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O R I G I N A L  A R T I C L E

Navigation and Ionosphere Characterization Using High-
Frequency Signals: A Performance Analysis

Yoav Baumgarten1  Mark L. Psiaki2  David L. Hysell3

1  INTRODUCTION

Alternatives to satellite-based navigation have been widely explored in the past 
two decades. This search is motivated by concerns about the rise of threats from 
jamming and spoofing. High-frequency (HF) navigation is a concept that has been 
proposed by Baumgarten and Psiaki (2017) and Baumgarten et  al. (2021) as an 
alternative radio-based positioning method. It relies on the determination of the 
exact paths traveled by electromagnetic signals with carrier frequencies in the 
range 2–10 MHz. These signals, which are broadcast from static ground stations, 
are refracted from the ionosphere to arrive at a receiver whose location is to be 
determined. The present study explores the potential performance of the proposed 
method.

Radio-navigation methods are generally based on the fusion of multiple mea-
surements of radio-frequency (RF) signals and require mathematical models for 
the measured observables. In the context of HF navigation, these observables 
include range-equivalent group delays and range-equivalent beat carrier phases. 
The measurement models for these two observables require refractive ray-tracing 
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Abstract
The performance of a proposed high-frequency (HF) navigation concept is 
analyzed using simulated data. The method relies on pseudorange and beat 
carrier-phase measurements of signals that propagate in the ionosphere along 
curved trajectories, where signals are refracted back downwards from the ion-
osphere. It has been demonstrated that the location of a receiver can be deter-
mined if several signals, broadcast from beacons at different locations, are 
received and processed at a user receiver. A challenge of determining exact sig-
nal paths is the uncertainty in the ionosphere’s electron density distribution. 
This is addressed by a batch filter that simultaneously estimates the receiver 
position along with corrections to a parametric model of the ionosphere. A pre-
vious paper developed the theory and batch filter for this concept. The present 
study examines its potential performance. Total horizontal position errors on 
the order of tens to hundreds of meters are achieved, depending on the case’s 
characteristics. 
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calculations through a three-dimensional model of the ionosphere’s free-electron 
density profile and models of signal reflection off the Earth’s surface. The needed 
models have been introduced and developed in Baumgarten et  al. (2021). This 
reference also discusses and demonstrates how uncertainties in the electron den-
sity profile can induce significant errors in the computation of signal trajectories. 
Consequently, errors in the computed range-equivalent group delays and carrier 
phases will occur, degrading positioning accuracy markedly. 

A common approach for the reduction of environmental uncertainties relies 
on the use of data that are obtained from external auxiliary systems. Huang and 
Reinisch (2006) and Zaalov et al. (2017) demonstrated the use of ionosonde data 
(Juras, 1985) to generate an enhanced local model for electron density. In Fridman 
et al. (2006), GPS data inversion computations were used for generating a refined 
local electron density model. Nickisch et al. (2016) demonstrated the assimilation 
of HF near-vertical propagation time delay and additional observables in electron 
density characterization. 

A different strategy is considered within the current study—one, however, that 
does not depend on external aiding for corrections to the ionosphere electron den-
sity profile. Instead, this approach assumes that, if sufficiently many group delay 
and beat carrier-phase measurements are available, then a solution can be obtained 
not only for the unknown location and clock offset of the receiver, but also for a 
parameterized model of corrections to the electron density distribution that applies 
in the vicinity of the propagating signals. A solution for this coupled positioning/
ionosphere characterization problem is obtained using a method that combines 
an a-priori ionosphere model, ray-tracing calculations for propagating signals, and 
model inversion calculations to compute an enhanced estimate for the unknown 
quantities. The details of this technique are provided in Baumgarten et al. (2021), 
which also demonstrates the feasibility of the proposed concept.

The present paper focuses on the potential performance of the batch filter of 
Baumgarten et al. (2021) and on its sensitivity to problem parameters. In partic-
ular, a key question concerns the way that positioning accuracy varies with the 
set of parameters that characterize a given estimation scenario. This set includes 
the placement of the broadcasting ground stations, the number of signals that are 
received by the user receiver, and the size of the differences between the truth and 
the assumed (a-priori) parameterized ionosphere models. The system’s potential 
performance is evaluated using both Monte Carlo simulation calculations and a 
linearized Cramér-Rao covariance lower-bound analysis. 

A comprehensive description of the fundamental models that lie in the core of 
this study is provided by Baumgarten et al. (2021). This includes physical models 
of propagating RF signals in the ionosphere that are implemented using refractive 
ray-tracing techniques of the Earth’s geometry and magnetic field as well as of 
the three-dimensional electron density distribution in the ionosphere. Baumgarten 
et al. (2021) also derived mathematical models for single-hop and multi-hop ray 
paths. These models combine to yield the batch filter’s models of the measured 
observables. The reader is encouraged to review this reference for a broader under-
standing of these topics. Alternatively, Section  2 of the present paper provides 
summarized descriptions of both physical and mathematical models. The material 
covered in this section should suffice for a basic understanding of concepts that are 
considered later in this paper. 

The remainder of this paper is divided into five sections. As already stated, Section 2 
briefly reviews the physical models that have been developed by Baumgarten et al. 
(2021). Section 3 reviews the batch filter of Baumgarten et al. (2021) that computes 
estimates for the unknown receiver location and ionosphere parameters. Section 4 
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briefly reviews previous results, defines this paper’s performance analysis meth-
odology, presents detailed results for three representative test cases, and briefly 
discusses 18 additional cases that have been considered. These results are further 
discussed and analyzed in Section 5. The discussion focuses on positioning accu-
racy as well as the fidelity of the a-posteriori estimate of the ionosphere model. 
This section also proposes follow-up studies. Section  6 summarizes the study’s 
developments and draws conclusions about the proposed new system.

2  AN OVERVIEW OF MODELS

This section provides a succinct overview of concepts that constitute the foun-
dation of this work: HF signal propagation, Earth and ionosphere modeling, and 
measurement modeling. Comprehensive discussions about these topics are pro-
vided in Baumgarten et al. (2021) and Baumgarten (2018). 

2.1  Signal Propagation in the Ionosphere and Ray-Tracing 
Computations

This study considers transmitted RF signals with carriers in the range 2 MHz 
through 10 MHz. The signals are presumed modulated by a binary phase shift key-
ing (BPSK) pseudorandom code, so that pseudorange measurement is facilitated. 
Pseudorange measurement accuracy is assumed to be 1 kilometer in 1-sigma, with 
a signal bandwidth of 100 KHz. Beat carrier-phase measurements are utilized as 
well, facilitated through the use of a stable internal oscillator and a phase-locked 
loop, so that the expected accuracy for a range-equivalent beat carrier-phase mea-
surement is 1 meter. 

Skyward-propagating HF signals that travel in the ionosphere are refracted 
towards the Earth. Their trajectories are characterized by a curved path and 
frequency-and-path-dependent propagation speeds of both modulated code and 
carrier phase. This propagation mechanism, generally modeled through the 
Appleton-Hartree equation (Baumgarten et al., 2021), is considered for ray-tracing 
calculations that lie at the core of this study. The fundamental set of ray-tracing 
equations that are utilized is provided by Jones and Stephenson (1975) in the 
form of a coupled system of six non-linear ordinary differential equations. Jones 
and Stephenson (1975), combining the work of Lighthill (1970) and Haselgrove 
(1955), proposed different Hamiltonians that could be used in the implementa-
tion of these equations. Alternative Hamiltonian formulations are presented by 
Psiaki (2019). 

2.2  Earth and Ionosphere Models

The physical environment that surrounds propagating signals is considered in 
the form of parametric models for the Earth’s shape, the Earth’s magnetic flux, and 
for the free-electron density distribution in the ionosphere. 

The Earth’s shape is modeled using the WGS-84 ellipsoid model (National 
Geospatial-Intelligence Agency, 2011) whose equation in Cartesian Earth-centered, 
Earth-fixed (ECEF) coordinates is given in Baumgarten et al. (2021). This model 
has been chosen for its relative simplicity, although a more realistic method for 
modeling the shape of the Earth may be required when dealing with real data. 
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Such methods could utilize two-dimensional spline surfaces to approximate exist-
ing digital representations of the Earth. 

The International Geomagnetic Reference Field’s (IGRF) 11th generation is 
used to model Earth’s magnetic flux vector field in the vicinity of propagating 
HF signals. This model is embedded in the ray-tracing computations that are 
utilized in this study. Additional information about the IGRF model can be 
found in IAGA Division V-MOD (2019). It should be noted that, in the scope 
of this simulation-based analysis, unlike when working with real data, results 
are not expected to be sensitive to the particular IGRF and electron density 
models used.

Ionosphere modeling plays a significant role in this study due to the strong 
dependence of the propagating signals’ directions and speeds on ionosphere char-
acteristics, namely electron density and magnetic field. The electron density distri-
bution is modeled starting from a three-parameter Chapman beta vertical profile. 
It was expanded into a three-dimensional spatial model that contains electron den-
sity data for the entire near-Earth upper atmosphere using latitude and longitude 
maps of the vertical profile’s three parameters. The extent to which the Chapman 
profile can be regarded as the exact solution for an ionosphere density profile is 
discussed in Baumgarten et al. (2021) and Stankov et al. (2003). 

A function Ne(r) is defined that maps the three-dimensional ECEF Cartesian 
location vector r to its corresponding electron density value in units of electrons/
m3. This mapping procedure relies on a preceding computation of auxiliary quan-
tities: altitude of maximum electron density, hmax[r]; vertical total electron content, 
VTEC[r]; and altitude scale factor, hsf[r]. These quantities constitute the Chapman 
profile’s set of three parameters (Baumgarten, 2018). Note that this computation 
implicitly accounts for transforming the location’s Cartesian representation, r, to 
geodesic latitude, longitude, and altitude coordinates. The latitude and longitude 
dependencies of the three Chapman profile parameters were modeled using a spe-
cial bi-quintic spline which works with data that are defined at spline nodes. Spline 
nodes were placed at predefined latitudes and longitudes along circles of constant 
latitude. Additional information on spline computations, spline stored data, and 
nodes placement is provided in Baumgarten et al. (2021), Baumgarten (2018), and 
Psiaki et al. (2019). 

Note that distinct D and E layers cannot be represented using a single Chapman 
profile. Degraded results using real daytime data are likely unless the paper’s 
models are modified to include multiple Chapman profiles that could model the 
D and E layers in addition to the main F layer modeling that is assumed here. 
However, the use of a Chapman profile appears to be a reasonable choice for this 
stage of simulation-based analysis in which this method’s potential accuracy is 
evaluated. 

2.3  Ray Paths

Signals are assumed to be transmitted from ground stations with known loca-
tions. The signals follow curved, refracted paths in the ionosphere and are bent 
back towards the Earth. They may be reflected from the Earth’s surface and 
refracted back from the ionosphere multiple times before finally arriving at the 
location of a receiver. It is assumed that the signals are reflected from the Earth’s 
surface in a lossless specular manner at bounce points. These bounce points’ loca-
tions are determined as part of a ray-path solution process, as discussed in depth in 
Baumgarten et al. (2021) and Baumgarten (2018). 
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Bounce points are connected through curved signal trajectories that are termed 
ray-hops. Ray-hops additionally connect the location of a transmitter with the 
first bounce point, and the last bounce point with the location of the receiver. 
Calculation of individual ray-hop trajectories, given a ray-hop’s known start and 
end locations and given a set of applicable ionosphere parameters that character-
ize the electron density profile in the vicinity of that ray-hop, was performed using 
an iterative numerical solution method that has been developed for a two-point 
boundary value problem (TPBVP). This method is discussed in Psiaki (2019). 

Sequenced ray-hops that connect the transmitters, intermediate bounce points, 
and the receiver constitute ray paths. Their characterizing attributes, including 
total group delays, range-equivalent beat carrier phases, and these quantities’ 
sensitivities to inputs, are required for the computation of a receiver’s location. 
Determination of these quantities involves finding the solution of coupled, non-
linear equations that define the physical characteristics of the signals’ trajectories. 
As part of the solution, the location of a ray-path’s bounce points is determined 
using an algorithm that is called a ray-path solver. The ray-path solver is input 
with locations for the signal’s start and end points that are assumed to be fixed 
and known. It is additionally given fixed ionosphere parameters. Additional 
details about the ray-path solver, along with a discussion about ray paths’ feasibil-
ity and solution uniqueness, are provided in Baumgarten (2018) and Baumgarten 
et al. (2021).

2.4  Measured Observables 

In the context of this study, range measurements are based on signal propagation 
time and on wave phase measurements. A single transmitter may generate multi-
ple ray paths that differ in their transmission frequencies or in the number of hops 
of each ray path. 

The first type of observable that is utilized in this work is the ray path’s total 
range-equivalent group delay, which equals the measured signal propagation time 
multiplied by the speed of light, c. Propagation time is computed as the difference 
between the measured reception time according to the erroneous receiver clock 
and the true transmission time at the beacon transmitter, whose clock is assumed 
to be pre-calibrated. 

Beat carrier phase is the second type of measurement that is used in this study. 
It is defined as the difference between measured changes in the received signal’s 
phase during a fixed period of time and the phase change that occurs in the trans-
mitted signal over the corresponding period of time. This measured quantity is 
equivalent to the negative of the time integral of the received carrier Doppler shift 
(Bennett, 1968). Baumgarten (2018) shows how the use of a frequency-hopped 
continuous-phase signal and multiple beat carrier-phase measurements at multi-
ple times associated with different frequencies can be used to enable estimation of 
the unknown bias term that is typical for this type of measurement. 

3  BATCH ESTIMATION OF RECEIVER POSITION, 
RECEIVER CLOCK OFFSET, AND IONOSPHERE 
PARAMETER CORRECTIONS

The solution for the unknown receiver location and corrections to a local model 
for electron density was obtained through the minimization of a cost function that 
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considers the differences between measured pseudoranges and beat carrier phases 
and their computed counterparts. In addition, it includes a term for the differences 
between a-priori and current estimates of parameters that characterize the electron 
density distribution in the ionosphere. 

3.1  Batch Filter Problem Definition and the Solution 
Algorithm

The batch filter is designed to minimize the cost function:

	 J x p y h x p R y h x p p p M p pc c c1
1
2

1 1
2

1( , ) [ ( , )] [ ( , )] ( ) ( )� � � � � �� �T T� � (1)

where xc is a vector containing three coordinates for the unknown location 
of the receiver, a term for the unknown receiver clock offset, and potentially, 
unknown beat carrier-phase measurement bias terms. The vector p contains the 
unknown ionosphere parameters—these are the parameters that characterize 
electron density distribution in the vicinity of the true ray paths, as described 
in Baumgarten (2018). The vector p̅ characterizes an assumed model for the 
ionosphere. It holds a-priori values for p. The vector y contains the measured 
pseudoranges and range-equivalent beat carrier phases for the given ray paths. 
The matrix R is the measurement noise covariance matrix and M is the covari-
ance matrix that models the uncertainty in the a-priori ionosphere parameter 
vector p̅. The scaling parameter ζ is used for dynamic relative weighting of 
the two terms whose sum constitutes the cost function. It is important to note 
that the right-hand side term of Equation (1) does not include a-priori values 
of the elements of xc so that no prior information about the receiver position 
is assumed. Additional details about this weighted nonlinear least-squares 
cost function are provided in Baumgarten et al. (2021) and in more detail in 
Baumgarten (2018).

This batch estimation problem is solved using the Gauss-Newton method. 
In its basic form, this method is described in Gill et al. (1981) and Nocedal and 
Wright (2006). The actual implementation of this method, however, includes 
several adaptations that address certain characteristics of the present estima-
tion problem. One requirement for the modified method was an ability to han-
dle situations in which intermediate computations of a signal’s group delay and 
beat carrier phase were unsuccessful. This might be the case if the current guess 
for one or more of the unknown parameters was poor, rendering a problem 
setup that includes physically infeasible ray paths. This requirement has been 
addressed through the development of a dynamic comparison mechanism that 
evaluates the cost reduction for varying sets of measurements. A second adapta-
tion is the inclusion of a measurement rejection mechanism designed to detect 
and reject bad measurements using likelihood tests. The prime motivation for 
such a mechanism originated from the need to identify measurements that were 
contaminated by significant, yet un-modeled, measurement errors that affect sen-
sor readings. A third adaptation, which has been designed to ensure a high rate 
of solution convergence, is the use of a two-stage method. In this method, the 
algorithm only allows limited corrections to the set of unknowns in its early itera-
tions. Additional details on these modifications to the Gauss-Newton method are 
provided in Baumgarten (2018). 
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3.2  Estimation Errors and the A-Posteriori Covariance 
Matrix

The estimation errors for the vectors xc and p are defined as:

	 � �x x x p p pc true true� � � �; � (2)

where xc and p are the filter’s estimates that minimize the cost function of 
Equation (1) and xtrue and ptrue are the corresponding unknown true values. The 
computed set of range-equivalent group delays and beat carrier phase, h(xc, p), can 
be related to h(xtrue, ptrue) through a first-order approximation that is computed by 
expanding in a Taylor series about xtrue and ptrue:
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This approximation can be used to determine an approximate formula for the 
dependence of the estimation errors on the measurement error vector νz and the 
a-priori ionosphere parameters’ error vector εp. The resulting predicted estimation 
error takes the form:
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where Nx is the number of elements in xc, and Np is the number of elements in p.
Estimation error covariance analysis considers two different cases that will be 

discussed later in the performance analysis section. In the first case, for which the 
ionosphere model error vector εp is sampled from a Gaussian distribution that sat-
isfies E[εp] = 0 and E[εp εp

T] = M, the estimation error covariance matrix is given 
by the standard form:
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This covariance matrix constitutes the Cramér-Rao lower bound for the batch 
filter's mean-square estimation error. In a second case that assumes a constant εp, 
the covariance matrix is given by:
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and the estimation error mean value is non-zero. The corresponding mean square 
error matrix takes the form:
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4  EVALUATION METHODS AND RESULTS FOR BATCH-
FILTER TEST CASES

4.1  Review of Previous Results

Baumgarten and Psiaki (2017) considered a simplified, straight-segment, 
ionosphere-thin-sheet-reflections ray-path model. The nine test cases that were 
studied in that work were characterized by differing numbers of ray paths, dif-
fering discrepancies between the true and a-priori ionosphere models, as well as 
differing ground station locations. The study considered a limited number of batch 
filter solutions. Preliminary results suggested that the paper’s simplified-model 
problem was sufficiently observable to make such a system a candidate for navi-
gation. Position errors, ranging from tens to thousands of meters, appeared to be 
consistent with the corresponding computed Cramér-Rao bounds. At the same 
time, the filtered estimates of the ionosphere electron density profile parameters 
tended to have significantly reduced errors in comparison to the a-priori estimates. 
A principal goal of the present study has been to explore whether such results hold 
up with much more complex and realistic models of the ionosphere and signals’ 
refractive ray paths.

4.2  Ionosphere Parameter Variability Matrix and the 
Ionosphere Error Index

The ionosphere parameter variability matrix is an empirical covariance matrix 
that models the manner at which ionosphere parameters vary over time as well as 
the correlations between them. The method used for generating this matrix, and its 
role with the batch estimator, are discussed in Baumgarten et al. (2021). 

In the context of performance evaluation, the ionosphere parameter variability 
matrix takes two roles. First, it is used in generating random a-priori ionosphere 
models in the form of random parameter perturbation vectors. These models are 
used with the type of test case analysis that has random a-priori ionosphere varia-
tions, demonstrated later with Test Case H0. 

The ionosphere parameter variability matrix is additionally used in evaluating 
the magnitude of errors in the estimates of a-priori and a-posteriori ionosphere 
model parameters. Error vectors’ squares are normalized by this matrix’s inverse, 
followed by taking the 10-based logarithm of the resulting scalar quantity. The 
resultant non-dimensional valued Ionosphere Error Index (IEI) can be regarded as 
small or big, indicating small or significant differences between evaluated iono-
sphere parameters’ values and their true counterparts, respectively. See Baumgarten 
(2018) for additional statistical characteristics of the IEI. 

4.3  Performance Evaluation Methods

Two analysis methods have been used in this study. In the first method, 
simulation-based analysis is conducted through the examination of individual 
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batch-filter solutions that operate on simulated input data. Error statistics are gen-
erated by processing the outcome of sets of Monte Carlo runs that consider differ-
ent random measurement errors for a given set of input parameters and, possibly, 
different yet constant random differences between the a-priori and true ionosphere 
model parameters. This approach is useful in assessing the batch-filtering algo-
rithm’s performance given particular IEI values. As such, it provides in-depth yet 
somewhat narrow-in-scope information.

The second type of analysis assumes that the difference between the true and 
a-priori ionosphere parameter vectors is a random vector sampled from a zero-mean 
Gaussian distribution. This addresses the need to account for ionosphere errors’ 
randomness at the cost of certain required simplifications that are applied to the 
assumed ionosphere’s error model. In this approach, error statistics are generated 
using the linearized covariance analysis that was presented earlier. 

The first of the two analyses is similar to a traditional Monte Carlo analysis that 
uses a truth-model simulation of a filter. The resulting error statistics that char-
acterize the filter’s performance are, therefore, regarded as having high fidelity. 
The large number of ionosphere parameters and the large cost in filter computa-
tion time per simulation, however, makes it impractical to run a sufficient number 
of simulations to fully explore all the effects of randomness in the measurement 
errors and randomness in the differences between the a-priori ionosphere model 
and the “truth” ionosphere model. Therefore, the second covariance-based analy-
sis was ultimately used to further characterize the possible effects of ionosphere 
model uncertainty using, in effect, a traditional Cramer-Rao-lower-bound-type 
analysis of the possible filter accuracy.

Our assessment of the proposed navigation system's effectiveness evaluated the 
batch filter’s performance in terms of positioning accuracy and its ability to esti-
mate corrections to an erroneous a-priori model of the ionosphere. Assessment 
was performed through a comprehensive analysis of 21 test cases that differed in 
both analysis method and various input parameters. 

The 21 test cases that were studied are divided into four classes. These classes 
differ by the type of measurements that were processed in each and by the analysis 
method that was used for assessing the filter’s performance. Test cases of Class 1 
and Class 2 considered a fixed ionosphere model, whereas test cases of Class 3 and 
Class 4 considered randomly varied ionosphere models consistent with the two 
types of analysis that have been described. Both group delay and beat carrier-phase 
measurements were processed with the test cases of Class 2 and Class 4, while 
only group delay measurements were processed with the test cases of Class 1 and 
Class 3.

Each class of test cases was divided into two-to-three groups that differed by the 
number and placement of ground transmitters and by the number of signal mea-
surements that were assumed to be available for the receiver. Test case groups of 
low signal availability included scenarios where the receiver was assumed to pro-
cess 21 different signal measurements. Test case groups of medium signal availabil-
ity considered scenario setups wherein the receiver was assumed to process up to 
68 different observables. In the test cases that were included in groups of high sig-
nal availability, it was assumed that either 128 or 256 observables, including group 
delay and beat carrier-phase measurements, were processed by the receiver. In the 
latter two cases, transmitters were assumed to be broadcasting signals with varying 
frequencies. Finally, each group of test cases contained test cases that differed by 
setup parameters that included ray-path geometry, the number of hops for each ray 
path, signal frequencies, true and a-priori ionospheric models, measurement noise, 
receiver clock error, and the true location of the receiver. Additional details about 
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all 21 cases, including a description of the particular setup used with each test case, 
are contained in Baumgarten (2018).

The resulting ensemble of test cases allowed for a comprehensive study of the 
system’s performance and performance sensitivity to setup parameters. Of the 
studied test cases, three representative examples are considered in depth in the fol-
lowing three subsections. These consist of a representative test case (Test Case E0), 
a test case wherein performance was evaluated for a more challenging setup (Test 
Case D2), and a test case in which the impact of a-priori ionosphere variations on 
performance were considered and assessed (Test Case H0). The rest are discussed 
in brief summary at the end of this section for the sake of brevity. 

4.4  Truth-Model Simulation

Algorithm validation and performance assessment were performed using a 
truth-model simulation. The simulation was designed to enable testing of any 
desired combination of ground station placement, ray-path characteristics, mea-
surement error models, ionosphere error models, and other parameters. It has been 
shown by Baumgarten (2018) that not all such combinations yield physically fea-
sible ray paths. The feasibility of the ray paths of a given configuration is tested 
during the first stage of a simulation study. 

Figure 1 illustrates a typical scenario. It shows the different signals’ curved ray 
paths, starting from ground stations and eventually arriving at user equipment 
(UE). Different ray paths transmitted from the same ground station are shown in 
different shades of green with gray circles denoting their ground bounce-points. 

FIGURE 1 Three-dimensional view of transmitter locations, receiver location, and ray paths 
of a typical test case’s truth-model simulation
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The blue circles in the figure denote ground broadcast stations, with the corre-
sponding broadcast signals’ identifying indices shown next to the circles. The 
magenta diamonds with adjacent three-digit numbers denote ionosphere model 
bi-quintic spline nodes with their identifying numbers next to them. The North 
American coastline is shown as a thin blue line. The receiver’s true location is 
marked with a thin black X at the convergence point of the various ray paths.

Computation for an electron density distribution truth model utilizes a 
Chapman profile that is fit to an International Reference Ionosphere (IRI) model 
for a particular time. The model used in the simulation utilized the 2012 release 
IRI Fortran code available on the official NASA website (Bilitza, n.d.). A Chapman 
vertical electron density profile is fit to the entire IRI vertical profile, including 
the F layer, at a set of latitude and longitude points, wherein each such Chapman 
profile was assumed to be the truth profile at the given latitude and longitude. 
The fit is performed using a nonlinear least-squares technique (Baumgarten, 2018). 
This fitting procedure is carried out at each bi-quintic spline node to determine 
the three parameters. The three-dimensional ionosphere model is defined by the 
three Chapman vertical profile parameter values’ natural logarithms at each of the 
latitude/longitude nodes along with all of their latitude and longitude partial deriv-
atives of up to second order in latitude, longitude, or both. This parameterization 
and its calculation from the IRI model are described in Psiaki et al. (2015, 2019). It 
should be noted that the Chapman model ignores the possibility of distinct D and 
E layers, including a sporadic E layer. This level of simplification would likely pro-
duce unsatisfactory results if working with real daytime data, but it is reasonable 
to use a Chapman profile at this stage of simulation-based study of the proposed 
system’s potential accuracy.

The simulation uses truth values of the receiver location, receiver clock offset, 
and ionosphere model parameters in the pseudorange measurement model for 
each ray path. It also uses these truth values, along with the true beat carrier-phase 
measurement bias terms, in the beat carrier-phase measurement model. These 
measurement values are input directly into the main batch filtering algorithm 
with or without random measurement errors added, depending on the type of 
simulation-based evaluation that is being performed. The simulation also gener-
ates an a-priori estimate of the ionosphere parameter vector for use in the cost 
function of Equation (1). This a-priori p̅ vector is typically different from the truth 
p vector. The method of generating appropriate differences, perhaps differences 
that are even a bit larger than one would expect in a real situation, is to use the IRI 
model to generate p̅ via Chapman-profile fitting at a different date than the date 
used to generate the truth p using the same fitting technique. Such a choice ensures 
that the truth-model simulation is not using an unreasonably optimistic model of 
how well the filter’s known p̅ would approximate the truth ionosphere. 

4.5  Test Case E0: A Representative Case

Test Case E0 considered an array of 11 ground station transmitters at various 
locations across the continental United States (CONUS). This set of ground trans-
mitter stations was a subset of an array of ground station transmitters that is based 
on a grid of small circles of constant latitude, spaced 5 degrees apart (Baumgarten 
et al., 2021). The nominal longitudinal difference between two neighboring sta-
tions that lie on the same small circle is 10 degrees, though not all nominal sta-
tion slots on a given small circle of latitude are occupied by transmitters. The 
nominal longitude grid of stations that lie on two neighboring small circles are 
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offset by 5 degrees. The user receiver was located at latitude/longitude/altitude 
(LLA) [40.1°, –95.1°, 10,000 m]. This setup is similar to that shown in Figure 1. 
The total number of nominal signal paths was 32. Each signal path was assumed 
to be received at four closely spaced times, each with a different carrier fre-
quency, so the total number of effective received signals was 128. A common beat 
carrier-phase bias was assumed to apply for each set of four signals from the same 
transmitter with the same number of bounces. Thus, there were 32 unknown beat 
carrier-phase biases. Both pseudorange and beat carrier-phase measurements 
were processed. Therefore, the total number of observables was 256. The HF sig-
nals for this test case had frequencies in the range 3.0–6.0 MHz. The number of 
hops for each ray path was 1–4, with a mixture of signals arriving from above the 
UE and from below the UE.

This test case considered a fixed ionosphere model for which the truth ion-
osphere electron density profile was based on the IRI model computed for 
October 23, 2009, at UTC 14:22. The a-priori model was based on the model com-
puted for September 23, 2009, at the same UTC, such that the total seasonal dis-
crepancy was one month, and the corresponding IEI (ξ) took a medium value of 
–0.2276, as with many other test cases that have been studied. It should be noted 
that these dates in the year 2009 represent a time of solar minimum. 

It is reasonable to assume that both the truth and a-priori ionosphere electron 
density models would have taken significantly different values had this setup con-
sidered a year of solar maximum, such as the year 2003. The use of models that 
had been generated for a different level of solar activity would not necessarily have 
had an impact on the basic results of this type of case-based study, except that they 
would likely change the actual geometry of the various simulated ray paths. There 
are, however, open questions about the fidelity with which a batch filter’s param-
eterized ionosphere model could represent the true electron density spatial distri-
bution and about whether the possible fidelity depends on the time point within a 
solar cycle. The investigation of such questions is left for future study. 

Figure 2 plots position errors obtained with a 100-run Monte Carlo analysis that 
used 100 different random measurement error instantiations but a single constant 
difference between the a-priori and truth ionosphere parameter vectors. The mean 
position error for Test Case E0 was about 5 meters in the north direction and less 
than 0.3 meters in both the east and vertical directions. The lengths of the hori-
zontal 90% error ellipse’s semi-major and semi-minor axes were 24 and 13 meters, 
respectively. The standard deviation for the vertical error was 0.8 meters. The biases 
in this figure result from the constant error between the a-priori and true iono-
sphere parameter vectors. The scatter and the corresponding error ellipses were the 
result of the random measurement errors.

The a-posteriori ionosphere model estimation errors could be assessed by con-
sidering the summary statistics that are shown in Figure 3. Each of the three panels 
plots histograms for the 100 Monte Carlo cases with a separate panel for each of 
the three Chapman profile parameters. Each panel plots two histograms for the 
corresponding Chapman profile parameter—a blue one labeled the 80% histogram 
and a gray one labeled the 95% histogram. Note how each individual histogram’s 
bar heights cumulatively add up to 100, the total number of Monte Carlo cases. 

Each histogram point was calculated based on another statistical analysis as fol-
lows. For the corresponding Monte Carlo sample, the errors in the given Chapman 
profile parameter were calculated on a dense set of latitude and longitude points 
over the CONUS. The cumulative distribution of these errors is plotted for the 
Monte Carlo sample, and two points are read off of this cumulative distribution—
its 80% point and its 95% point. The corresponding errors indicated that 80% or 95% 
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of the CONUS had errors no greater than the respective value in it’s a-posteriori 
ionosphere estimate. For example, by considering the 80th percentile histogram in 
the middle panel of Figure 3, one can infer from the heights of the left-most two 
bars (34 and 50 Monte Carlo counts, respectively, with the 50-count bar at 0.32 km) 
that in 34 + 50 = 84 of 100 Monte Carlo runs, a-posteriori hsf errors had values 
of 0.32 km or less over at least 80% of the area above CONUS. The blue dashed 
line and the gray dotted line mark the a-priori ionosphere model error values for 
the 80th and 95th percentiles, respectively. Hence, residual a-posteriori estimation 

FIGURE 2 Position estimation errors for Test Case E0: Monte Carlo analysis scatter plot 
(blue); horizontal 90% error ellipse (top plot, magenta); vertical/east 90% error ellipse (bottom 
plot, green).

FIGURE 3 The statistical characteristics of the a-posteriori ionosphere model errors for Test 
Case E0; the three panels contain maximum error histograms of the 80th and 95th CONUS area 
percentiles for the three corresponding Chapman parameters.
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errors for the three Chapman parameters were remarkably small compared to their 
a-priori values for all 100 runs of this Monte Carlo analysis. That is, the solid blue 
and solid grey histograms in all three panels of Figure 3 lie well to the left of each 
panel's corresponding dashed blue and grey vertical lines.

Another method of assessing ionosphere estimation accuracy considers maps 
that plot estimation error residuals for the three Chapman parameters. These plots 
are generated for nominal test case runs (i.e., runs for which no errors were added 
to the raw measurements). The only source of error was the difference between the 
truth and a-priori ionosphere parameter estimates. Figure 4 plots errors from truth 
for the a-priori (top) and the a-posteriori (bottom) estimates of the vertical total 
electron content parameter, VTEC. These errors have been computed and plotted 
for a region that contained all active grid nodes for this test case. In other words, 
this is the region where the ionosphere has been probed by propagating signals. 
Other regions of the plot have been left blank/white. The red square at latitude/
longitude (40.1°, –95.1°) indicates the true position of the receiver. Blue circles 
with white edges denote the locations of the ground stations. Magenta diamonds 
denote the locations of the bi-quintic spline grid nodes. The small green squares 
mark computed truth Earth bounce-points. North America’s coastline is shown in 
white with the borders of the states shown in gray. 

It is evident that the a-posteriori errors in the VTEC were dramatically reduced 
relative to their a-priori values above the vast majority of CONUS. For the a-priori 
data, 80% of the errors above CONUS were below 1.25 TECU and 95% were below 
1.93 TECU. For the a-posteriori (estimated) model, 80% of the errors were below 
0.04 TECU and 95% were below 0.09 TECU. 

FIGURE 4 A-priori (top) and a-posteriori (bottom) errors for the VTEC parameter for a 
nominal run of Test Case E0
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4.6  Test Case D2: One With Fewer Available Signals and a 
Worse A-Priori Ionosphere Model

Test Case D2 has characteristics that are significantly different from those of Test 
Case E0. Unlike the previous test case that had 32×4 ray paths, limited signal avail-
ability was assumed in this case so that the total number of available ray paths 
was 17×4. Moreover, a more significant difference between the a-priori and true 
ionosphere models was assumed, resulting in an IEI value of 0.0848. Baumgarten 
(2018) showed that this value indicates an excessive error in the a-priori iono-
sphere model, suggesting that this test case represents a scenario of extremely poor 
a-priori knowledge of the ionosphere. 

The position error scatter plot of Figure 5 is very different from that of Test Case 
E0 in Figure 2. It is characterized by a significantly larger mean horizontal position 
error. In addition, its 90% poison error ellipse is about three times as large as for 
Test Case E0 as the lengths of the 90% error ellipse’s semi-major and semi-minor 
axes were 75 and 40 meters, respectively. The standard deviation for the vertical 
error was 2 meters.

The accuracies of the ionosphere corrections are similarly inferior to those pre-
sented for the previous test case. For the a-priori data, 80% of the VTEC errors 
above CONUS were below 1.75 TECU and 95% were below 3.02 TECU. For the 
a-posteriori (estimated) model, 80% of the VTEC errors were below 0.10 TECU and 

FIGURE 5 Position estimation errors for Test Case D2: Monte Carlo analysis 
scatter plot (blue); horizontal 90% error ellipse (top plot, magenta); vertical/east 
90% error ellipse (bottom plot, green)
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95% were below 0.31 TECU (Baumgarten, 2018). This still represents a significant 
improvement of the estimated ionosphere model relative to the a-priori model, but 
not as much improvement as in the previous case.

4.7  Test Case H0: Consideration of Random A-Priori 
Ionosphere Variations

A different perspective on performance was obtained by expanding the scope 
of the test cases so that their a-priori ionospheric model errors were taken as a 
random vector rather than a constant one. Test Case H0 is the random-ionosphere 
equivalent of Test Case E0. It considered the same array of ground stations, the 
same nominal ray paths, and the same receiver location. Group delay and beat 
carrier-phase measurement noise had the same statistics as those of Test Case E0.

The a-priori ionosphere parameter vector error model utilizes a covariance 
matrix of the form γM0. The scaling factor γ takes five different values: 1, 0.5, 0.1, 
0.001, and 10–9. The first case, for which γ = 1, is a worst-case scenario in which the 
uncertainty of the ionosphere model is assumed to equal the original ionospheric 
variability matrix, M0. The last case could be regarded as a case of extremely good 
knowledge of the ionosphere.

Figure 6 plots the horizontal and vertical 90% error ellipses for Test Case H0. 
These were generated using the Cramér-Rao covariance calculation of Equation (5), 
as described in Baumgarten (2018). Each panel’s five ellipses correspond to the five 
different values of γ. For the case of γ = 10–9, the resulting position errors were 
solely due to random measurement errors. The upper panel indicates that horizon-
tal position accuracy was sensitive to γ, while the lower panel indicates that vertical 
accuracy was somewhat insensitive to γ.

Position error results can be compared to the results that were obtained for the 
fixed-ionosphere-model Test Case E0. The position error pattern in that case was 

FIGURE 6 Horizontal and vertical/east 90% error ellipses for Test Case H0 with different 
values of γ
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characterized by a fixed-ionosphere-induced mean error that was relatively small 
compared to measurement-noise-induced errors (see again Figure 2). The resulting 
pattern is similar to that of the present Test Case H0 for γ = 0.1.

Figure 7 presents ten 80th percentile value maps above CONUS for the estima-
tion errors in the ionospheric VTEC parameter for Test Case H0. Note that the 
information that is presented in these plots is different from the information that 
was presented in Figure 4. The error value plotted at each latitude and longitude 
point indicates that there was an 80% probability of having a VTEC error below the 
plotted value. Figure 4, on the other hand, plots the actual errors that occurred for 
a given particular error between the a-priori ionosphere parameter vector and the 
corresponding truth vector.

The left-hand column of Figure 7 shows 80th percentile error maps for the 
a-priori estimates of VTEC, while the right-hand column contains maps for its 
a-posteriori 80th percentile errors. Each row is associated with a different value 

FIGURE 7 80th percentile value maps for the a-priori (left column) and a-posteriori (right 
column) estimation errors for the ionospheric VTEC parameter for Test Case H0; each row 
corresponds to a different value of γ.
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of γ—so, the top row is associated with γ = 1 and the bottom row is associated with 
γ = 10–9. Note the different color-coded scales for the ten maps of Figure 7. This 
approach has been favored over using the same color-coded scales for neighboring 
panels in an effort to keep the map plots as informative as possible. The reader 
should note that, in each row, the right-hand plot of the a-posteriori error map is 
characterized by values that are significantly smaller than those of the left-hand 
a-priori error map.

4.8  Results for Additional Test Cases

A thorough study of the performance of the batch filter is reported in Baumgarten 
(2018). It includes an analysis of a series of test cases that differ in the sets of param-
eters that define them. These parameters include the following: type of available 
measurements, number of ground stations and their placement, number of ray 
paths, ray-path geometry, number of hops for each ray path, signal frequencies, 
true and a-priori ionospheric models, receiver clock error, and the true location of 
the receiver. Analyses of results for these test cases explore positioning sensitivity 
to scenario parameters. They also explore the extent to which errors in an a-priori 
parameterized ionosphere model can be reduced. Additional analyses study other 
aspects of the filter’s performance. These include filter convergence characteristics, 
scenario setup feasibility, and algorithm robustness.

For the test cases of Class 1, for which only group delay measurements were pro-
cessed, positioning accuracy was degraded compared to the equivalent test cases 
of Class 2, in which both group delay and beat carrier-phase measurements were 
processed. The mean horizontal error for Class 1’s test cases ranged from hundreds 
to thousands of meters and the length of their 90% error ellipse semi-major axis 
was typically in an order of kilometers. In contrast, Class 2’s test cases had both 
typical mean errors and 90% error ellipse semi-major axis lengths in an order of 
tens of meters. Similar observations have been made for a comparison between 
results obtained for test cases of Class 3 and Class 4 that consider random iono-
sphere model variations. 90% error ellipse semi-major axis lengths ranged from 
tens to hundreds of meters for the test cases of Class 3, while ranging from a few 
meters to tens of meters for their Class 4 equivalents. The improved accuracy that 
was observed for test cases of Class 2 and Class 4 was attributed to the use of beat 
carrier-phase observables in addition to the pseudorange observables that were 
used in all classes. 

Looking at different groups of test cases within a given class, the impact of having 
a larger number of available measurements was clearly and consistently evident. 
This was the case, for instance, when results for test cases of Group D (medium sig-
nal availability) and Group E (high signal availability) were compared. The accu-
racies for Group E’s test cases, which have 32 ray paths and 128 observables, were 
significantly improved compared to their Group D equivalents, for which only 
17 ray paths and 68 observables were available. The lengths of the 90% error ellipse 
semi-major axis were 75 meters and 24 meters for test cases D2 and E2, respectively. 
The corresponding horizontal mean errors were 137 and 16 meters. This was also 
the observation for a comparison between test cases of Group G (medium signal 
availability) and Group H (high signal availability) of Class 4, for which a random 
ionosphere model was considered and for which the number of available ray paths 
differed. The dimensions of the 90% error ellipses that characterized the horizontal 
positioning accuracy for Test Case H0, shown in Figure 6, roughly tripled for Test 
Case G0 that had 17 rather than 32 ray paths.
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When considering individual test cases that belong to the same group, the sen-
sitivity of the position accuracy to the different parameters that has been listed 
in Section 4.3 can be evaluated. It has been shown that significant discrepancies 
between the true and a-priori ionosphere typically result in a biased solution for 
the receiver’s location. Error may be reduced, however, when a relatively large 
number of ray paths is available. Additional observations about this set of 21 test 
cases are contained in Baumgarten (2018). 

5  DISCUSSION OF RESULTS AND PROPOSALS FOR 
FOLLOW-UP STUDIES

System performance and its sensitivity to parameters have been studied based 
on an analysis of 21 test cases and variants that differ in many characteristics, 
as presented in Baumgarten (2018). Results for this ensemble of cases, of which 
three have been discussed in detail in the previous section, suggest that the prob-
lem is sufficiently observable to make this system a candidate for navigation in 
GNSS-denied situations. That is, a position solution can be obtained to a reason-
able level of accuracy despite uncertainty about the ionosphere. At the same time, 
the filtered estimates of the ionosphere electron density profile parameters tend 
to have significantly reduced errors in comparison to their a-priori estimates. 
Therefore, this method may also be useful for remote-sensing-based ionosphere 
characterization in cases that the receiver location is known a priori. 

5.1  A-Posteriori Position Accuracy

The position accuracy for Test Case E0 is navigation grade—within 30 meters 
horizontal and 2 meters vertical 90% of the time. These results imply that, with a 
sufficient number of signals received and dual group-delay/beat-carrier-phase mea-
surement processing, the achieved accuracy is adequate for the purpose of naviga-
tion and guidance for many significant applications. When a random error model 
for the ionosphere was considered in Test Case H0, with the same ground transmit-
ters/ray paths setup of Test Case E0, a similar level of accuracy was observed for a 
γ value of 0.1. Based on the plots of Figure 6, it can be concluded that navigation 
grade positioning, in this case, can be achieved if the true uncertainty for the iono-
sphere error model can be reliably modeled as γM0 where γ < 0.1.

Results have been considered for several fixed-ionosphere-model test cases 
that were characterized by a relatively large IEI value and corresponding large 
a-priori ionosphere model errors. They confirm that, with a poor a-priori ion-
osphere model, the mean position error (i.e., the ionosphere-induced position 
bias) is further from zero than with the base test cases that have smaller initial 
IEI values. When position errors are close to their means (i.e., when error ellipses 
are relatively small), ionosphere-induced position bias will determine whether 
the system is capable of providing the required level of accuracy for navigation. 
As an example, reconsider Test Case D2 presented in the previous section. The 
enlarged mean error is most likely too large for unaided navigation for many 
applications. It is caused by the large difference between the a-priori and truth 
ionosphere models.

Additional random ionosphere error test cases demonstrated how position accu-
racy is closely related to the magnitude of the a-priori errors (or IEI values) in the 
ionosphere model. With an exceptionally good a-priori model of the ionosphere 
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(i.e., the case of γ = 10–9), position errors are primarily due to measurement noise. 
It is evident that, as γ increases, the horizontal position error increases until it 
reaches a maximum at γ = 1. The dimensions of the horizontal error ellipse are 
roughly doubled at γ = 1 in some test cases relative to the γ = 10–9 error ellipse; they 
increase by a factor as large as 10 in other test cases. An important observation is 
that the impact of increasing γ on errors in the local vertical direction is typically 
very limited. Therefore, ionosphere modeling uncertainty has the largest impact 
on horizontal position accuracy. Note that this conclusion applies to cases in which 
the user receiver is above ground level and receiver HF signals both from above 
and from below. 

It has been observed that the impact on position accuracy of having different 
numbers of available measurements for fixed-ionosphere test cases is significant. 
Scenarios with low numbers of available signals exhibit notably inferior accuracy, 
evident in the dimensions of their horizontal 90% error ellipses, and, to some 
extent, in their vertical accuracy. Having a limited number of available measure-
ments, therefore, sets a clear bound on positioning accuracy. Based on the results 
presented, it is clear that navigation grade accuracy cannot be achieved with only 
17 ray paths available, sampled at four different frequencies, unless the system is 
given an exceptionally good model for the ionosphere. At the same time, it should 
be noted that even in the worst-case scenario of γ = 1, the horizontal 90% error 
ellipse for Test Case H0 had a fairly small semi-major axis of 80 meters. This is an 
important observation that suggests that the anticipated negative impact of very 
poor a-priori ionosphere models may be alleviated given a sufficiently large num-
ber of available ray paths.

The manner in which measurement error standard deviation affects positioning 
accuracy has been studied through a comparative investigation of the 90% error 
ellipses that have been obtained for several test cases that differ in their assumed 
measurement noise standard deviations. For a representative fixed-ionosphere test 
case for which carrier-phase ranging errors were assumed to be 10 times larger 
than those of a reference test case, the horizontal 90% error ellipse had semi-major 
and semi-minor axes that were about 3.2 and 3.4 times larger than those of the 
reference test case’s semi-major and semi-minor axes, respectively. A similar result 
was obtained for a variant of the random-ionosphere Test Case H0, for which an 
increase by a factor of 10 for the presumed beat carrier-phase measurement noise 
resulted in an increase by a factor of three for the dimensions of the 90% error 
ellipse’s semi-major axis and semi-minor axis.

The important contribution of beat carrier-phase measurements to position 
solution accuracy is clearly evident. When test cases that originally used both 
types of observables were tested with only pseudorange measurements, signifi-
cantly inferior performance was observed, as reported in Baumgarten (2018). 
For a representative test case that relies on group delay measurements only, the 
computed 90% horizontal error ellipse’s semi-major and semi-minor axes were 
100 meters and 70 meters, respectively. When beat carrier-phase measurements 
were added to the batch filter, the 90% horizontal error ellipse’s semi-major and 
semi-minor axes decreased to 35 meters and 20 meters, respectively. For other 
test cases, performance degradation resulted in horizontal 90% error ellipses for 
pseudorange-measurements-only test cases that were up to 15 times larger than 
those of their equivalent pseudorange-and-beat-carrier-phase-measurements test 
cases. This result is attributed to the low precision of pseudorange measurements 
that is caused by the limited useable bandwidth of the spreading code in this type 
of radio ranging application.
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The impact of other problem characteristics on position accuracy, including 
ground station placement and signal directions of arrival, has been investigated 
and discussed in Baumgarten (2018). Discussion of these issues has been omitted 
from this paper for the sake of brevity. 

5.2  A-Posteriori Ionosphere Model Accuracy

The algorithm has proven successful in reducing errors in the a-priori iono-
sphere model parameters in all 21 test cases. As one might expect, smaller errors in 
terms of the latitude/longitude-dependent 80th percentile were observed near the 
areas where ray paths travel through the ionosphere. These regions where electron 
density is probed can be identified in the a-priori/a-posteriori Chapman parameter 
estimates’ plots in Figure 4 and Figure 7 by the green points that designate ground 
reflection points.

Smaller a-posteriori IEI values for all test cases indicate a-posteriori ion-
osphere model improvements in comparison to their a-priori counterparts. 
Computed a-posteriori error 80th percentile upper bounds for a representative 
random-ionosphere model test case were less than 0.75 km for the hmax parameter, 
0.35 km for the hsf parameter, and 0.1 TECU for the VTEC parameter, whereas 
the corresponding a-priori upper bounds were 30 km for hmax, 10 km for hsf, and 
5 TECU for VTEC. 

Smaller 80th percentile values for the VTEC parameter were computed for 
smaller values of γ, as shown in Figure 7 for Test Case H0. For the first four cases 
of γ, a significant reduction in the 80th percentile values for the a-posteriori esti-
mates is evident. For γ = 0.5, values up to 8.8 TECU were reduced to about 0.38 
TECU. For the case of γ = 10–9, however, the a-priori 80th percentile values were 
very small and so were the differences between a-priori and a-posteriori values.

5.3  Batch Filter Solution Convergence

Two concerns have arisen involving the batch filter solution algorithm’s ability 
to arrive at the problem’s optimal solution. The first stems from the fact that, 
while the Gauss-Newton method’s line search is theoretically guaranteed to con-
verge, it is not guaranteed that it will converge to a global minimum. Significant 
testing experience, however, indicates that convergence to a solution that is far 
from the simulated truth values has never been observed. It has been concluded, 
therefore, that the algorithm is insensitive to its input initial guess and it is 
nearly guaranteed to converge to its global minimum for simulation-generated 
test cases. The validity of this statement is demonstrated and discussed in 
Baumgarten (2018). 

The second concern derives from the modifications that were applied to the 
Gauss-Newton method, including the property of a varying set of measurements 
that are considered in different steps of the Gauss-Newton process. It has been 
observed that, for simulation-generated test cases with big IEI values (i.e., with 
a poor initial guess for the ionosphere parameters), occasional failure in ray 
path solving attempts is common in early iterations of the Gauss-Newton pro-
cess, resulting in varying measurement sets. However, this did not prevent the 
algorithm from converging and arriving at accurate a-posteriori estimates for the 
unknowns. 



BAUMGARTEN et al.    

5.4  Proposals for Further Study

An obvious extension of this study would be to substitute tests involving actual 
data from a network of HF beacons and receivers for its truth-model simulation 
tests. Such a network is being deployed in South America (Hysell et al., 2016). The 
estimation cases that could be addressed with actual experimental data may differ 
somewhat from the cases that have been studied in this work due to the limited 
availability of received signals. One interesting case may assume that receiver loca-
tion and receiver clock error are known a priori, so the problem is reduced to a case 
of ionosphere estimation only. The present study’s truth-model simulations imply 
that elimination of the uncertainty that is associated with the receiver location 
should result in enhanced accuracy of the unknown ionosphere parameters.

A second study should consider enhanced ionosphere modeling. As discussed in 
Baumgarten (2018), the current ionosphere parameterization does not allow mod-
eling of distinct D and E layers. A greater physical fidelity would be achievable 
by incorporating increased complexity in the ionospheric model parameterization. 
Therefore, one useful extension for this work would be to employ a more real-
istic ionosphere model that would enable representation of the D and E layers. 
Such a model would need more than a single Chapman curve for its vertical profile 
and would entail more than three latitude/longitude-dependent parameters in the 
resulting profile. 

A useful variant of this work would be to consider a case in which the estima-
tor lacks a-priori knowledge of the number of bounces for any given signal. This 
is the case when the number of bounces is unknown and must be estimated for 
each received signal while estimating the receiver position and clock error along 
with the ionosphere corrections. Such an estimator would solve a mixed real/inte-
ger batch filtering problem. The navigation community already has experience 
with such problems when working with the technique known as Carrier-Phase 
Differential GPS (Psiaki & Mohiuddin, 2007).

6  SUMMARY AND CONCLUSION

This paper has studied the potential accuracy of a navigation system based on 
high-frequency signals from ground transmitters. High-frequency signals trans-
mitted from stationary ground-based beacons at known locations propagate in the 
ionosphere along non-line-of-sight paths via ionosphere refraction. The signals 
are received at a user’s receiver whose location is unknown. Measured pseudor-
anges and beat carrier phases were processed to solve a coupled positioning and 
ionosphere-characterization problem. A nonlinear batch filer employed a modified 
Gauss-Newton method to estimate the unknown receiver position and clock error, 
as well as corrections to an a-priori parameterized model of electron density in the 
ionosphere. The batch filter was proven to be successful in achieving a high rate of 
convergence to the optimal value of the underlying cost function.

System performance has been investigated using a Monte Carlo analysis which 
is based on a truth-model simulation. Theoretical Cramér-Rao covariance anal-
ysis was also performed. The simulation and the corresponding batch-filter used 
an advanced ray-tracing model of HF signals that propagate in the ionosphere. 21 
simulated test cases that considered various combinations of problem characteris-
tics were studied. Position accuracy is influenced by the level of uncertainty of the 
a-priori ionosphere model by the number and geometry of available measurements 
and by receiver ranging error standard deviations. 



    BAUMGARTEN et al.

Results indicate feasibility for the combined HF navigation/ionosphere-correction 
concept. It has been shown that, with sufficient availability of received signals and 
sufficient a-priori ionosphere model accuracy, navigation grade accuracy for posi-
tioning may be achievable. That is, a 90% horizontal error ellipse with semi-major 
and semi-minor axes both less than 25 meters and a 90% vertical error bound less 
than 5 meters may be achievable. Furthermore, a-posteriori ionosphere model 
estimates consistently improved for all cases in comparison to their a-priori 
counterparts. 
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