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O R I G I N A L  A R T I C L E

Set-Valued Shadow Matching Using Zonotopes for 3D-Map-
Aided GNSS Localization

Sriramya Bhamidipati  Shreyas Kousik  Grace Gao

1  INTRODUCTION

GNSS-based localization is often unreliable in dense urban areas. As illustrated 
in Figure 1, direct line-of-sight (LOS) GNSS signals can be blocked or reflected by 
tall buildings (Hofmann-Wellenhof et al., 1992), creating non-line-of-sight (NLOS) 
and multipath effects, thereby lowering the number of visible GNSS satellites avail-
able for localization (Zhu et al., 2018). In particular, LOS satellite signals in the 
cross-street direction are more likely to be blocked or reflected by buildings than 
signals along the street. Consequently, positioning accuracy is degraded in urban 
areas, especially in the cross-street direction.

Robustness to degraded accuracy is important for safety-critical GNSS appli-
cations such as autonomous driving and drone delivery. As detailed later in our 
discussion of related work, set-valued position estimates enable robustness guaran-
tees by ensuring an entire set of possible positions lies outside of obstacles or inside 
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Unlike many urban localization methods that return point-valued estimates, a 
set-valued representation enables robustness by ensuring that a continuum of 
possible positions obeys safety constraints. One strategy with the potential for 
set-valued estimation is GNSS-based shadow matching (SM) in which one uses 
a three-dimensional (3D) map to compute GNSS shadows (where line-of-sight 
is blocked). However, SM requires a point-valued grid for computational trac-
tability, with accuracy limited by grid resolution. We propose zonotope shadow 
matching (ZSM) for set-valued 3D-map-aided GNSS localization. ZSM rep-
resents buildings and GNSS shadows using constrained zonotopes, a convex 
polytope representation that enables propagating set-valued estimates using 
fast vector concatenation operations. Starting from a coarse set-valued position, 
ZSM refines the estimate depending on the receiver being inside or outside each 
shadow as judged by received carrier-to-noise density. We demonstrate our algo-
rithm’s performance using simulated experiments on a simple 3D example map 
and on a dense 3D map of San Francisco.
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user-specified bounds, for example. Unfortunately, generating such position esti-
mates is often challenging, requiring approximation with a discrete collection of 
points. In this work, we propose a novel method of generating set-valued estimates 
without discretization by combining recent three-dimensional (3D)-map-aided 
techniques from the GNSS community with recent geometric set representations 
from the controls community.

1.1  Related Work

A variety of approaches exist to address the challenge of positioning accuracy 
by leveraging a 3D map of an urban environment and buildings. For example, in 
ray tracing, one can create discrete position candidates with a particle filter and 
find all the possible paths from each particle to the GNSS satellite, while consid-
ering a limit on the number of interactions with nearby buildings per each trans-
mitted ray (Miura et al., 2013; Suzuki, 2016). Essentially, ray tracing estimates the 
reflection route of NLOS signals and uses this to correct the bias in GNSS pseu-
doranges. While there exist commercial implementations of this approach (Iland 
et al., 2018), ray tracing is computationally-expensive and, instead, requires being 
offloaded to the cloud. One strategy to reduce the computational complexity is to 
apply machine learning (ML)-based GNSS to evaluate a predefined grid of position 
candidates with a neural network by collectively processing different heatmaps of 
pseudorange residuals (van Diggelen & Wang, 2020). This enables real-time perfor-
mance with server-based processing, but achieves onboard tractability by consider-
ing a trade-off between the cross-street positioning accuracy and the computations 
executed to estimate receiver position.

An alternative approach is shadow matching (SM; Groves, 2011; Groves et al., 
2015; Wang et al., 2013b), which can avoid offloading computation to the cloud 

 

FIGURE 1 NLOS and multipath effects in GNSS satellites lead to high localization 
uncertainty in urban areas, especially along the cross-street direction. The pink ellipse depicts 
uncertainty in the receiver position estimate. This figure is adapted from Wang et al. (2013b).
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(Wang et al., 2013a, 2014). SM uses a 3D map to estimate GNSS shadows of build-
ings, which are regions of the map where direct LOS signals are blocked. A GNSS 
shadow is depicted in Figure 2. The received carrier-to-noise density (C / N0) of 
GNSS satellite signals enables us to determine if a receiver is inside or outside the 
GNSS shadow of each building. However, to be computationally tractable, SM 
requires precomputing building skylines for a predefined grid of position candi-
dates. These skylines are compared against the azimuth and elevation of GNSS sat-
ellites at runtime (Groves et al., 2015;Wang et al., 2013a, 2014). Each point-valued 
position candidate is evaluated by comparing the received C / N0 with the precom-
puted building skyline to estimate a visibility score that can be used to identify 
the most likely position candidate (or candidates) and also a weighted empirical 
covariance for downstream use (Wang et al., 2013a).

A common aspect of the above methods is that they represent position estimates 
in a discretized way. Since accuracy depends on the number of discrete points, 
these methods face a challenge in the case of robust urban localization, or ensur-
ing that a position estimate obeys user-specified protection levels or safety bounds. 
That is, one can use a finer discretization to achieve a more accurate estimate at the 
expense of more computation.

To avoid the point-valued discretization trade-off, one can instead consider a 
set-valued approach to compute a continuum of state estimates given the initial 
set of states and known measurement bounds (Combettes & Civanlar, 1991; Scott 
et al., 2016; Shi et al., 2015; Shiryaev & Podivilova, 2015). This enables robustness 
by ensuring that the set lies within, e.g., user-specified safety bounds. Recently, 
there has been growing interest in set-valued representations of receiver states and 
measurements for robust localization and motion planning in urban environments 
(Bhamidipati & Gao, 2020; Kousik et al., 2019; Shetty & Gao, 2020). Unfortunately, 
these methods typically require assuming a set-valued representation of uncertain 
measurements by overapproximating a confidence level set of Gaussian distribu-
tion using a polytope (Bhamidipati & Gao, 2020; Shetty & Gao, 2020), for example. 
In other words, one must make an assumption about the underlying distribution 
of measurements. Therefore, it remains an open challenge to generate set-valued 

 

FIGURE 2 Our proposed technique on set-valued shadow matching using zonotopes to 
leverage constrained zonotopes and efficiently represent buildings, shadows, and a set-valued 
receiver position estimate; note that the 2D group plane is shown as having volume only for 
illustration’s sake.
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receiver position estimates for the distributions that are common in urban environ-
ments (e.g., multi-modal with disconnected components).

One strategy for modeling arbitrary set-valued state estimates is to use zono-
topes. Zonotopes are convex, symmetrical polytopes that can propagate set-valued 
state estimates using fast vector concatenation operations. Zonotopes are con-
structed as Minkowski sums (Althoff & Dolan, 2014) of line segments in an 
arbitrary-dimensional Euclidean space. These objects are well known for rep-
resenting reachable sets of dynamic systems (Althoff, 2015), which can enable 
formally-verified motion planning, fault detection, and navigation (Bhamidipati 
& Gao, 2020; Kousik et al., 2019; Shetty & Gao, 2020). These objects can also be 
extended to constrained zonotopes, which can represent arbitrary convex polyto-
pes (Raghuraman & Koeln, 2022; Scott et al., 2016), avoiding the limitation of sym-
metry. While zonotopes are widely used in robotics for path planning and collision 
avoidance, they have not been applied in the field of GNSS localization for address-
ing multipath/NLOS effects.

1.2  Proposed Method

Our current work proposes a novel paradigm for 3D-map-aided GNSS local-
ization based on GNSS shadow matching: set-based shadow matching termed as 
zonotope shadow matching (ZSM). This work is based on our recent ION GNSS+ 
2021 conference paper (Bhamidipati et al., 2021). We formulate buildings and 
GNSS shadows (regions where LOS signals are blocked) using constrained zono-
topes wherein we compute the GNSS shadow for each satellite/building pair via 
the intersection of building shadow volume with that of ground plane. An illustra-
tion of these set operations is shown in Figure 2. The ZSM algorithm begins with 
a coarse set-valued position estimate, which we iteratively refine using the GNSS 
shadow of each satellite/building pair in an urban map. We use C / N0 values to 
decide whether the receiver is inside or outside each GNSS shadow and intersect 
the shadow with our position estimate if inside the shadow, or else subtract the 
shadow from our position estimate. The final set-valued position estimate from our 
proposed ZSM algorithm can be incorporated into downstream polytopic estima-
tion or verification methods without requiring assumptions about the distribution 
of the estimate.

A key feature of our proposed ZSM is that it avoids gridding and, instead, directly 
estimates a set-valued receiver position estimate by leveraging constrained zono-
topes and two-dimensional (2D) polytopes (i.e., polygons). Furthermore, given 
that zonotope operations need fewer computations, our approach requires signifi-
cantly lower computational power during the offline step of shadow matching, 
while during online processing, the required computational power is on-par to that 
of conventional SM and lesser storage than that of conventional SM is incurred. 
Another advantage is that our formulation estimates a non-Gaussian distribution 
of possible receiver positions (a continuum) in an urban environment, based on 
many position statistics such as worst-case error, multiple/distinct ambiguous 
modes, error bounds of each mode, can be evaluated in an exact manner.

Given the recent availability of high-fidelity, open-source 3D building maps 
(Miura et al., 2015; Wang et al., 2013b), we assume the inaccuracies in the build-
ing boundaries and road lanes and the effect of building materials on GNSS sig-
nals to be negligible. We also consider an ideal LOS/NLOS classifier (i.e., with true 
positive 100% [LOS detection] and true negative 100% [NLOS detection]). Our 
choice of an ideal LOS classifier is justified as it provides an uncorrupted platform 



BHAMIDIPATI et al.

to compare the performance of our proposed set-valued shadow matching (i.e., 
zonotope shadow matching) with conventional SM. Also note that, in this work, 
we do not explicitly account for multipath effects. While this work demonstrates 
great success in achieving the exact bounds of set-valued receiver positioning for 
various simulation scenarios (see Section 4), ZSM suffers from challenges similar 
to that of shadow matching, including brittleness to misclassification and inabil-
ity to resolve multi-modal ambiguities without additional information. Note that 
addressing these other challenges, which are mentioned in a detailed manner in 
Groves et al. (2015), is beyond the scope of this manuscript. However, we have pro-
posed extensions of this current work that account for brittleness to satellite mis-
classification in Neamati et al. (2022a) and for resolving multi-modal ambiguities 
in Neamati et al. (2022b). While the ZSM method proposed in this work cannot 
directly handle satellite misclassifications associated with the state-of-the-art, off-
the-shelf classifiers (Haosheng et al., 2020; Haosheng et al., 2018), we can still 
implement this work in real-world settings by leveraging a subset of GNSS 
satellites, either LOS or NLOS, that exhibit high satellite classifier probabilities 
(see experiments in Section 4). Also, given that our proposed ZSM method is an 
anytime implemen-tation that works in a sequential manner, we can achieve 
real-time performance via strategic ordering of GNSS satellites (e.g., with an 
objective to maximize the dilution of precision) so the more useful satellites are 
processed first and the algo-rithm is terminated when required to output the 
current estimate of the set-valued receiver position.

1.3  Contributions and Paper Organization

Our key contributions are as follows: 

1. We propose a novel set-valued approach to representing GNSS shadows using
zonotopes. Offline, we represent buildings using constrained zonotopes.
At runtime, we generate the GNSS shadow for each satellite/building pair
by extending the building in the shadow direction from the satellite to
the building, as shown in Figure 2. This operation is efficient due to our
representation of buildings and GNSS shadows as constrained zonotopes.

2. We propose the ZSM algorithm. Given an initial set-valued receiver position
estimate, we iteratively subtract or intersect GNSS shadows across satellites
to refine the estimate depending on the associated LOS/NLOS characteristics
as judged by received C / N0 values. To our knowledge, this is the first work
utilizing set representations for 3D-map-aided GNSS.

3. We experimentally demonstrate that ZSM computes a set-valued receiver
position estimate unlike conventional SM (Groves, 2011; Groves et al., 2015;
Wang et al., 2013a, 2013b) in which point-valued position accuracy is limited
by its precomputed grid resolution. We perform experiment simulations using
(a) a simple 3D map comprised of two urban buildings and (b) a dense 3D
building map of San Francisco. We validate ZSM performance in terms of
computation load (for both offline and online computations), point-valued
estimation error, and the position bounds (size of the final set-valued receiver
position estimate) in along-street and cross-street directions.

The remainder of the paper is organized as follows. Section  2 introduces 
mathematical notations for the relevant set representations. Section 3 states our 



BHAMIDIPATI et al.    

proposed ZSM algorithm. Section  4 presents various experimental results that 
validate our proposed ZSM in simulation. Finally, Section 5 provides concluding 
remarks. 

2  PRELIMINARIES OF SET REPRESENTATIONS

We now introduce the mathematical notation and definitions used throughout 
this paper and present constrained zonotopes.

2.1  Mathematical Notation and Definitions

We denote the natural numbers as   and n-dimensional Euclidean space as 
n .  Points and scalars are italic lowercase; sets and matrices/arrays are italic 
uppercase. Sets of sets are script uppercase. An n n×  identity matrix is In .  An 
n n×  array of zeros is 0n ,  and a same-sized array of ones is 1n.  Similarly, an n m×  
array of zeros is 0n m× ,  and a same-sized array of ones is 1n m× .  An empty vector 
or array is [].

Let A B n, ⊂  .  The Minkowski (set) sum (Althoff & Dolan, 2014) is ⊕, defined 
as A B a b a A b B� � � � �{ ��|�� , }.  For example, the Minkowski sum of two 
(non-parallel) line segments in 2  is a convex polygon, whereas the Minkowski 
sum of two (non-parallel) polygons in 3  is a convex polyhedron. The convex 
hull is convhull .( ) { ( ) ��|�� , }A a a a a A� � � �� �1 2 1 21  A convex polytope P n⊂   can 
be constructed as the convex hull of a set of vertices V n⊂  :  P V= convhull ,( )  
which we call its vertex representation.

2.2  Constrained Zonotopes

We now define constrained zonotopes (Scott et al., 2016), which we use to 
represent buildings and GNSS shadows as shown in Figure 2. Consider a center 
c n∈ , a generator matrix G g gm n m� � �[ , , ]1   ,  and linear constraints defined 
by A p m� �  and b p∈ .  Per Scott et al. (2016), we define a constrained zonotope 
Z n⊂   as a set: 

	 Z c G A b c G A bn m n� � � � � � � �zono and( , , , ) { |�� [ , ] �� �� }� � � 1 1 	 (1)

FIGURE 3 Subfigure (a) is a zonotope (grey volume) with no constraints and three 
generators; subfigure (b) shows a 2D zonotope (blue) and a constrained zonotope (green) with 
constraints shown in red on the left.
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The columns of G are called generators. Also note that a zonotope is a 
constrained zonotope with no constraints defined, which we denote by 
zono( , , [], []) { ��|�� [ , ] }.c G c G n m� � � � �� � 1 1  An example 3D zonotope (i.e., no 
constraints) is shown in Figure 3(a).
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and b = 1,  Figure 3(b) shows the 2D zonotope zono( , , [], [])c G  in blue while the 2D 
constrained zonotope zono( , , , )c G A b  is shown in green. 

3  PROPOSED ZSM ALGORITHM

Our proposed ZSM algorithm is summarized as follows. First, we create a 3D 
shadow volume for each satellite/building pair by extending the building in the 
shadow direction from the satellite to the building. Note, the building, shadow 
direction, and shadow volume are all represented as constrained zonotopes. Second, 
we intersect the shadow volumes with the ground plane (on which we assume the 
receiver is positioned) to compute GNSS shadows as 2D constrained zonotopes. 
Third, by comparing received C / N0 values against a user-specified threshold, we 
either subtract (if LOS signal) or intersect (if NLOS signal) each GNSS shadow with 
our current set-valued receiver position estimate. Starting from an initial set of 
position estimates, the final position estimate set is obtained by iterating through 
all buildings and satellites.

We note that this is a snapshot algorithm, meaning that we make use of only the 
instantaneous data available at any given time instance. Furthermore, the order 
in which GNSS satellites and buildings are considered does not affect the final 
set-valued estimate, meaning that the method is parallelizable. However, we leave 
extensions to time-varying shadows, receiver motion models, and parallelization 
as future work. To proceed, we describe our model and assumptions of the urban 
environment and GNSS satellite signals, then detail how we compute shadows and, 
finally, present the ZSM algorithm.

3.1  System Model

3.1.1  Urban Environment Map

We assume access to a 3D building map of the urban environment in which we 
plan to perform positioning, as is done in related work (Adjrad & Groves, 2017; 
Iland et al., 2018; van Diggelen & Wang, 2020). We assume such a map consists of 
a ground plane and a collection of buildings.

We assume that the ground plane, denoted ,  is either a single 2D constrained 
zonotope (as in Figure 2), or a collection of 2D constrained zonotopes:  = ={ }Gk k

n
1

grnd ,  
where each Gk  is a 2D constrained zonotope and ngrnd .∈  Thus, our algorithm 
does not require the ground plane to be constant within an area of interest. We 
can account for the variations in the ground height by modeling the ground plane 
as a collection of triangles, wherein each triangle is converted to a constrained 
zonotope, and the ground plane is represented by a collection of constrained zono-
topes. There exist many standard ways to extract ground height, of which one 
straightforward way is to extract the ground plane information from the 3D build-
ing map being utilized. The other is to leverage the open-source information on 
digital terrain models (DTMs), digital surface models (DSMs), or digital elevation 
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models (DEMs; Chen et al., 2017). We also assume the ground plane is bounded 
(implied by ngrnd  being finite). In particular, we only consider a specific, bounded 
urban area that could be potentially identified by a coarse position estimate to 
within a few kilometers of the localization error.

We denote the set of all buildings as  = ={ }Bi i
n
1
bldg ,  where nbldg ∈  is finite and 

Bi ⊂ 3 denotes the i-th building. We further assume that each building can be 
represented as a union of constrained zonotopes: 

	 B Z Z c G A bi l l i l i l i l i l
l

ni
= =

=

���� ���� ( , , , ), , , ,with each zono
1


� (2)

where ni  is the number of constrained zonotopes representing the building Bi .  
Note that any convex polytope is a constrained zonotope (Scott et al., 2016), so this 
is not a restrictive assumption. Also note that, since the union of constrained zono-
topes cannot be represented as a constrained zonotope (because it is not necessarily 
a convex polytope), in practice, we represent each building as a list of constrained 
zonotopes (i.e., the union is treated implicitly).

3.1.2  Preprocessing Standard 3D Maps

Representing buildings as constrained zonotopes requires preprocessing a 3D 
map. Standard 3D maps generated by computer-aided design software are often 
represented by a triangulation, or a union of triangles. That is, for a building Bi ∈:  

	 B T T t t ti l l l l l
l

n

= =
=

���� ���� ({ , , }), , ,with each convhull
trng

1 2 3
1


� (3)

such that ntrng ∈  is finite and each tl j, ∈3  is a vertex of the triangle. Assuming 
our map is in such a standard format, we preprocess a 3D map as follows to satisfy 
our assumption in Equation (2).

First, note that the convex hull of constrained zonotopes is given by Raghuraman 
and Koeln’s (2022) Theorem 5 as follows. Let Z c G A b n

1 1 1 1 1� �zono( , , , )   
and Z c G A b n

2 2 2 2 2� �zono( , , , ) .  Suppose that G n m
1 1� � ,  G n m

2 2� � ,  
A k m
1 1 1� � , and A k m

2 2 2� � .  Then: 

convhull
zono CH CH

( )
( ), [ , , ( ), ], ,

Z Z
c c G G c c A b

1 2
1
2 1 2 1 2

1
2 1 2

�

� � �� 0 ��, :where
�

(4a)

	 A
A b

A b
A A

k m k m m

k m k m mCH �

�� � �

� � �

1
1
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2
1
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3 1
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0 0
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�
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3 0

1
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1
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1

2

,
1
1

� (4c)

Now, notice that each vertex can be represented as a constrained zonotope, 
t tl j l j, ,( , [], [], [])= zono . So, we can represent Tl  as a constrained zonotope by tak-
ing convhull convhull ,( ({ , }), { }), , ,t t tl l l1 2 3  meaning that we apply Equation (4) twice. 
Thus, we preprocess a 3D map by iterating over all of its triangles and representing 
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each one as a constrained zonotope. In this case, n nitrng .=  Note that another series 
of convex hull operations can be performed to combine the constrained zonotopes 
(each corresponds to a triangle) to form a single constrained zonotope associated 
with each building, in which case ni = 1.

3.1.3  Receiver Assumptions

We assume that the receiver is on the 2D ground plane, which we find reduces 
the computational burden and is common in conventional SM (Groves et al., 2015). 
We plan to extend this method to 3D in future work.

To create a set-valued receiver position estimate, we consider an area of interest 
(AOI): 

	 A G� ��{ }Ak k
n
1

AOI � (5)

where Ak  is a single ground plane-constrained zonotope. Since the ground plane 
is bounded, the AOI is bounded. While it is reasonable to treat the entire ground 
plane as the AOI, we make this distinction to enable our algorithm to take advan-
tage of the non-shadow-based localization data obtained from various information 
sources. Note that the requirements for determining the size of the AOI remain the 
same as those for conventional SM (i.e., the AOI needs to cover the user’s true loca-
tion). Some potential methods for this include the following, among which a few 
are explained in a more detailed manner in Groves et al. (2015): (a) use of position 
estimate and uncertainty bounds from the conventional GNSS ranging solution, 
which is based on weighted analysis of all GPS satellites or only the LOS rang-
ing signals; (b) use of other sensors, such as camera-based geotagging, WiFi-based 
positioning, sensor fusion of GPS-vision or GPS-lidar (GPS light detection and 
ranging), multi-agent system with inter-ranging; (c) use of predicted position esti-
mates and uncertainty from onboard state estimation techniques, such as Kalman 
filters, particle filters; and (d) use of a heuristic approach that involves either con-
sidering a very large AOI and later narrowing down the correct mode from among 
the multiple ambiguous modes of shadow matching identified or starting with an 
initial AOI and increasing the size by a scale factor until a viable set-estimate of 
receiver position is obtained. Furthermore, the user can choose to eliminate the 
segments in the AOI that lie within building footprints since the user is expected to 
be outdoors and not inside the building.

3.1.4  Satellites and Received C / N0

We denote the observed set of GNSS satellites by  = ={ }s j j
n
1

sat ,  where each s j ∈3  
is a satellite location and nsat  is the total number. We obtain the received C / N0 
values from the GNSS receiver; we denote these values by  = ={ }rj j

n
1

sat ,  one for each 
satellite. In this work, we assume an ideal LOS/NLOS classifier and, thus, do not 
need to account for the associated false alarm or missed-detection rates.

3.2  Computing Shadows

Now we detail how we compute shadows using operations on constrained 
zonotopes.
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3.2.1  Overview and Assumptions

To create shadows, first, we consider the shadow direction associated with each 
satellite/building pair. This is a unit vector pointing in the direction from the satel-
lite’s position to a point in the building. Then, we compute the 3D shadow volume 
for the satellite/building pair by extending the building in the shadow direction. 
Finally, we compute the 2D GNSS shadow for the satellite/building pair, which 
is a subset of the AOI in which the receiver does or does not lie depending on the 
received C / N0.

Note, we have made a key assumption that the shadow direction can be treated 
as a single direction, as opposed to a cone of possible directions, because the dis-
tance from the satellite to any building is much larger than the size of the building. 
However, for a more accurate model, or if the satellite is at a low elevation angle 
that would produce a large shadow, we can instead consider a cone of shadow 
directions created by the convex hull of s j  and Bi  using Equation (4). Since this 
convex hull strategy requires a more complicated presentation of the algorithm, 
one can discard low-elevation satellites while implementing ZSM.

3.2.2  Computing Shadow Directions

We compute the shadow direction  i j,  as a unit vector from the satellite position 
s j to a point b Bi i∈ .  Recall from Equation (2) that each building is represented as 
a union of constrained zonotopes. Recall also that we assume the shadow direction 
is the same for any b Bi i∈ .  So, we choose bi  as the mean of the vertices of all of the 
constrained zonotopes comprising Bi .

To get the vertices of Bi ,  we use the following procedure. Recall that Bi  is a 
union of constrained zonotopes. Using techniques from Althoff (2015) and 
Matt (2021), one can convert a constrained zonotope Z c G A b n� �zono( , , , )   
to a vertex representation as follows. Suppose Z  has m  generators (i.e., 
G n m� � ). Notice from Equation  (1) that Z  is an affine map of the polytope 
P x x Ax bm� � � ��{ ��|��|| || �� �� } 1 and . That is, we can write Z c GP� � .  To get a 
vertex representation of Z, we first apply the work of Matt (2021) to enumerate 
the vertices of P  and get a set W m⊂   for which P W= convhull .( )  Then, the 
vertices of Z  are vertices of the set convhull ,({ ��|�� })c Gw w W n� � �   which we 
compute using Althoff (2015).

We summarize the above procedure with a function that applies to the union 
of constrained zonotopes comprising Bi .  Let  = ={ }Zi i

nZ
1  be a set of constrained 

zonotopes. Then: 

	 { } ( )vi i
n
= =1
verts vertices  � (6)

is a vertex representation of the polytope (not necessarily convex) created by the 
union Zii

nZ .
=1

Now, consider the set { } ( )v Zk k
n

ll
ni

= =
=1 1

vert vertices ,


 where Zl  is as in Equation (2). 

We estimate the point bi  as b vi n kk
n�
��1
1vert

vert .  Finally, we compute the shadow 
direction as: 

	  i j
j i

j i

s b
s b, �

�

�
2

� (7)

Next, we use  i j,  to compute a building’s shadow as a volume in 3D space.
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3.2.3  Computing Shadow Volumes

To compute a shadow volume for satellite/building pair (i, j), we extend Bi  in the 
shadow direction  i j, .  This extension is achieved by taking the Minkowski sum of 
the building and the shadow direction.

Since the building and shadow direction are constrained zonotopes, to pro-
ceed, we now define the Minkowski sum of constrained zonotopes. Consider the 
example zonotopes Z c G A b1 1 1 1 1= zono( , , , )  and Z c G A b n

2 2 2 2 2� �zono .( , , , )   
Suppose that G n m

1 1� � ,  G n m
2 2� � ,  A k m

1 1 1� � ,  and A k m
2 2 2� � .  Note, k1  is 

the number of constraints for Z1  and, similarly, k2  for Z2 ,  as per Equation (1). Per 
Scott et al. (2016), the Minkowski sum of constrained zonotopes is: 

	 Z Z c c G G A b A
A

A
k m

k m
1 2 1 2 1 2

1

2

1 2

2 1

� � � �
�

�
�
�

�

�
�� � �

�

�
zono( , [ , ], , ),

0
0 ��

�
�

�
�
�

�

�
�
�

�b
b
b
1

2
� (8)

Note, this follows from the definition of constrained zonotopes.
Now we can compute the shadow volume. First, consider the zonotope: 

	 Li j i j, ,( ,�� , [], [])� ��zono 03 1   � (9)

where  denotes a scaling factor that is greater than at least the height of the tallest 
building in the set   (in practice, we use  = 105  meters). In other words, Li j,  is a 
zonotope representing a long line segment extending in the shadow direction  i j, .  
Then, the shadow volume of building Bi  with respect to satellite j  is: 

	 V B L Z Li j i i j l i j
l

ni

, , ,� � � �� �
�1


� (10)

where Zl  are the constrained zonotopes comprising Bi  as in Equation (2). In prac-
tice, we represent the union of constrained zonotopes as a list of constrained zono-
topes; so, we hold on to each: 

	 V Zl l i j� �  , � (11)

where we have omitted the i j,  indices from Vl  for ease of notation.

3.2.4  Computing GNSS Shadows

Finally, to compute a 2D GNSS shadow for the satellite/building pair ( , )i j ,  we 
intersect the shadow volume with the 2D AOI.

Recall that the shadow volume and the AOI are represented by constrained zono-
topes. Again let Z c G A b1 1 1 1 1= zono( , , , )  and Z c G A b n

2 2 2 2 2� �zono( , , , )   with 
G n m
1 1� � ,  G n m

2 2� � ,  A k m
1 1 1� � ,  and A k m

2 2 2� � .  Per Scott et al. (2016), the 
intersection of constrained zonotopes is a constrained zonotope: 

	 Z Z c G A b A
A

A
G G

n m

k m

k m1 2 1 1

1

2

1 2

2

1 2

2 1

0
� � �

�

�

�

�
� � � �

�

�zono( , [ , ] , ),0 0��
�

�

�

�
�
�

�
�

�

�

�
�
�

�

�

�
�
�

�and b
b
b

c c

1

2

2 1

� (12)
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Therefore, for the shadow volume Vl  and area of interest  = ={ }Ak k
n
1

AOI , we can 
compute a shadow Si j,  as: 

S V Ai j l k
k

n

, � �� �
�1

AOI



� (13a)

	 � � �
��

({ } ),Z L Al i j k
l

n

k

n i

11


AOI

� (13b)

where we use Equation (10) to expand Vi j,  into a union of constrained zonotopes. 
As mentioned earlier, we represent a union of constrained zonotopes as a list of 
constrained zonotopes. So, in practice, we consider each k-th shadow 

	 S Z L Ak l i j k� � �( ), � (14)

which is a single constrained zonotope corresponding to each Ak .  We omit the 
i j l, ,  indices for ease of notation.

3.3  Algorithm Details

We now describe how to initialize and perform ZSM, summarized in Algorithm 1. 
This is a modification of the conventional SM approach originally introduced by 
Groves (2011). In particular, we enable set-valued receiver position estimates. We 
emphasize again that this is a snapshot method, considering only the data available 
at a single time instance.

3.3.1  Algorithm Overview

We begin with the entire AOI A G⊆  as an initial 2D set-valued estimate of our 
receiver position (Line 2). If we have no localization information available besides 
the fact that we are in an urban area, then we set A G= .  Then, for each GNSS sat-
ellite (Line 3), we perform the following steps: 

1.	 First, for each building (Line 5), we compute the 3D shadow volume as in 
Equation (10; Lines 6–9). Then, we intersect the shadow volume with the AOI 
to find a 2D GNSS shadow (Line 11), which we efficiently convert to a generic 
vertex representation (Line 12).

2.	 Second, we concatenate the vertex-represented regions of 2D GNSS shadows 
across all the buildings (Line 13).

3.	 Third, if the C N/ 0  value for the current satellite is below a user-specified 
threshold, then the current satellite is NLOS, so we intersect the concatenated 
2D GNSS shadow with our current set-valued position estimate (Line 15 and 
Figure 6[c]); otherwise, the satellite is LOS, so we subtract the GNSS shadow 
from our set-valued position estimate (Line 17 and Figure 6[d]). We assume 
the initial AOI (Line 2) to contain the true receiver position and, hence, the 
intersection of GNSS shadow with our current set-valued position estimate is 
never an empty set. 

Finally, after iterating through all buildings and satellites, the algorithm output 
is a polygon (2D polytope) on the ground plane representing the set-valued esti-
mate of receiver positions (potentially with multiple disjoint components) given 
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the current snapshot of GNSS signals (Line 18). An illustration of ZSM in simula-
tion is shown later in Figure 6.

3.3.2  Computational Considerations

We present Algorithm 1 without parallelization for ease of exposition. However, 
one can parallelize Algorithm 1 as follows. When iterating over each i-th building 
and each j-th satellite, one can create a separate position estimate Pi j,  for each 
( , )i j  pair, then intersect or subtract each Pi j,  from the initial position estimate P  
in Line 2 by checking if the corresponding building/satellite pair is NLOS or LOS 
as in Lines 14–17. Note, we use the unparallelized version of Algorithm 1 in our 
numerical experiments.

Note that efficient numerical tools, such as the Multi-Parametric Toolbox 
(Herceg et al., 2013) and MATLAB’s polyshape, exist to perform polytope inter-
section and subtraction operations in 2D (Lines 11–14). However, to enable lever-
aging these 2D polygon tools, we require the constrained zonotope intersection 
operation as in Equation (12) to intersect the 3D building shadow zonotopes with 
the 2D ground plane zonotopes. 

ALGORITHM 1
P r= ZSM LOS( , , , , , )B S R A ε  // zonotope shadow matching (Snapshot)

1 /* Inputs: 
   • �Urban 3D map of buildings  = ={ }Bi i

n
1
bldg  indexed by i, with each Bi  as a set of 

constrained zonotopes { }Zl l
ni
=1  

   • �Observed SVs  = ={ }s j j
n
1

sat  indexed by j 
   • �Received C N/ 0  values  = ={ }rj j

n
1

sat  for each satellite 
   • �Prespecified C N/ 0  threshold rLOS  
   • �Area-of-interest  = ={ }Ak k

n
1

AOI  indexed by k and represented as a set of constrained 
zonotopes 

   • �Shadow length scale  ≈ 105 m. 
  */
2 �P ← vertices ( )  // initialize coarse set-valued position estimate as a polygon (2D polytope) 
3 for each s j∈  do
4   �Ck � �0  // initialize 2D GNSS shadow as an empty polytope in vertex representation 
5   for each Bi∈  do
6    � i j i jB s, ( , )←makeShadowDirection  // make shadow direction as in Equation (7)
7    �Li j i j, ,( ,�� , [], [])� ��zono 03 1    // make shadow direction zonotope as in Equation (9)
8    �for each Z Bl i∈  do
9      �V Z Ll l i j� � ,  // construct shadow volume zonotope as in Equation (11) 
10      for each Ak ∈  do
11       �S V Ak l k� �  // create 2D GNSS shadow using zonotope intersection as in 

Equation (14) 
12       �S Sk k� � �� �vertices  // convert 2D GNSS shadow to vertex representation with 

Equation (6) 
13       �C C Sk k k� �  // concatenate vertex-represented regions of 2D GNSS shadow 

across buildings 

14   if r rj < LOS  then
15     P P Ck� �  // in shadow (NLOS), so intersect shadow with estimated position 
16   else
17     P P Ck← \  // not in shadow (LOS), so subtract shadow from estimated position

18 return P // updated set-valued receiver position estimate



BHAMIDIPATI et al.    

4  EXPERIMENTAL RESULTS

We experimentally validated our proposed ZSM method in simulation. 
Particularly, we chose a simulated platform to conduct exhaustive analysis of our 
algorithm’s performance. First, we performed a preliminary experiment to illus-
trate the utility of our constrained zonotope representation. Then, we evaluated 
ZSM in comparison to conventional SM (Groves, 2011; Wang et al., 2013a) for two 
simulation experiments.

Our ZSM implementation was in MATLAB. We used the open-source Continuous 
Reachability Analyzer (CORA) toolbox (Althoff, 2015) to represent constrained 
zonotopes. We used the polyshape tool to perform set operations on 2D GNSS 
shadows. We utilized received C N/ 0  from only GPS; however note that our algo-
rithm is generalizable to other GNSS constellations as well. As explained earlier in 
Section 1, we consider an ideal LOS/NLOS classifier in this work and, thus, do not 
account for satellite misclassifications.

4.1  Preliminary Experiment: Minkowski Sum Evaluation

To illustrate the utility of using constrained zonotopes, we compared the speed 
of the Minkowski sum on 1,000 randomly-generated polytopes with up to 100 ver-
tices, which we represented as both a standard vertex representation and as con-
strained zonotopes. Recall that a convex polytope P n⊂   can be represented as the 
convex hull of a set of vertices V n⊂  :  P V= convhull( )  as in Section 3.1.2. We 
used the vertex representation because 3D urban maps are typically represented as 
a triangulation of vertices as noted in Section 3.1.2. In other words, this compari-
son considered an alternative to ZSM wherein we would apply Algorithm 1 directly 
to a 3D map without converting it to constrained zonotopes.

We performed the Minkowski sum of both representations with a line segment 
to mimic the process of computing a building shadow zonotope and compareed 
the average computation time as shown in Figure 4. We implemented the vertex 
representation with MPT (Herceg et al., 2013) and the constrained zonotope repre-
sentation with CORA (Althoff, 2015). This experiment was performed on a laptop 
computer with an 8-core 2.4 GHz CPU and 32 GB RAM.

The constrained zonotope representation of this operation (executed once) was 
an order of magnitude faster on average (71.3 ms for MPT vs. 5.5 ms for CORA) 
and had a smaller standard deviation (3.3 ms for MPT vs. 1.1 ms with fewer out-
liers for CORA). Since this Minokwski sum was performed multiple times (spe-
cifically, n nii

n
sat

bldg�
�� 1  times) in Algorithm 1, we see that the ZSM formulation 

enables a huge speed increase over using other polytope representations for SM. 
We also note that the Minkowski sum for a constrained zonotope with a line seg-
ment always resulted in one additional generator per Figure 4, whereas it is unclear 
how many additional vertices might be required for the vertex representation. So it 
is possible to preallocate memory for the constrained zonotope to further increase 
performance.

4.2  Comparison Method and Validation Metrics

We validated our proposed ZSM via two simulation experiments: one using a 
simple 3D map comprised of two buildings and the other using a dense 3D building 
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map of San Francisco. We compared ZSM’s performance with that of conventional 
SM, which was implemented in Groves (2011) and Wang et al. (2013a, 2013b). All 
computations were performed on a laptop with a 2-core 2.5 GHz CPU and 8 GB 
RAM. In these simulation experiments, we modeled each building as a constrained 
zonotope (i.e., ni = 1  in Equation [2]).

4.2.1  Details of Conventional SM

We applied the conventional SM technique presented in Wang et al. (2013a) and 
explained earlier in Section 1. Offline, the method considers a prespecified uniform 
grid of position candidates and then performs a precomputation step by tracing 
evenly-distributed azimuth and elevation rays for each position candidate and each 
building in a 3D map to compute predicted satellite visibility. The number of discrete 
candidates in the uniform grid is determined by its grid size, which is defined as 
the distance between any two candidates either in cross-street or along-street direc-
tions. Note that the distance between any two position candidates in the along-street 
direction is the same as in cross-street, thus each grid represents a square.

At runtime (online computation), conventional SM computes a visibility score 
at each position candidate by comparing the received C N/ 0  (used for LOS/NLOS 
classification) for each satellite to that of predicted satellite visibility (from offline 
computation). Then, the position candidates with the highest visibility scores (can 
be more than one) are identified as the most likely receiver positions. The conven-
tional method also computes the weighted empirical covariance (Martens et al., 
2003) by analyzing the position candidates and their associated weights based on 
the normalized visibility scores.

To analyze ZSM performance for a given initial AOI, we precomputed the visibil-
ity map of conventional SM for various grid sizes. As mentioned earlier in Section 1, 
a finer discretization is attained with a lower grid size, thus increasing the position 
accuracy of the conventional SM technique, but at the expense of higher computa-
tion cost (both offline and online).

FIGURE 4 Constrained zonotopes improve Minkowski sum computation time by an order 
of magnitude over a standard vertex representation (each red plus denotes an outlier).
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4.2.2  Validation Metrics

We applied four validation metrics: 

1.	 Offline computation load: For ZSM, this is the time required for converting 
buildings from vertices to constrained zonotopes. For conventional SM, this 
is the time required for precomputing the visibility map at each position 
candidate, and, thus, the predicted satellite visibility.

2.	 Online computation load: For ZSM, this is the time required to run 
Algorithm 1. For conventional SM, this is the time required to compute the 
visibility scores at all position candidates and compute the most likely position 
candidates (based on highest visibility scores) and the weighted empirical 
covariance.

3.	 Point-valued estimation error in cross-street and along-street 
directions: For ZSM, this is the error in cross-street and along-street 
directions between the true receiver location and centroid of the final set-
valued position estimate (multiple centroid values obtained when disjoint 
components are present). For conventional SM, this is the error in cross-
street and along-street directions between the most likely position candidates 
(highest visibility score) and the true receiver location.

4.	 Bounds in cross-street and along-street directions: For ZSM, this is the 
width of the bounding box that encloses the set-valued position estimate. 
Note that we report the width of individual bounding boxes when disjoint 
components are present in the final set-valued position estimate. For 
conventional SM, this is twice the 3σ  (three standard deviations) bound of 
the visibility-based weighted empirical covariance in the cross-street and 
along-street directions. In particular, we evaluated the weighted empirical 
covariance across all the position candidates based on their visibility scores. 

4.3  Simulated Experiment #1: Simple 3D Building Map

We first describe a simulation experiment that considers a simple 3D map com-
prised of two urban buildings. We use the real-world GPS data collected from an 
Android phone and, then, emulate the received C N/ 0  values with simulated 
NLOS effects.

4.3.1  GPS Data Set and NLOS Emulation

We used the openly available Google Android data set (Fu et al., 2020) with the 
data collection setup shown in Figure 5(a). To allow control over LOS/NLOS signals 
for each satellite, we used the data collected in open-sky conditions via a Pixel 4 XL 
Modded smartphone, which logged the GPS data, and a high-fidelity GNSS-RTK/
IMU setup, which served as a reference ground truth.

To design an ideal LOS/NLOS classifier, we emulated NLOS effects as follows. 
First, we overlayed the test surroundings with simulated buildings to mimic an 
urban setting. We then chose a time when nine satellites were LOS, as judged by 
C N/ 0  values above 38-dB-Hz, which is representative of open-sky conditions based 
on the empirical studies conducted in Hetet (2000) and Kuusniemi et al. (2004). We 
induced simulated NLOS effects in a GPS satellite when the LOS vector between its 
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location and the true receiver position was obstructed by any simulated building. 
In particular, we attenuated the received C N/ 0  values for these identified NLOS 
satellites to be below the 38-dB-Hz threshold. Given that we are considering an ideal 
LOS/NLOS classifier that is based on binary thresholding against 38 dB-Hz, we do 
not account for the emulation and inclusion of multipath effects in this work.

4.3.2  Experiment Setup

We set up the experiment as follows, also shown in Figure 6(a). For the urban 
3D map, we considered two buildings. The receiver 2D position was initialized at 
(0, 0) m in local map coordinates and the initial AOI was chosen as the entire length 
and width of a street between the two buildings, shown later in Figure 6(b). We 
observed a total of nine visible GPS satellites whose skyplot is shown in Figure 5(b). 
As mentioned earlier, we induced simulated errors in received C N/ 0  to repre-
sent LOS/NLOS characteristics with respect to the true receiver position and 3D 
map. In Figure 5(b), the NLOS satellites are indicated by dark yellow circle markers 
whereas LOS ones are blue. For conventional SM, we considered three grid sizes 
with the distances between the discrete candidates in cross-street and along-street 
directions as follows: 15 m, 10 m, and 5 m. The number of position candidates for 
the grid sizes of 15 m, 10 m, and 5 m, were 63, 124, and 427, respectively.

4.3.3  Results and Discussion

The first few steps (top-down view) of Algorithm 1 are shown in Figures 6(b)–6(f). 
In particular, we illustrate the satellites, buildings, initial AOI, GNSS shadows, and 
intersection/subtraction procedure. The full results are summarized in Table 1 and 
the final localization results for proposed ZSM and conventional SM are illustrated 
in Figure 7(a) and Figure 7(b). For each grid size of conventional SM reported in 
Table 1, we reported the top three most-likely position candidates (ranked based on 
the highest visibility score and the least point-valued estimation error with respect 
to ground truth).

FIGURE 5 Subfigure (a) is the experiment test platform utilized to validate the proposed 
ZSM via publicly-available Google Android data sets in Fu et al. (2020). Subfigure (b) shows the 
skyplot for a particular receiver location with nine visible GPS satellites. The GPS satellites are 
represented by circles with LOS satellites in blue and NLOS (simulated effects) in dark yellow.



BHAMIDIPATI et al.    

Figure 6(a) shows the simulated setup with two urban buildings and nine GPS 
satellites. The black circle represents the true receiver position, blue circles repre-
sent LOS satellites, and LOS signals are represented by a green dashed line. NLOS 
satellites are represented by dark yellow circles with NLOS signals represented 
by a red dashed line. Figure 6(b) shows a top-down view with the initial AOI in 
magenta. Figures 6(c)–6(f) show the GNSS shadow for each satellite or building 
pair in cyan with the resulting receiver position estimate after the set intersection 
or difference in magenta. While we only illustrate the procedure for PRNS 29, 25, 
26, and 12, the final result from all nine satellites is shown in Figure 7. Note that the 
satellites are plotted near the receiver for visualization only; the shadow directions 
as in Equation (7) were computed using the satellites’ actual positions. Given the 
received C N/ 0  and 3D map, we demonstrated that the proposed ZSM computes a 
set-valued receiver position estimate.

FIGURE 6 Subfigure (a) is an illustration of the experiment setup, while subfigures (b)–(f) 
represent iterations of the proposed ZSM algorithm. The magenta area is the receiver position 
estimate and the blue areas are shadows.
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Figure 7(a) shows the ZSM receiver position estimate in magenta. 
Figures  7(b)–7(d) show the conventional SM with grid sizes of 5 m, 10 m, and 
15 m, respectively, where the position candidates are color-coded using a jet color-
map with blue indicating a low visibility score of 2 and red representing a high 
value of 9 (number of available GPS satellites). For a lower online computation 
time of 0.39 s, ZSM demonstrates a comparable point-valued estimation error and 
a smaller width than the densest conventional SM case in both the cross-street and 
along-street directions.

TABLE 1
Performance Comparison Results for ZSM vs Conventional SM on a Simulation Experiment With 
two Buildings Seen in Figure 6(a) and Nine GPS Satellites seen in Figure 5(b).

Algorithm 

Error w.r.t true 
location (m)
[Cross-street,  
Along-street]

Bound (m)
[Cross-street, 
Along-street]

Avg. computation load 
across 100 runs (s)

Offline Online

Proposed ZSM [3.46, 16.05] [17.87, 50.11] 1.7e-4 0.39 

Conventional  
SM with  
grid sizes

5 m

[3.00, 5.00]

[59.58, 447.48] 1524.41 1.66[2.00, 0.00]

[3.00, 0.00]

10 m

[3.00, 0.00]

[66.72, 455.82] 405.33 0.08 [7.00, 0.00]

[3.00, 10.00]

15 m

[3.00, 0.00]

[73.54, 463.10] 296.32 0.04 [3.00, 15.00]

[3.00, 30.00]

FIGURE 7 The ZSM position estimate in subfigure (a) has a comparable estimation error to 
the conventional SM results in subfigures (b)-(d). Note that the ZSM error does not depend on a 
predefined grid density.
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The results from the three cases of the conventional SM technique were used 
for validating the improved performance of our proposed ZSM algorithm. We saw 
a comparable point-valued estimation accuracy of ZSM (i.e., 3.46 m and 16.05 m 
in cross-street and along-street directions, respectively) as that of conventional SM 
with grid sizes of 5 m, 10 m, and 15 m, whose accuracies are reported in Table 1. 
Furthermore, unlike all the conventional SM cases, we showed that ZSM achieved 
a set-valued position estimate with an accuracy in width of only 17.87 m in the 
cross-street direction and 50.11 m in the along-street direction. We also found that 
the offline and online computations of ZSM only incurred an average runtime of 
1 7 10 4. � � �s and 0.39 s, respectively. Importantly, without the need for gridding, 
the ZSM result produced this point-valued positioning accuracy while returning a 
set-valued estimate, which contained the true receiver position. We anticipate that 
the result might be more accurate if we leveraged more GPS satellites and build-
ings that would provide additional geometry constraints in the shadow matching, 
thus reducing the centroid error and bounds of the disjoint component (ambigu-
ous mode) containing the true receiver location, if any. This forms the premise of 
our next simulation experiment.

4.4  Simulated Experiment #2: Using 3D Building Map of 
San Francisco

We performed our next simulation experiment using a publicly-available 3D 
building map of San Francisco. For this dense 3D urban map, we validated our 
algorithm’s performance compared to that of the conventional SM technique using 
emulated GPS data. We also performed a sensitivity analysis of proposed ZSM by 
varying the number of buildings being considered.

4.4.1  GPS Data Set and NLOS Emulation

We generated GPS data using the simulation pipeline shown in Figure 8. 
Considering a desired static position (true receiver location), ephemeris file, and 
start time as inputs, we utilized a C++ language-based software-defined GPS sim-
ulator known as GPS-SIM-SDR (Bhamidipati et al., 2019; Ebinuma, 2018) to sim-
ulate the raw GPS samples, which are indicative of open-sky conditions. Later, 
we performed acquisition and tracking using a MATLAB-based software-defined 
radio known as SoftGNSS (Rojas, 2011) to generate received C N/ 0  values. 
Similar to NLOS emulation described in Section 4.3.1, we induced NLOS effects in 

FIGURE 8 Our GPS software simulation pipeline uses two publicly-available software: GPS-
SDR-SIM (Ebinuma, 2018) and SoftGNSS (Rojas, 2011). For a given true receiver location, we 
simulated the C / N0 values and, thereafter, induced NLOS effects using a 3D building map of San 
Francisco.
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C N/ 0  values based on the simulated buildings in San Francisco and true receiver 
location. 

4.4.2  Experiment Setup

We utilized a publicly available 3D building map of San Francisco (György, 
2018). As explained in Equation (3) of Section 3.1.2, standard 3D building maps 
are represented as union of triangles, with each triangle comprised of three ver-
tices. An illustration of the vertex representation for the 3D building map of San 
Francisco is shown in Figure 9(a), wherein we isolated the vertices of each build-
ing using the theory of connected graphs (König, 1990) and color coded them 
independently. We then converted the entire 3D map from vertex representation 
to constrained zonotope representation, which is visualized in Figure 9(b). Note 
that the prominent landmarks in San Francisco, such as the Transamerica pyr-
amid and Salesforce tower, can be easily identified in Figure 9(b). The storage 
space required for building-constrained zonotopes is quite less. For instance, the 
.mat file size for the eight buildings discussed in Section 4.4.4 is 5 KB while, for 
14 buildings, it is 8 KB, and for 20 buildings, it is 11 KB. Similarly, the entire 
San Francisco map (shown in Figure 9[b]) is 345 KB. While this is acceptable for 
many practical applications, based on the user platform specifications, if further 
reduction in file size is required, one could employ alternate techniques such as 
storing a reduced order representation of building-constrained zonotopes or stor-
ing a smaller section of the map at the original order of the building-constrained 
zonotopes. Note that the experiments conducted in this section were fully simu-
lated and, therefore, inaccuracies of this 3D building map compared to that of the 
San Francisco city are not relevant. This is because we simulated the true receiver 
location and classified the satellites as LOS/NLOS relative to this open-source 3D 
building map.

The true receiver position was initialized at ( , )0 18− �m in local map coordi-
nates. The initial AOI was chosen to lie within a size of 120 m × 120 m while 
excluding the regions that were within the building footprints. In particular, we 
chose the size of the AOI in a heuristic manner by penalizing the position solution 
and uncertainty bounds (3σ ) estimated by the MATLAB-based SoftGNSS (Rojas, 

FIGURE 9 Preprocessing 3D building map of San Francisco: (a) shows the vertex 
representation, wherein the vertices of each building are separately color-coded; and (b) represents 
each building as a constrained zonotope, which is given as input to our proposed ZSM algorithm.
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2011), which was explained earlier in Section 4.4.1. A top-down view of this illus-
tration in shown in Figure 10(a) and a relevant section of the 3D San Francisco 
map comprised of eight buildings (of which one of them was the Salesforce tower) 
is shown in Figure 10(b). We simulated 14 GPS satellites whose skyplot is shown 
in Figure 10(c), with LOS satellites indicated by blue circle markers and NLOS by 
dark yellow. For comparison with the conventional SM technique (explained in 

TABLE 2
Performance Comparison Between ZSM and Conventional SM Based on a 3D Map of San Francisco

Algorithm
Centroid error w.r.t true 

location (m) [Cross-street, 
Along-street]

Bounds (m)
[Cross-street, 
Along-street]

Average 
computation load
across 100 runs (s)

Offline Online

Proposed 
ZSM

14 satellites
[1.2, 8.1]
[4.6, 58.8]

[5.8, 16.2]
[9.8, 24.5]

162.5 4.4

10 random 
satellites

[0.9, 6.8]
[4.8, 53.8]

[6.1, 16.4]
[9.7, 13.1]

162.5 4.2

8 random 
satellites

[1.4, 13.1]
[3.5, 54.3]

[18.3, 26.8]
[7.6, 24.8]

162.5 3.0

Satellites 
with 

elevation 
> 20°

[1.7, 10.2]
[1.9, 7.0]

[4.9, 48.5]

[0.5, 3.3]
[8.7, 20.2]

[16.8, 29.9]
162.5 2.4

Conventional 
SM

(all available 
14 satellites)

3 m

[0.0, 3.0], [0.0, 6.0], [0.0, 9.0]
[0.0, 12.0], [3.0, 12.0], [0.0, 48.0]
[3.0, 48.0], [0.0, 51.0], [3.0, 51.0]
[0.0, 54.0], [3.0, 54.0], [3.0, 57.0]

[173.2, 214.5] 91204.0 2.8

5 m
[2.0,10.0] 

[2.0, 50.0], [3.0, 50.0], [3.0, 55.0]
[173.1, 215.6] 34389.9 1.2

10 m
[2.0, 10.0]
[2.0, 50.0]

[192.1, 221.6] 6874.1 0.3

30 m [12.0, 60.0] [224.5, 261.8] 1433.4 0.1 

Note: For proposed ZSM, we performed comparison analysis across different GPS satellite subsets, 
while for conventional SM we compared the performance for different grid resolutions. The 14 
satellites can be seen in Figure 10(c)

FIGURE 10 Our second simulation experiment using a 3D map of San Francisco: Subfigures 
(a) and (b) show the initial AOI and surrounding buildings, while (c) shows the skyplot for the 
true receiver position with LOS satellites in blue and simulated NLOS in dark yellow.
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Section 4.2), we considered four grid sizes of 30 m, 10 m, 5 m, and 3 m. The number 
of position candidates for the grid sizes of 30 m, 10 m, 5 m, and 3 m, were 16, 97, 
346, and 902, respectively.

4.4.3  Comparison Results with Conventional SM

Table 2 reports comparison statistics between the proposed ZSM with different 
satellite subsets and conventional SM with varying grid sizes in terms of offline 
and online computation load, point-valued estimation error with respect to true 
receiver location, and the associated position bounds. A visualization of our ZSM 
with all available 14 satellites, a random subset of 10 satellites, a random subset of 
8 satellites, and satellites with elevation > 20° are shown in Figures 11(a), 11(b), 
11(c), and 11(d), respectively. From among those illustrated earlier in Figure 10(c), 
the satellites with PRNs 1, 7, 14, and 15 were eliminated for the 10 random satel-
lite case, while the satellites with PRNs 5, 7, 8, 9, 17, and 28 were omitted for the 8 
random satellite case. Also, for the case with elevation > 20°, only the GPS satellites 
with PRNs 7, 13, 14, 17, 28, and 30 were considered. Intuitively, the reduced number 
of GPS satellites mimic the cases when a non-ideal LOS/NLOS classifier is in a sim-
ulation setting, wherein the users can execute the proposed ZSM by leveraging only 
the GPS satellites exhibiting a high probability of being either LOS or NLOS while 
omitting the less certain ones. The detailed steps of convergence for our proposed 
ZSM algorithm for all available 14 satellites can be viewed here: https://youtu.be/
anIh4hd3ikw. Similarly, the illustrations of conventional SM with grid sizes of 3m, 
5 m, 10 m, and 30 m are shown in Figure 12(a), 12(b), 12(c), and 12(d), respectively.

FIGURE 11 Our proposed ZSM algorithm estimates the receiver position with high precision 
(i.e., the area of the receiver estimate set is small), but produces a bimodal output in this example. 
The mode containing the true receiver position is not majorly affected by the consideration of 
different subsets of the available GPS satellites.

https://youtu.be/anIh4hd3ikw
https://youtu.be/anIh4hd3ikw
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We validated that the proposed ZSM using all available 14 satellites successfully 
estimated two disjoint sets that showed a resemblance with the most-likely posi-
tion candidates estimated using conventional SM of different grid sizes. For the 
conventional SM technique with a grid size of 30 m, we observed one most-likely 
candidate (highest visibility score) that showcased a point-valued accuracy of 12 m 
and 60 m in the cross-street and along-street directions, respectively. By imple-
menting the conventional SM technique for a grid size of 10 m, we identified two 
most-likely candidates, both of which exhibited point-valued estimation error in a 
cross-street direction of 2 m. Similarly, conventional SM with grid sizes of 5 m and 
3 m identified 1 3−  grid points with a high visibility score of 14 in the near-vicinity 
of each of the two disjoint sets estimated via proposed ZSM. While increasing the 
grid resolution reduces the estimated bounds of conventional SM, we observed that 
these bound values were more than 100 m across all grid sizes in both along-street 
and cross-street directions. These large uncertainty bounds from conventional SM 
can be majorly attributed to the use of Gaussian distribution for approximating the 
non-linear, multi-modal shadow matching distribution.

In contrast, across all satellite subsets, our proposed ZSM successfully esti-
mated the set containing the true receiver location as one of the outputs, without 
requiring discretizing. Particularly, when all 14 available satellites were utilized, 

FIGURE 12 The results of conventional SM strongly depend upon grid size (a denser grid 
is more accurate). However, in this case, the uncertainty bounds in the conventional SM are over 
100 m, indicating that ZSM is much more precise.
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ZSM demonstrated a higher point-value accuracy of 1.2 m in cross-street and 
8.1 m in along-street direction, while achieving a small bound of only 5.8 m in 
cross-street and 16.2 m in along-street directions. We observed that, as the num-
ber of GPS satellites utilized in our proposed ZSM increased, the centroid error 
and the bounds of the mode that contained the true receiver location marginally 
decreased. Similarly, as the number of utilized GPS satellites increases, the offline 
computation load remains the same, but the online computation load marginally 
increases. 

An interesting thing to note here is that, while ZSM estimates multiple disjoint 
components (modes), the ones that do not contain the true receiver location can 
be ruled out by fusing proposed ZSM with other information sources, say inertial 
measurement units (IMUs) or GPS pseudoranges. In particular, these additional 
sources could provide temporal information about the vehicle motion that could be 
used to perform a consistency check (i.e., compute the predicted/expected modes 
from IMU/GPS pseudoranges), and compare it with the set-valued estimate from 
zonotope shadow matching to eliminate incorrect modes over time. For instance, 
IMU data can be utilized to perform consistency checks over multiple time instants 
in the relative domain, itself, while considering the IMU biases and drifts to be 
constant over a relatively shorter time window. Similarly, GPS pseudoranges from 
satellites identified as LOS with high certainty can provide useful information, 
particularly in resolving the along-street component, thereby narrowing down the 
correct mode. Also, note that parallelization can further reduce the computational 
load of both the proposed ZSM and conventional SM.

4.4.4  Sensitivity Analysis of ZSM

We performed a sensitivity analysis of ZSM to evaluate the increase in offline 
and online computation loads as the level-of-detail for each building increased 
or alternatively the number of buildings increased. As explained in Section 3.1.2, 
standard 3D maps can be represented as a union of triangles, wherein each triangle 
is converted into a constrained zonotope. Therefore, in theory, the computational 
load incurred by increasing the number of buildings (with sparser level of detail 
for each building) is on the same order of magnitude as increasing the level of 
detail for each building, given a lower number of buildings. This is justified by 
comparing Equations (2) and (3) as follows: (a) given ntrng  triangles and n ni = trng ,  
the total number of constrained zonotopes representing the buildings are ntrng  
(each building is sparser in the level of detail); and (b) given another ntrng  trian-
gles with n ni < trng ,  the total number of constrained zonotopes representing the 
buildings would be ni  (each building encompasses more level of detail). Given that 
the open-source 3D building map (György, 2018) is not dense enough to conduct 
a sensitivity analysis on level of detail explicitly, we analyzed the performance of 
the proposed ZSM as the number of buildings are varied. We also quantified our 
ZSM’s performance by analyzing the following: (a) centroid error and bounds asso-
ciated with the disjoint component (ambiguous mode) containing the true receiver 
location; and (b) number of ambiguous modes and their variation as the number 
of buildings increases.

As shown in Table 3, we analyzed our ZSM’s performance by increasing the 
number of buildings from eight (discussed in Section 4.4.3) to 14 and 20. For all 
three cases, we considered the same initial AOI, which is indicated by the black 
box shown in Figure 13. Figure 13 illustrates the final set-valued position esti-
mate obtained for the case with 20 buildings. We validated that our proposed ZSM 
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technique was able to successfully detect all the disjoint components (ambiguous 
modes) and their exact bounds, which can vary based on the number, density, 
and placement of buildings considered. From Table 3, we observe that the num-
ber of disjoint components in the final set-valued position estimate increases as 
the number of buildings increases, wherein the number of disjoint components 
is two when eight buildings are considered, three disjoint components for 14 
buildings, and five disjoint components when 20 buildings are considered. As 
explained earlier, disjoint components not containing the true receiver location 
can be omitted by fusing proposed ZSM with other sources, such as IMUs and GPS 
pseudoranges. We demonstrated that our proposed ZSM successfully maintained 
a high estimation accuracy and a small position bound in both cross-street and 

TABLE 3
ZSM Estimation Accuracy and Computation Time vs. Building Density

No. of 
buildings

Centroid Error @ Bound (m)
[Cross-street, Along-street]

Avg. computation load
for 100 runs (s)

Offline Online

8
a) [1.2, 8.1] @ [5.8, 16.2]
b) [4.6, 58.8] @ [9.8, 24.5]

162.5 4.6

14
a) [1.2, 8.1] @ [5.8, 16.2]
b) [4.6, 58.8] @ [9.8, 24.5]

c) [102.4, 63.9] @ [4.9, 25.2]
165.4 9.4

20

a) [1.2, 8.1] @ [5.8, 16.2]
b) [4.6, 58.8] @ [9.8, 24.5]

c) [102.4, 63.9] @ [4.9, 25.2]
d) [1.7, 10.1] @ [0.4, 3.3]

e) [87.0, 155.9] @ [0.3, 0.5]

169.8 12.2

 

FIGURE 13 ZSM produces a set-valued estimate with many disjoint components (magenta) 
when considering many buildings (pink) and a large AOI. However, each disjoint component is 
small, so fusing a ZSM estimate with other estimates to eliminate multi-modality can produce an 
accurate receiver position estimate.
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along-street directions. Another interesting point to note is that the eight-building 
and 14-satellite configuration already provides sufficient geometric diversity and, 
thus, increasing the number of buildings to 14 and 20 does not further reduce the 
centroid error and bound of the ambiguous mode containing the true receiver 
location.

Based on the results, we observed that the offline computation load (even with no 
parallelization as of now) demonstrated easy scalability with a number of buildings 
(i.e., no significant increase in computation time). While the online computation 
load increases with the number of buildings, note that there is an extensive scope 
for parallelization in the extraction of GPS shadows that can drastically reduce the 
computation time. For instance, one can parallelize the processing of analyzing 
each pair of constrained zonotope (associated with 3D buildings) and satellite to 
extract the GPS shadow, which is currently executed in a sequential manner as 
explained in Algorithm 1. However, note that parallelization incurs an increase in 
the computational resources required.

4.4.5  Performance Analysis of ZSM: Different Location

We evaluated our ZSM’s performance in a different section of the 3D building 
map of San Francisco (i.e., near an intersection, where the distinction between 
the cross-street and along-street directions is not obvious). Given this, we labeled 
the directions as X and Y in the local map coordinates as shown in Figure 14(a), 
which comprised of 17 urban buildings in total. The true receiver position was 
initialized at (–20, –30) m in local map coordinates and the initial AOI (black box) 
was chosen to lie within a size of 212 1.  m × 212 1. �m while excluding the regions 
that lay within the building footprints. We considered 14 GPS satellites, which 
are same as those considered in earlier sections and whose skyplot is shown in 
Figure 14(b) with LOS satellites (a total of four) indicated by blue circle markers 
and NLOS by dark yellow. A visualization of our ZSM with all available 14 sat-
ellites and satellites with elevation > 20  are shown in Figures 14(c) and 14(d), 
respectively. Among all the GPS satellites shown in Figure 14(b), for the case with 
elevation > 20 ,  only the relevant six satellites with PRNs 7, 13, 14, 17, 28, and 30 
were considered.

We demonstrated that our proposed ZSM estimated all the disjoint compo-
nents (ambiguous modes). For the case in which all the GPS satellites are con-
sidered, three disjoint ones were identified with an online computation load of 
10.9 s (no parallelization used). Similarly, for the case comprised of only the 
GPS satellites with elevation > 20 ,  13 disjoint ones were estimated using our 
proposed ZSM with an online computation load of 5.5 s. We also observed that, 
in both cases, our proposed ZSM successfully detected the mode that contained 
the true receiver location with a low centroid error of [ . , . ]0 9 6 0  m and a bound 
of [ . , . ]21 4 55 1  m in local map coordinates for the 14 GPS satellite case. On the 
other hand, a higher centroid error of [ . , . ]1 6 10 8  m and bound of [ . , . ]21 4 122 5  m 
in local map coordinates was observed for the six GPS satellite case. Unlike in 
Section 4.4.3 where increasing the number of satellites did not significantly affect 
the characteristics of the mode containing the true receiver location, in this case, 
we observed an improvement in our ZSM’s performance. As explained before, 
this can be attributed to the further addition of useful geometric constraints in 
Figure 14(c) as compared to Figure 14(d) using the GPS shadows extracted from 
the remaining eight satellites.
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5  CONCLUSIONS

We presented zonotope shadow matching (ZSM), a novel approach to set-valued 
position estimation for 3D-map-aided GNSS. The method is achieved by leveraging 
constrained zonotopes, a recent advance in polytope representation. We computed the 
3D buildings and 2D GNSS shadows using constrained zonotopes, and then refined 
the coarse set-valued receiver position estimate based on if the receiver lay inside 
or outside the GNSS shadow (which is judged by C N/ 0  values). Using simulated 
experiments on a simple 3D building map and a dense 3D map of San Francisco, we 
validated that the proposed ZSM achieves a high point-valued estimation accuracy 
with high certainty (small position bounds). Importantly, while achieving a com-
parable point-valued accuracy as that of the conventional shadow matching (SM) 
technique, ZSM can compute a set-valued state estimate that is independent of the 
point-valued discretization. We also demonstrated the easy scalability of ZSM with 
the number of buildings considered. This indicates that ZSM is a promising method 
for providing robustness guarantees for safety-critical GNSS applications, since such 
set-valued estimates can be used as measurements for set-valued robust estimators.

FIGURE 14 Our third simulation experiment in a different location using the 3D map of San 
Francisco; (a) shows a relevant section of 3D map near the Salesforce tower wherein the distinction 
between cross-street and along-street is not well-defined; (b) shows the skyplot with respect to the true 
receiver location with 14 visible GPS satellite, the GPS satellites are represented by circles with LOS 
satellites in blue and NLOS [simulated effects] in dark yellow; (c) shows the final set-valued estimate 
of the receiver position estimated by our ZSM when all 14 satellites are considered; and (d) shows this 
set-valued estimate using satellites with elevation > 20°. We demonstrate that in both cases, our ZSM 
successfully detects the mode containing the true receiver location, while exhibiting a higher centroid 
error and bounds for the reduced six satellite case as compared to the full 14 satellite case.
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