2−�m  cross-section extending from the receiver to the 
satellite (Misra & Enge, 2006), is concentrated into a thin layer, typically at the alti-
tude of the ionosphere peak electron density (z ≈ 350 km). The random medium 
can be thought to consist of a number of plasma density depletion areas (plasma 
bubbles). The scale size of the plasma depletion areas is approximately 10 100−  km 
in the zonal direction and they are greatly elongated and aligned in the magnetic 
north-south direction (Kintner et al., 2004). The bubbles move from west to east 
(zonal direction) with typical drift velocities in the range of 25 to 200 m/s (Jiao et al., 
2016; Kintner et al., 2004). When a bubble starts to grow or move upward, large elec-
tron density gradients on the bubble edges produce smaller irregularities (Ghafoori, 
2012). The ionospheric irregularities that generate scintillation have a structure with 
a scale size of the Fresnel length r zF = 2λ ,  where λ  is the wavelength of the inci-
dent wave (Kintner et al., 2004, 2007). For instance, for GPS L1 signals, the Fresnel 
length is rF ≈ 365 m. At time t,  the carrier-phase advance, as compared with the 
received carrier phase in the absence of ionosphere, is given by (Klobuchar, 1996):

	 φ
π

sc x t
c f

x t( ), . ( , )=
80 6

0
TEC rad � (1)
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where c  is the speed of light, f0  is the carrier frequency, and TEC( , )x t  is 
expressed in units of electrons/m2.  The Huygens-Fresnel diffraction theory per-
mits us to determine the change effects in the amplitude and phase of a monochro-
matic wave as a function of horizontal position, x0 ,  on an observing plane located 
at distance  z from the one-dimensional phase screen for small-angle scattering. 
Assuming z λ,  the wave complex amplitude is given by (Beach & Lovelace, 1997; 
Psiaki et al., 2007):

	 I x t jQ x t A jk
z

esc sc
j x t k x x zsc( ) ( ), , [ , ( ) /( )]( )

0 0 0
2

2
0

2
+ =

−∞

∞
− −∫π

φ ��dx � (2)

where A0  depends on the power of the satellite transmitted signal, k c= =ω0 /
2π λ/  is the signal wave number, and ω π0 02= f .  The quantity φsc x t( ),  includes 
the phase introduced by the phase screen. The scintillation scenario is illustrated 
in Figure 1.

Consider for simplicity that the receiving antenna is at position x0 0= ;  define 
the Huygens-Fresnel integral (HFI) with γ π λ= =k z z/ ( ) / ( ),2  according to:

	 I t j x t x dxHF sc( ) ( ){ [ , ]}�≡ −
−∞

∞

∫ exp φ γ 2 � (3)

such that Equation (2) can be expressed as:

	 I t jQ t
A
z
e I tsc sc
j

HF( ) ( ) ( ), , /0 0 0 4+ =
λ

π � (4)

The infinite interval of integration in Equation (3) can be reduced to [ , ],−R R  
with R  finite, without significant loss of accuracy, provided that γ φR2

 ∆ ,  where 
φ π∆ ∆= 80 6 0. / ( )TEC c f  and ∆TEC stands for the maximum value of the varying 

FIGURE 1 Geometry of the phase-screen scintillation scenario (adapted from Ghafoori 
[2012])
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part of TEC. This leads to 080.6 / .TECR z f∆  For instance, if z = 350 km, 
f0 1 572= .  GHz, and ∆TEC = 1  TECU, then R 337 9.  m.

When the ionosphere is homogeneous with T T ,EC EC( , )x t = 0  the HFI is sim-
plified to:

	 I t e e dx jHF
j j x( ) ( / )= = − 

−∞

∞
−∫φ γ π

γ
φ π0

2
0 4exp � (5)

with φ π0 0 080 6= . / ( )T .EC c f  The integral above was calculated in terms of the 
complex Fresnel integral (Abramowitz & Stegun, 1972):

	 Ξ( ) � ( ) ( )y j d C y jS y
y

≡








 = +∫

0

2
2

exp π
α α � (6)

where C y( )  and S y( )  are, respectively, the cosine and the sine Fresnel integrals. 
The plot of Ξ( )y  in the complex plane (Cornu spiral), with Ξ Ξ( ) ( )− = −y y ,  is 
shown in Figure 2(a) for y < 5.  The curve converges to ± +( ) /1 2j  when y →∞.  
The polynomial approximations described in the Appendix allow us to compute 
the Fresnel integrals efficiently.

Consider the integral:

	 I a b j x dxA
a

b
( ), ; ( )�γ γ≡ −∫ exp 2 � (7)

which may be expressed in terms of the complex Fresnel integral as:

	 I a b b aA ( ), ;
*

γ
π
γ

γ
π

γ
π

=








 −





















2

2 2
Ξ Ξ � (8)

with the asterisk denoting conjugate. Figure 2(b) sketches the modulus of 
I a bA ( ), ; γ  for z = 350  km and the L1 band, yielding γ = × −4 7 10 5. .

FIGURE 2 Plots of (a) Ξ( ) ( ) ( )y C y jS y= +  for y < 5  (Cornu spiral) and (b) I a bA ( ), ; γ  for 
γ = × −4 7 10 5.
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For the homogeneous ionosphere, using Equation (4) and Equation (5) leads to:

	 I t jQ t A esc sc
j( ) ( ), ,0 0 0 0+ = φ � (9)

which shows that, when TEC( , )x t  is not varying with t, the amplitude and phase 
of I t jQ tsc sc( ) ( ), ,0 0+  remain constant and there is no scintillation effect. In the 
sequel, we model the ionosphere disturbance as a moving train of tubes (electron 
density irregularities) with triangular cross-sections according to:

	 T T TEC EC EC( , )
( )

x t
x x t

Li

M

i
i= −

−









=
∑0
1

∆ Λα � (10)

where TEC0  corresponds to the absence of ionospheric electron density irreg-
ularities (homogeneous ionosphere) and ∆TEC is the maximum fluctuation 
of the ionospheric electron content. In Equation (10), { ,� , , }αi i M= …1  with 
0 1≤ ≤αi  is a set of independent random variables and the triangle function is 
defined as Λ( )x x= −1 ,  for x < 1  and 0, otherwise. Typically, the values of 
TEC0  vary from 1  to 103  TECU (Klobuchar, 1996), where the TEC unit (TECU) 
is equal to 1016  electrons/m .2  The triangular shape of the tubes’ cross-section 
in Equation  (10) may be considered a reasonable assumption as: (a) it is the 
simplest continuous shape for the electron density depletion regions and (b) it 
leads to a major simplification of the analytic expressions used by the HFI. 
Nevertheless, no physical evidence on the triangular shape was provided by the 
consulted bibliography.

We assume that the receiver is located at x0 0=  and each triangle in Equation (10) 
drifts with a constant velocity vd ,rift  according to x t x v ti i( ) ( )= +0 d .rift  This model 
is a simplification of the case in reality because it considers that a frozen TEC( )x  
profile drifts eastward without any deformation (Yeh & Liu, 1982). Nonetheless, 
this frozen-in assumption is often used in simulations because it simplifies the cal-
culations and yields results that keep a reasonable degree of realism (Psiaki et al., 
2007). Notice that, besides the actual velocity of the plasma density irregularities, 
the effective velocity vdrift  depends also on the components of the satellite and 
receiver velocities along the x-direction (Knight & Finn, 1998).

Using Equation (1) and Equation (10), we obtain for the phase induced by the 
diffraction at position x:

	 φ φ φ αsc
i

M

i
ix t

x x v t
L

( )
( )

, = −
− −









=
∑0
1

0
∆ Λ drift � (11)

Therefore, only the varying part of the total electron content associated with 
∆TEC is important to characterize the scintillation. The random nature of the 
induced phase is guaranteed by assigning independent random variables to αi ,  
i M= …1, , . Henceforth, for the sake of simplicity, a uniform distribution will be 
used with 0 1≤ ≤αi ,  although other distributions can be assumed. Applying the 
model from Equation (11), a value of ∆TEC = 1 17.  TECU will provoke a maximum 
phase change of 2π  rad in an L1-band carrier.

We consider that the plasma tubes in Equation (10) are separated by a constant 
distance D, with D L≥ 2 .  Figure 3 sketches an example of the phase φsc x t( ),  for 
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the fixed time t. According to the figure, the HFI for a finite train of M  electron 
density irregularities may be determined from:

e I t j x dxj
HF

x t L

i

M

x t L

x t

i

i
−

−∞

−

=

−

+

−

= − +∫ ∑
+

φ γ0

1 1
2

1

1
( ) ( )�

( ) ( )

( )
exp

LL

x t L

i

M

x t L

x t

j x dx j x dx
M

i

i

∫ ∫

∑

− + −

+

+

∞

= −

+

exp exp( )� ( )�
( )

( )

( )

γ γ2 2

1

LL

i
ij

x x
L

x dx∫ −
−







 +
























exp φ α γ∆ Λ 2 �� (12)

where x t x v t i Di ( ) ( ) ( )= + + −1 0 1d ,rift  with i M= …1, , ,  indicates the central posi-
tion of the density irregularity i  at time t.

The integrals in Equation (12) are of two types: A and B. Type A is defined in 
Equation (7) and is computed using Equation (8) or, approximately, using expres-
sion (A2) of the Appendix. Type B is defined by:

	 I L j x
L

x dB
L

L
( ), ; , �µ γ ρ ρ

µ
γ

µ

µ

≡ −
−







 +





















−

+

∫ exp Λ 2 xx � (13)

and can be expressed in terms of IA  as:

	

I L

j
L L

I L
L

B

A

( ), ; ,

,

µ γ ρ

ρ
ρµ ρ

γ
µ

ρ
γ
µ

ρ
= − − −























− + +exp
2

24 2 2LL

j
L L

I
L

LA

γ
γ

ρ
ρµ ρ

γ
µ

ρ
γ
µ

ρ

;

,











+ − + −






















− + −exp
2

24 2 2LLγ
γ;









� (14)

Thus, the integral I tHF ( ),  with the plasma profile defined by Equation (10), can 
be written in a compact way as:

	
e I t I x t L I x t L

I x

j
HF A A M

i

M

A

−

=

−

= −∞ − + + ∞

+∑

φ γ γ0 1

1

1

( ) ( ( ) ) ( ( ) )

(

,� ; ,� ;

ii i
i

M

B i it L x t L I x t L( ) ( ) ) ( ( ) ),� ; ,� ; ,+ − ++
=
∑1
1

γ γ φ α∆ � (15)

We define next the (normalized) ionospheric scintillation process as:

	 Ψ( ) [ , , [ ( / )]( ) ( )] ( )t e
A

I t jQ t
z

j I t
j

sc sc HF≡ + = −
− φ

λ
π φ

0

0
00 0 1 4exp � (16)

FIGURE 3 Example of the induced phase versus the phase-screen diffraction position x
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such that, in the absence of scintillation, Ψ( )t = 1  (see Equation [9]). The scintilla-
tion process is characterized by the amplitude:

	 A t t
z
I tHF( ) ( ) ( )= =Ψ

1
λ

� (17)

and phase:

	 θ
π

φ( ) ( ) ( )t t I tHF= { } = { }+ −arg argΨ
4 0 � (18)

The scintillation index S4  is often used to characterize the strength of the scin-
tillation activity (Rino, 2011):

	 S
I t
I t4

2

2
1=

〈 ( )〉
〈 ( )〉

− � (19)

where the 〈 〉.  brackets indicate time average (with typical intervals of 60 s) and 
I t A t( ) ( )= 2  is the received signal intensity.

As an example, we consider a train of plasma electron density irregularities with 
v sd m ,rift = 100�� /  L D= =/ 2 250  m, and z = 350  km. Figure 4 displays the normal-
ized intensity and phase modulo-2π for ∆TEC = 2  TECU, which corresponds to a 
strong scintillation scenario (S4 ≈ 0.91).

Figure 5 displays the dependency of the scintillation index S4  versus ∆TEC 
for different electron density irregularity sizes with the L1 and L2 bands. The 
results were obtained using an observation interval of 300 s with v sd m .rift = 100�� /  
Although the statistical distributions of amplitude are independent of the TEC(x) 
profile drift velocity, the variability of the fading process with time (e.g., autocor-
relation function and power spectrum) depends on vd .rift  The plots show that S4  
grows almost linearly for small values of ∆TEC with the dependency becoming 
nonlinear for larger values. In the linear region, the rate S4 / ∆TEC decreases when 
the electron density irregularity size grows.

One of the advantages of the proposed Monte Carlo simulation technique 
is the ability to generate simultaneously fading processes for different bands 
using a common ionospheric scintillation model with a plausible physical 

FIGURE 4 Example of the normalized signal intensity for an infinite train of electron 
density irregularities with ∆TEC = 2  TECU and corresponding phase modulo-2π time sequence
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justification. Figure 6  illustrates this scenario for the GPS L1 (f0 1 5754= .  GHz) 
and L2 (f0 1 2276= .  GHz) bands with ∆TEC = 1 5.  TECU, vdrift = 100  m/s, and 
L D= =/ 2 250 m. Notice that the deep fades tend to occur independently for sig-
nals transmitted in different bands in agreement with experimental data (Jiao 
et al., 2016; Seo et al., 2011).

3  CHARACTERIZATION OF THE SCINTILLATION 
PROCESS

3.1  Amplitude

The amplitude A t( )  of the scintillation process is difficult to characterize analyt-
ically because it changes with ∆TEC in an unpredictable manner, as illustrated in 
the histograms of Figure 7. The simulations have shown that no simple amplitude 
distribution law can be applied for weak and average scintillation. In those cases, 

FIGURE 5 Scintillation indices S4  versus ∆TEC in TEC units for the L1 and L2 bands

FIGURE 6 Fading intensities generated by a common scintillation process for different 
carrier frequencies
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the histograms suggest that the amplitude distribution may be well described by a 
finite mixture of distributions with the probability density function taking the form 
(Mclachlan & Peel, 2000):

	 f a f aA
i

g

i i( ) ( )=
=
∑
1
π � (20)

where the mixing proportions (or weights) πi are nonnegative and sum to one and 
where f ai ( )  are the component densities. These densities may belong to the same 
parametric family (for example Gaussian) or to different families. The selection of 
the appropriate densities and their parameters is, in general, a challenging task.

For ∆TEC ≥ 5  TECU, it was found that the amplitude was well approximated by 
the generalized gamma (or alpha-mu) distribution. The probability density func-
tion (pdf) of the generalized gamma distribution is given by (Yacoub, 2007):

	 f a a a aA ( ); , ,
( )

,����
/ /

α µ ξ
α

ξ µ ξ

αµ

αµ

α

α
= −









 >

−1

2 2
0

Γ
exp � (21)

where Γ( )⋅  is the gamma function. This distribution includes as a particular 
case the Nakagami-m distribution for α = 2.  The n-th moment is determined 
by E A nn n{ } ( / ) / ( )/= +ξ µ α µ2Γ Γ .  Assuming normalization of the scintillation 
intensity, E A{ }2 1= ,  then ξ µ µ α= +Γ Γ( ) / ( / )2  and the expression of the pdf in 
Equation (21) can be written solely in terms of parameters α  and µ. The scintilla-
tion index is given by:

	 S4 2
4

2
1=

+
+

−
Γ Γ
Γ
( / ) ( )

/( )
µ α µ

µ α
� (22)

This formula shows that, for each value of S4 ,  there is an infinite number of pairs 
( , )α µ .  The optimal pair may be selected by minimizing, for instance, the mean 
quadratic error between the pdf curve and the pdf histogram. Figure 7(d) exhibits 
the histogram and the probability density function (dash-dot curve) assuming a 
generalized gamma distribution with parameters α = 1 7.  and µ = 1 04. .  Notice the 
good approximation to the histogram provided by the curve.

3.2  Phase

Unlike signal intensity, phase cannot be measured directly. A modulo-2π ver-
sion of the phase is obtained from the four-quadrant arctangent function as 
a I R .tan m e2( { ( )}, { ( )})Ψ Ψt t  However, if the phase excursions were to exceed the 
cycle, the arctangent would exhibit 2π-jumps which do not make sense physically. 
Hence, phase unwrapping is necessary to correct any phase changes over π radians 
between two adjacent phase samples (Jiao et al., 2018). To calculate the unwrapped 
phase φ( )t ,  we resort to a phase unwrapping algorithm such as the one described 
next (see also the discussion in Rino et al. [2020]).

For k = …1 2, ,  define the modulo-2π  phase θk k k= a I Rtan m e2( { }, { }) :Ψ Ψ

•	 Step 1: Do k = 1  and φ θ1 1= .
•	 Step 2: Increment k  (k k= +1).
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•	 Step 3: Do φ π φ π θk k k=   +−2 21 / ( )  (where x   is the largest integer that 
does not exceed x).

•	 Step 4: Let ∆φ φ φk k k= − −1.  If ∆φ π< ,  go to Step 2; else go to Step 5.
•	 Step 5: If ∆φk ≤ 0,  then do φ φ πk k= + 2 ;  else do φ φ πk k= − 2 .  Go to Step 2. 

This phase unwrapper eliminates the 2π phase jumps provided that the incre-
ments φ φk k+ −1  between consecutive phase samples are smaller than π.

The severity of the scintillation is traditionally quantified by the indices S4  
(amplitude scintillation index) and σφ  (phase scintillation index) which indicate 
the average intensity of the signal variations over the preceding minutes. However, 
they do not offer any insight into the correlation of the instantaneous phase and 
amplitude of scintillation observed on multiple frequencies (Vilà-Valls et al., 2020).

Figures 8 and 9, with ∆TEC = 2  TECU, illustrate the behavior of the fading 
intensity and unwrapped phase in the case of strong scintillation, with the polar 
plot of Figure 9 highlighting the relation between the scintillation intensity (square 
of the complex phasor magnitude) and the phase (polar angle of the phasor; 
Carrano et al., 2013). The interval A-B corresponds to a deep fade (herein defined 
as I t( ) < −10  dB) with the threshold for the deep fade indicated by the dash-dotted 
line in Figure 8 and by the ellipse in Figure 9. During the A-B path, the unwrapped 
phase φ( )t  experiences a variation of about π radians as the curve of the polar plot 
passes from the first to the third quadrant (canonical fade). Note that the large 
phase transitions are present even in the absence of thermal noise, thus suggesting 
they are a characteristic of the radio-frequency (RF) environment (due to diffrac-
tion) and not an effect generated by the receiver (Breitsch et al., 2020; Carrano et al., 
2013). The absolute value of the phase rate is maximum during a deep fade and 
leads often to the loss of carrier tracking by the receiver, which may be temporary 

FIGURE 7 Normalized probability histograms of the amplitude for L1 band with 
L D= =/ 2 250 m and vdrift = 100  m/s
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(cycle slips) or may correspond to the definitive loss of carrier phase. In that case, 
the receiver has to switch to the acquisition mode. Besides the existence of large 
values of the phase rate during a deep fade, the loss of performance of the receiver’s 
phase loop is aggravated by the low instantaneous carrier-to-noise ratio.

The relation between the scintillation indices σφ  and S4  is displayed in 
Figure 10(a) for different values of ∆TEC between 0 05.  TECU and 2  TECU, using 
the L1 band, L D= =/ 2 250  m and vdrift = 100  m/s. For each value of ∆TEC, 10 
independent pairs ( , )S4 σφ  were computed. Notice the existence of two distinct 
regions in the plot. For S4 ≤ 0.6 there is an approximately linear relation between 
parameters with σφ ≈ ( / )3 4 4S  (indicated by the dashed line); this corresponds to 
the region where the phase distribution is monomodal. When S4 0 6> . ,  there is a 
strong dispersion of σφ  which is linked to the multimodal nature of the phase. 
A similar behavior is observed in plots generated with the Global Ionospheric 
Scintillation Model (GISM), which is recommended by ITU to predict the intensity 
of the ionospheric scintillation between Earth and space (ITU, 2019). Figure 10(b) 
displays the plot of σφ  versus S4 ,  produced by the GISM for a receiver location in 

FIGURE 8 Excerpt of fading intensity I t( )  and unwrapped phase φ( )t  for ∆TEC = 2  TECU 
(S4 ≈ 0.89); the interval A-B corresponds to a canonical fade.

FIGURE 9 Polar plot for the scintillation process of Figure 8
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Hanoi, Vietnam, on April 12, 2013, using all the visible GPS satellites between 16 h 
and 19 h UTC with a time step of 1 minute.

3.3  Power Spectra

The spectral density function (SDF) of both phase and intensity scintillation fol-
lows an inverse power-law distribution of the form (Ghafoori, 2012; Knight & Finn, 
1998):

	 Φ
Φ

( )
( )

f
f f

=
+
0

0
2 2 ν

� (23)

where Φ0  is the spectral strength at 1 Hz (assuming f0 1  Hz), f  is the fre-
quency of the fluctuations, f0  is a frequency corresponding to the maximum irreg-
ularity size, ν  is the power spectral index, and p = 2ν  is the power spectrum slope.

For f f 0 ,  the SDF can be well approximated by Φ Φ( ) .f f p≈ −
0  The SDF of 

the intensity and phase scintillations follow similar power law relationships for 
high-fluctuation frequencies, but the intensity spectrum is heavily attenuated 
below a certain cutoff frequency. In the case of weak scintillation, the cutoff fre-
quency of the intensity scintillation SDF (Fresnel cutoff frequency) is given by 
f v zc = drift / 2λ  (Knight & Finn, 1998). For instance, with vdrift = 50  m/s, this fre-
quency is approximately 0.13 Hz.

Figure 11 displays an example of intensity and phase power spectra for the L1 
band obtained with vdrift = 50  m/s and sampling frequency fs = 50  Hz. The slope 
of the intensity and phase spectra is p ≈ 4.0 for weak scintillation (∆TEC = 0 25.  
TECU) in the decaying region of the plots. For strong scintillation (∆TEC = 5 
TECU), the phase spectrum is shifted upward (meaning larger phase fluctua-
tions), the slope decreases (larger high-frequency content), and the intensity spec-
trum becomes wider. The same effect was reported, for instance, in Humphreys 
et al. (2009).

Figure 12 illustrates the dependence of the intensity and phase spectra on the 
drift velocity of the electron density depletion regions. As expected, the curves 

FIGURE 10 Relation between parameters σφ  and S4:  (a) using the proposed method with 
0 05 2. � � ;TECU TEC TECU≤ ≤∆  (b) using the GISM
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experimented a frequency rightward shift when vdrift increased, which corresponds 
to a growth of the high-frequency content. The shift appears to have been approxi-
mately linear with the velocity increment.

4  FADING STATISTICS

Figure 13 illustrates the main parameters that characterize the intensity and 
phase fading processes. For the intensity, we consider the fading duration, fading 
depth (in dB), and time separation between adjacent fades. Following Jiao et al. 
(2016), we define a deep fade event when the normalized signal intensity drops 
below −10  dB. For the phase, we define the absolute value of the peak-to-peak 
phase change during a fade and the maximum absolute phase rate during fading. 
These parameters are also considered, for instance, in Jiao et al. (2016, 2018). As 
pointed out in Jiao et al. (2015), the measurements of C N/ 0  are not suitable to 
estimate the fading characteristics due to the ionospheric scintillation. In fact, since 
the measurements of C N/ 0  are based on time averages to minimize the effect of 
thermal noise, they tend to underestimate the fading level and to overestimate the 
fading duration. Besides these parameters, it is also important to determine the 

FIGURE 11 Example of intensity and phase power spectra for the L1 band

FIGURE 12 Example of the dependence of the intensity and phase power spectra on vdrift 
for the L1 band
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correlation of the fade events in the L1 ( .f0 1 57542=  GHz), L2 (f0 1 2276= .  GHz), 
and L5 (f0 1 17645= .  GHz) bands.

Fading duration determines whether reacquisition is needed in case the receiver 
has lost lock of the signal as it would affect the accuracy of the positioning solu-
tions if tracking is maintained (Jiao et al., 2015). The time separation between fades 
has an impact on signal reacquisition and on the carrier smoothing process of code 
measurements. The time separation between fades of different bands determines 
whether and how frequency diversity techniques can be employed to minimize the 
receiver performance degradation due to scintillation (Jiao et al., 2016). Figures 14, 
15, and 16 display the histograms of fading duration, fading depth, separation 
between fades, absolute peak-to-peak phase change, and maximum phase rate for 
the L1 band, corresponding to a time interval of 60  minutes, using a sampling 

FIGURE 13 Definition of the intensity and phase fading parameters

FIGURE 14 Normalized probability histograms of (a) fading duration and (b) fading depth 
for the L1 band
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rate equal to 50 Hz. It was assumed that ∆TEC = 2 5.  TECU, vdrift = 50  m/s, and 
L D= =/ 2 250 m.

The dashed-dotted curve in Figure 14(b) refers to the fitting exponential distribu-
tion with a pdf of f x x( ; ) [ / ]/µ µ µ= − − −( )exp ,10  where x  is expressed in dB and 
µ = 8. The curve in Figure 16(b) refers to the fitting log-logistic distribution with 
pdf f x z x z( ; , ) ( ) /[ ( ( )) ],µ σ σ= +exp exp1 2  where z x= −( ) /ln .µ σ  The param-
eters µ = 2 6.  and σ = 0 37.  were used. Both fittings show good agreement with 
those reported in Jiao et al. (2018).

Table 1 lists the values of means and standard deviations of the different 
intensity and phase fading parameters during the above-mentioned time inter-
val for the L1, L2, and L5 bands. The scenario ∆TEC = 2 5.  TECU, vdrift = 50 m/s,  
and L D= =/ 2 250  m was maintained for the three bands. It is noteworthy that 
the number of deep fades increased (the time separation between fades dimin-
ished) when the carrier frequency decreased. Except for the maximum phase 

FIGURE 15 Normalized probability histogram of separation between fades for the L1 band

FIGURE 16 Normalized probability histograms of (a) peak-to-peak phase change and 
(b) maximum phase change rate for the L1 band
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rate, the other parameters presented similar values to those obtained in Jiao 
et al. (2018).

Table 2 presents the probability of deep fades ( dB)I( )t < −10  for different con-
figurations of the L1, L2, and L5 bands. As expected, these probabilities increased 
slightly when the carrier frequency was diminished. The probabilities of simulta-
neous deep fades for two and three bands are also indicated. Probabilities smaller 
than 0.02 were obtained for the pairs (L1, L2) and (L1, L5). For the three bands, the 
probability was smaller than 0.01. These results agree with the behavior exhibited 
by the experimental data analyzed in Jiao et al. (2015).

The results show that the deep fades in two largely frequency-separated bands 
tend to occur almost independently (note that this is not true for the pair [L2, L5]). 
Simultaneously using signals in the L1 and L2 (or L5) bands provides an efficient 
way to minimize the probability of loss of lock in GNSS receivers due to strong 
scintillation. That is, it is possible to utilize the tracking results of other bands to 
assist the tracking of the deep fading band during scintillation (Jiao et al., 2015).

The relations between the peak-to-peak phase change and the fading depth 
and between the maximum phase rate and the fading depth for the L1 band are 
displayed, respectively, in Figure 17(a) and Figure 17(b). The peak-to-peak phase 
change increased with the fading depth, although in a nonlinear form, the dis-
persion of values grew with the fading depth. The plot of the log10 of the maxi-
mum phase rate exhibits a highly correlated linear relationship. The linear fitting is 
depicted as a solid straight line defined by y x= − +0 0395 0 4276. . .  The correspond-
ing correlation coefficient is high in absolute value (0.82). For the sake of brevity, 
only the results relative to the L1 band have been presented. However, simulations 
carried out with the remaining bands indicate similar results.

In general, the results shown in Figures 14 through 17 reveal a good accordance 
with those presented, for instance, in Jiao et al. (2018; obtained with real data), 
leading us to believe that the proposed simulator is able to represent with realism 

TABLE 1
Means and Standard Deviations of Intensity and Phase Parameters 

Parameter L1 L2 L5 

Number of fades 833 1110 1161

Scintillation index S4 0.96 1.09 1.08

Fading duration (s) (mean) 0.41 0.38 0.37

Fading duration (s) (stdev) 0.31 0.38 0.39

Fading depth (dB) (mean) –19.00 –18.76 –18.99

Fading depth (dB) (stdev) 7.65 8.19 8.08

Fade separation (s) (mean) 4.32 3.24 3.10

Fade separation (s) (stdev) 3.99 2.76 2.52

Peak-to-peak phase change (rad) (mean) –0.05 0.02 0.03

Peak-to-peak phase change (rad) (stdev) 2.29 2.29 2.31

Maximum phase rate (rad/s) (mean) 22.36 24.94 26.06

Maximum phase rate (rad/s) (stdev) 25.93 28.41 28.51

TABLE 2
Probabilities of Deep Fades for Different Band Configurations

Prob(L1) Prob(L2) Prob(L5) Prob(L1,L2) Prob(L1,L5) Prob(L2,L5) Prob(L1,L2,L5)

0.105 0.110 0.115 0.017 0.016 0.051 0.009
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the effects of ionospheric scintillation on GNSS received signals in low latitude 
scenarios.

In Figure 18(a), we display the intensity of an L1-band signal received by the 
ionospheric scintillation monitoring station at the Hanoi University of Science 
and Technology on April 12, 2013 (16h 00m and 03s UTC) for an observation of 
two minutes (left-side plot; data available on the JRC Scintillation Repository; for 
details, consult Curran et al. (2014, 2015). In this interval, the measured value of 
S4 is approximately equal to 1. In Figure 18(b), we exhibit a synthesized intensity 
time series using the proposed algorithm with the design parameters adjusted in 
order to achieve approximately the same S4 index, mean duration, and spacing 
between fades as in the real signal. The adjustment led to the following design 
parameters: ∆TEC = 3  TECU, vdrift = 15  m/s, L = 150  m, and D = 300  m.

Recall that a significant advantage of the synthesized intensity time series over 
the experimental one is that a time series with constant scintillation statistical 
characteristics and arbitrarily long duration can be generated in contrast with real 
signals whose characteristics are typically non-stationary over intervals larger than 
a few minutes.

FIGURE 17 Relations between (a) peak-to-peak phase change and fading depth and 
(b) between maximum phase rate and fading depth for the L1 band

FIGURE 18 (a) Real and (b) synthesized intensity time series with common S4 value and 
average deep fade duration and spacing
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The flowchart of Figure 19 presents the operations to be carried out to synthesize 
ionospheric scintillation time series using a set of pre-defined (target) scintillation 
parameters S4, tf ,  and ts ,  with tf  and ts  indicating, respectively, the average deep 
fade duration and the average separation between adjacent deep fades. The design 
parameters to be adjusted in the proposed algorithm are: ∆TEC, vdrift ,  D, and L. For 
instance, the values of tf  and ts  may be adjusted by changing the TEC(x) profile 
velocity vdrift :  the larger the velocity is, the smaller the values of tf  and ts  will be. 
This procedure was used to generate the synthesized time series of Figure 18. Note, 
however, that certain combinations of scintillation parameters may not be reach-
able using any set of design parameters. In general, large values of S4 1 4( ).>  cannot 
be obtained with the single phase-screen model adopted by the proposed algorithm 
(see Figure 5). However, the admissible range of values (0 ≤ S4 ≤ 1.4) encompasses 
the scintillation indices typically found in experimental scenarios (ITU, 2019).

5  CONCLUSION

The paper presents a new fast Monte Carlo technique to simulate the effect of 
equatorial ionospheric scintillation on signals transmitted by GNSS satellites, use-
ful for assessing the performance of the receivers in scintillation scenarios. The 
method uses a single-layer phase-screen model of the ionosphere by which we 
assume a train of plasma TEC(x) profiles drifting eastward with constant velocity. 
The total electron content for each electron density irregularity was chosen ran-
domly using, for instance, a uniform distribution generator. The shape of the elec-
tron density irregularities was made triangular in the x-direction, allowing us to 
analytically determine the ionospheric scintillation random process. This process 
is expressed by the Huygens-Fresnel complex integral, which can be computed by 
a sum of Fresnel cosine and sine integrals, thus avoiding the use of lengthy numer-
ical integrations and making the computation fast.

FIGURE 19 Generation of ionospheric scintillation time-series using pre-defined (target) 
scintillation parameters
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We calculated the distributions for the amplitude and phase of the disturbed sig-
nals versus the scintillation index S4. It was shown that, in general, the amplitude 
of the fading process is difficult to characterize in terms of known distributions (it 
was suggested that it could be characterized as a finite mixture of distributions). 
However, for strong scintillation scenarios, it was verified that the amplitude is well 
approximated by the generalized gamma (or alpha-mu) distribution, as happens in 
real scenarios. The argument of the Huygens-Fresnel integral was utilized to gen-
erate unwrapped phase sequences that are useful to evaluate the performance of 
phase-locked loops in GNSS receivers. Several statistics were calculated for signals 
generated with the proposed technique, including fading duration and depth, sep-
aration between fades, peak-to-peak phase change, and maximum phase change 
rate. The results obtained for the L1, L2, and L5 bands show good agreement with 
the results provided by experimental data.
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APPENDIX

Fast computation of the complex Fresnel integral Ξ( ) ( ) ( )y C y jS y= +  can be 
obtained by resorting to the approximations presented in Chapter 7 of Abramowitz 
and Stegun (1972) for the sine and cosine Fresnel integrals. It can be shown that:

	 Ξ( ) ( ) [ ] ( )y j j y g y j f y y= + −

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where sign( )y = −1,  if y < 0  and sign( )y = +1,  otherwise. The auxiliary functions, 
f x( ) and g x( ),  are given by the rational approximations:
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The errors of these functions do not exceed 2 10 3× − .  However, for more accu-
rate approximations, the Boersma algorithm (Boersma, 1960) may be employed. 
Replacing the auxiliary functions in Equation (A1) of the Appendix and taking into 
account Equation (8) leads to:
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