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O R I G I N A L  A R T I C L E

Euclidean Distance Matrix-Based Rapid Fault Detection 
and Exclusion

Derek Knowles1  Grace Gao2 

1  INTRODUCTION

Signals from global navigation satellite systems (GNSSs) that are used for nav-
igation must be monitored for potential faults in order to consistently provide an 
accurate position estimate. Common GNSS signal faults include receiving GNSS 
signals from satellites that are non-line-of-sight (NLOS), receiving signals that 
have reflected off of foliage or buildings (referred to as multipath signals; Enge, 
1994), or faults caused by atmospheric effects. This paper focuses on the detection 
of these faults in which the GNSS signal is received with a time delay and does 
not address other types of GNSS signal faults such as when satellites are transmit-
ting incorrect signals. One of the methods for fault detection and fault exclusion 
(FDE) uses the signal-to-noise ratio (SNR) to eliminate faulty signals (Bilich & 
Larson, 2007). However, the front end of most GNSS receivers contains automatic 
gain control that increases the gain of low strength signals and makes the SNR 
difference between faulty and non-faulty signals difficult to distinguish (Borowski 
et al., 2012; Wang et al., 2015). Beyond using SNR values alone, there are two 
common categories for more advanced FDE algorithms: solution separation and 
residual based.

Solution separation computes the least-squares position estimate using all 
measurements and also the position estimate using subsets of measurements 
(Blanch et al., 2012; Joerger et al., 2014; Ma et al., 2019; Pullen & Joerger, 2021; 
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Abstract
Faulty signals from global navigation satellite systems (GNSSs) often lead to 
erroneous position estimates. A variety of fault detection and exclusion (FDE) 
methods have been proposed in prior research to both detect and exclude faulty 
measurements. This paper introduces a new technique for the FDE of GNSS 
measurements using Euclidean distance matrices. After a brief introduction 
to Euclidean distance matrices, both the detection and exclusion strategy is 
explained in detail. Euclidean distance matrix-based FDE is verified in two sep-
arate real-world data sets and proven to accurately detect and exclude GNSS 
faults on an average of 1.4-times faster than residual-based FDE and 70-times 
faster than solution separation FDE.
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Zhu et al., 2018). A fault is detected if the normalized distance between the posi-
tion estimate using all measurements and the position estimate using a subset of 
measurements is greater than the pre-determined threshold. Since solution separa-
tion requires the calculation of the position estimate using all measurement subset 
combinations, the time complexity of solution separation increases in a combina-
torial manner as the number of faults hypothesized increases. Since the exact time 
complexity of solution separation varies widely due to the least-squares implemen-
tation and programming language, we simplify the time complexity of solution 
separation in Table 1 to a first-order approximation that accounts for the number of 
times the least-squares algorithm must run. The complete derivation for the time 
complexity approximation of solution separation is included in Appendix A.

Residual-based methods calculate the difference between measured and expected 
pseudorange values (Ma et al., 2019; Parkinson & Axelrad, 1988; Pullen & Joerger, 
2021). If the normalized difference is larger than the pre-determined threshold, 
then a fault is detected. When a fault is detected, residual-based FDE creates mea-
surement subsets in which a single measurement is removed and iterates through-
out the subsets, recalculating the difference between measured and expected 
pseudoranges to determine which measurement to exclude (Parkinson & Axelrad, 
1988). For this reason, residual-based fault detection is essentially constant with 
respect to the number of measurements and the number of faults hypothesized; 
however, residual-based fault exclusion scales linearly with respect to the number 
of measurements. Similarly to solution separation, in Table 1, we simplify the time 
complexity of residual-based FDE to a first-order approximation that accounts for 
the number of iterative detection checks that must be performed. The full approx-
imation derivation is included in Appendix A.

This paper is based on our recent ION GNSS+ conference paper (Knowles & 
Gao, 2021b) and proposes a novel FDE algorithm that uses Euclidean distance 
matrices (EDMs), which are formally defined in Section 2, to rapidly detect and 
exclude GNSS signal faults. Like the residual-based and solution separation FDE 
methods discussed above, EDM-based FDE is also a snapshot method, meaning 
that it detects and excludes signals by analyzing measurements in a single snap-
shot of time. The proposed FDE method has lower computational complexity 
than both solution separation and residual-based FDE since it has a constant 
time fault detection solution and its fault exclusion step only scales linearly with 
respect to the number of faults hypothesized. A summary of the time complexity 
for each fault detection and exclusion strategy is included in Table 1. Additionally, 
EDM-based FDE does not require an explicit estimate of the receiver’s location 
(like residual-based FDE requires) and is shown to detect and exclude measure-
ment faults while using a broader range of thresholding parameters than either 
solution separation or residual-based FDE.

TABLE 1
Time Complexity of Solution Separation, Residual-Based, and EDM-Based Fault Detection 
and Exclusion 

Solution Separation Residual-based EDM-based 

Fault Detection  m
f
f

!� �  1� �  1� �

Fault Exclusion  m
f
f

!� �  m� �  f� �

Note: m is the number of measurements in the measurement epoch and f is the number 
of faults hypothesized. All derivations for time complexity approximations included in 
Appendix A.
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The contributions of this paper are as follows: 

1.	 We propose a novel fault detection and exclusion method that leverages 
Euclidean distance matrices. 

2.	 We use two real-world data sets to quantitatively validate time complexity 
and its ability to detect and exclude faults with a broad range of thresholding 
parameters when compared to both solution separation and residual-based 
FDE methods. 

This paper begins by introducing the relevant theory of Euclidean distance matri-
ces (EDMs) in Section 2. Next, in Section 3, we explain how to create an EDM using 
GNSS measurements. In Section 4, we present our methodology for fault detection 
and fault exclusion that leverages EDMs constructed from GNSS measurements. 
Finally, in Section 5, we present experimental results from two real-world data sets. 
We compare the fault detection sensitivity and robustness to changes in the thresh-
olding parameters for solution separation, residual-based, and EDM-based FDE. 

2  EUCLIDEAN DISTANCE MATRIX PRELIMINARIES

Previously, EDMs were used to solve a wide range of relative positioning and 
alignment problems. EDMs have been used in acoustics for surveying rooms with 
echoes (Dokmanic, 2015), biology for protein structure alignment (Holm & Sander, 
1993), and machine learning for dimensionality reduction (Tenenbaum et al., 
2000). EDM-based algorithms have also been used for sensor network localization 
(Destino et al., 2007; Drineas et al., 2006; Oguz-Ekim et al., 2011; Wu et al., 2019) 
and multi-robot formation control (Ahn & Oh, 2010). EDM-based tools are much 
less prevalent in the GNSS navigation community despite the wealth of informa-
tion they provide about ranging measurements. This section will present founda-
tional theory about EDMs prior to Section 3, which explains how to create an EDM 
with GNSS measurements.

Consider p  points in n ,  { , , , }x x xp1 2  ,  stacked and compactly represented 
as X� �n p .  EDMs consist of the squared Euclidean distances between all points 
(i.e., d x xij i j� �|| ||2 ).  An EDM, D, is analytically constructed with the following 
formula (Dokmanic et al., 2015):

	 D 1 X X X X X X 1� � ��� ( ) ( )��diag diag    2 � (1)

where diag( )⋅  returns the diagonal of a matrix as a column vector and 1 is a col-
umn vector of ones. This formula is further simplified by the following rewritten 
EDM construction formula in terms of the Gram matrix, G X X=  :

	 D 1 G G G 1� � ��� ( ) ( )��diag diag 2 � (2)

Gram matrices are positive semidefinite by construction. Most importantly for 
this proposed work, the rank of a Gram matrix, G, equals the dimension of the 
space spanned by the vectors in X (i.e., rank n( ) ;G =  Horn & Johnson, 2013).

While Equation (1) and Equation (2) show how an EDM can be constructed 
with knowledge of known point positions, EDMs can also be constructed without 
any known point positions, but rather with the relative distances between pairs 
of points. Figure 1 provides an illustrative example of how EDMs are constructed 
with known relative distances between pairs of points. In Figure 1(a), we illustrate 
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a fully connected tetrahedron point configuration. Point x1 is at a distance three 
units away from all other points, and points x2, x3, and x4 have a distance of one unit 
between one another. Figure 1(b) shows the matrix, D,  is constructed by writing 
down the distances between all pairs of points in the system. There is a distance 
of zero between any point and itself. Figure 1(c) exhibits the construction of the 
Euclidean distance matrix, D, by squaring the distances between all pairs of points 
in the system.

If an EDM is constructed with the relative distances between measurements, then 
the corresponding Gram matrix is recovered through double centering the EDM as 
follows (see Section 5.4.2.2 in Dattorro [2015] for a more thorough explanation):

	 G JDJ J I 11� � � �
1
2

1����where
n

 � (3)

The matrix J is called the geometric centering matrix, I represents the identity 
matrix, and 1 is a column vector of ones.

In this section, we showed that an EDM could be constructed from either known 
point locations or the relative distances between pairs of points. In Section 3, we 
will use a combination of both of these methods to construct an EDM for a GNSS 
application. We additionally showed that it is possible to recover a Gram matrix, G, 
from an EDM and that, by construction, Gram matrices have a rank equal to the 
state space (i.e., rank n( )G = ).

3  GNSS EDM FORMULATION

In this section, we leverage the theory about EDMs from Section 2 to create an 
EDM directly from GNSS measurements. We present an example scenario with a 
single GNSS receiver, r1, that is receiving psuedorange measurements from m sat-
ellites (see Figure 2[a]). Figure 2(b) shows the sources from which we construct an 
EDM, Dc, using GNSS measurements. The top row and leftmost column are com-
prised of the squared measured pseudoranges. The remaining bottom-right square 
of the EDM is filled utilizing the known positions of the satellites in view that 
are obtained from the navigation ephemeris message or cellular networks. This 
part of the EDM is filled according to Equation (1), where X� �n m  is a matrix of 
the known satellite positions for each of the satellites from which the receiver has 

FIGURE 1 Visualization of how relative distances between points are used to construct a 
Euclidean distance matrix (EDM): subfigure (a) shows a fully connected point configuration, 
subfigure (b) is the matrix D,  and subfigure (c) is the Euclidean distance matrix, D.
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obtained measurements. For satellite positioning, n = 3,  representing the fact that 
satellite positions are provided in three-dimensional coordinates. Thus, the com-
bination of both measured pseudoranges and known satellite positions are used to 
construct the EDM, Dc

m m� � � �( ) ( )1 1 .  In this section, we define the EDM as Dc 
instead of D to represent the fact that the GNSS EDM is constructed not from truth 
values, but from measured pseudorange and satellite positions that may both con-
tain noise. Note that the construction of Dc does not require any knowledge about 
the absolute position of the receiver.

The construction of the EDM, Dc, may remind some readers of the dilution of 
precision (DOP) metric commonly used to describe the role of user-satellite geom-
etry on measurement error (Enge, 1994). However, while DOP is based on the rel-
ative direction to satellites in view, Dc is constructed using the distances to each 
satellite. The fault detection method illustrated in Section 4 is unaffected by the 
relative direction to satellites in view. Additionally, unlike DOP, our metric does 
not require an explicit estimate for the receiver’s position.

In this section, we demonstrated how to construct an EDM directly from mea-
sured pseudoranges and known satellite positions.

4  APPROACH

We now propose an algorithm that uses the constructed EDM, Dc, for rapid fault 
detection and exclusion of GNSS signals. First, we explain our proposed method 
for fault detection.

The key to EDM-based fault detection is the property of Gram matrices defined 
in Section 2 in which the Gram matrices have a rank equal to the state space (i.e., 
rank n( )G = ;  Horn & Johnson, 2013). If localizing in a three-dimensional state 
space (i.e., n = 3),  this means that when we recover a Gram matrix, Gc, from our 
observed GNSS EDM, Dc, the Gram matrix, Gc, would have a rank of three.

As a method to check the rank of the Gram matrix, Gc, we perform singular 
value decomposition and inspect the calculated singular values. The singular value 
decomposition of Gc is written as:

	 SVD( )G U Vc � ��  � (4)

FIGURE 2 A combination of squared pseudoranges and known satellite positions are used 
to construct the EDM shown in subfigure (b) for a single receiver and for multiple satellites in 
subfigure (a).
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where U are the left singular vectors, the diagonal of ΣΣ  contains the singular val-
ues of Gc m, , , ,� � �1 2 1 �  sorted by value, and the columns of V are the right sin-
gular vectors.

In the GNSS EDM formulation, we perform fault detection and exclusion (FDE) 
in a three-dimensional state space representing the three coordinate axes of our 
position solution. As will be discussed later in Equation (6) of Section 5, we assume 
that, prior to FDE, the receiver clock bias is solved independently (such as with an 
extended Kalman filter). In a three-dimensional state space without any faults pres-
ent, we find that the first three singular values of Gc are nonzero and all subsequent 
singular values (no matter how many there are) will be zero (Horn & Johnson, 
2013). Having three nonzero singular values means that the Gram matrix, Gc, is 
rank three, as expected, in the no-fault scenario. However, in a three-dimensional 
state space where faults are present, we find that there are more than three nonzero 
singular values of Gc. The larger number of nonzero singular values indicates that 
the Gram matrix, Gc, is higher than rank three.

Thus, our fault detection strategy is to inspect the singular values of the Gram 
matrix, Gc, that we reconstructed from the observed EDM, Dc, specifically looking 
at the singular values that would be zero if the EDM, Dc, had been constructed with 
perfect measurements. In reality, because of measurement noise and numerical 
precision, the singular values of Gc are likely small numbers, but not exactly zero. 
We use a thresholding technique to check how close the singular values are to zero. 
If the singular values of Gc are near zero, then we predict that no faults are present 
in the measurements; however, if those singular values are much larger than zero 
(and above the chosen thresholding parameter), then we would predict that faults 
do exist in the measurements. Concretely, a fault is detected in EDM-based FDE if 
the test statistic shown in Equation (5) holds true.

	
� �

�
n m n i n

m
i� � � �

�
�

�1
1

1

1
detection threshold � (5)

The first element, �n�1,  of the test statistic is the first singular value that we 
would expect to be zero if we had perfect measurements. In a three-dimensional 
state space (i.e., n = 3),  this would correspond to σ 4 .  The second element of the 
test statistic, 1

1m n ii n
m

� � �� � ,  is the average of all singular values that would be zero 
if we had perfect measurements. In a three-dimensional state space, this would 
be the average of � �4 1, , m� .  We normalize the test statistic by σ1.  Inherently, 
the magnitude of the singular values changes depending on the noise magnitude 
in the measurement data. Normalizing the test statistic means that the threshold 
of EDM-based fault detection is relatively agnostic to the noise magnitude of the 
measurements.

Modern computers perform the above fault detection steps rapidly so no itera-
tive computations or comparisons are necessary. The first-order approximation of 
EDM-based fault detection runs in ( )1  time since it is essentially independent of 
the number of measurements and completely independent of the number of faults 
hypothesized. There is a small increase in computation time with an increase in 
the number of measurements since the Euclidean distance matrix, Dc, would be 
larger with more measurements. Matrix multiplication and other similar opera-
tions take slightly more time with larger matrices. These computational time fac-
tors are minor when compared with iterative detection checks. As a first-order 
approximation shown in Table 1, the computation time of fault detection reduces 
to ( )1 .
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We now present our method for EDM-based fault exclusion. If we detect a 
fault, then we look at the left and right singular vectors associated with �n�1, 
the first singular value that would be zero if we had perfect measurements. In a 
three-dimensional state space, this would mean looking at the fourth columns of 
U and V, which we write as u4  and v4 .  Intuitively, these columns give us quan-
titative information on how much each measurement contributes to �n�1  being 
nonzero. We sort u4  and v4  by absolute value and predict that the largest absolute 
value in the columns correspond to a potential measurement fault. We remove the 
potentially faulty measurement from the EDM, Dc, and recheck whether a fault is 
still detected using the fault detection test statistic in Equation (5). This process can 
be repeated to detect multiple faults, meaning that EDM-based FDE scales linearly 
with respect to the number of faults hypothesized, ( )f .

Figure 3 illustrates an example of the left singular vectors, U, after a fault is 
detected. The largest absolute value in the un+1  column is highlighted in dashed 
yellow and represents the successful identification of a fault from the s1  satellite.

Algorithm 1 outlines the proposed EDM-based FDE algorithm. The algorithm 
needs at least one more satellite than the localization solution requires to be able 
to exclude a faulty satellite. Since GNSS localization requires a minimum of four 
satellites for a position solution, the receiver must receive signals from at least five 
satellites in order to be able to exclude a faulty satellite signal. If there is more than 
one faulty signal, EDM-based FDE will, first, detect the largest faulty signal and, 
then, EDM-based FDE can be run again to detect the next-largest faulty signal. 
While Algorithm 1 only removes a single faulty satellite in each iteration, the algo-
rithm can be repeated quickly to remove multiple faulty satellites until faults are 
no longer detected. For a detailed explanation of the theory behind multiple fault 
hypotheses, we direct the reader to Knight et al. (2010). An open-source implemen-
tation of EDM-based FDE is available in Knowles and Gao (2021a).

5  RESULTS

We now compare the proposed EDM-based fault detection and exclusion strategy 
from Algorithm 1 with both residual-based and solution separation FDE using two 
real-world data sets. The first data set was used to test detection sensitivity and the 
second data set was used to test detection robustness among noisy measurements.

In addition to the steps in Algorithm 1, for a real-world implementation, the 
measured pseudoranges should be conditioned to remove known biases. Since 
EDM-based FDE works by matching distances with pairs of points, it works best 
if those distances are as close to their truth value as possible. We calculate the 

FIGURE 3 The left singular vectors, U, of Gc with u4 is highlighted in red while U24 is 
highlighted in dashed yellow and is the maximum absolute value in the column indicating a fault 
from the s1 measurement.
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conditioned pseudorange, ρc ,  by removing known biases from the raw measured 
pseudorange, ρm ,  according to the model:

	 � �c m b br I T s� � � � � � (6)

where rb  is the receiver clock bias, I  is the ionosphere delay, T  is the troposphere 
delay, and sb  is the inter-signal range bias. In the results that follow, we estimated 
the receiver clock bias as a state in an extended Kalman filter (Kalman, 1960) 
and the atmospheric and inter-signal biases were either provided by the data set 
(Fu et al., 2020) or estimated from ground truth data (Reisdorf et al., 2016).

For each FDE method, we analyzed the corresponding average computation 
time and accuracy in excluding faults. To calculate the average computation time, 
we timed how long a Python implementation of each algorithm took to complete 
both fault detection and exclusion. We also calculated accuracy metrics derived 
from the confusion matrix shown in Figure 4.

We compare EDM-based FDE with residual-based and solution separation FDE 
using the quantitative accuracy rates in Equations (7)–(11). Emphasis is placed on 
the balanced accuracy metric (Equation [9]) over true positive rate (Equation [7]) 
or true negative rate (Equation [8]) since the real-world data sets we tested had 
an overall small percentage of ground truth faults in relation to all of the mea-
surements in the data set. Comparing balanced accuracy prevents an FDE method 
from seemingly performing well by simply predicting every measurement to be 
non-faulty. Now that we have outlined our quantitative performance measures, 
we present the two real-world data sets used to validate EDM-based FDE. In the 
results we show, the thresholding parameters have been optimized to increase 

ALGORITHM 1
EDM-Based FDE

 1: Inputs:
 2:   Dc: Euclidean distance matrix
 3:   n: dimensions of state space
 4: Initialize:
 5:   G JD Jc c�� 1

2
 6:   U, Σ, V ← SVD(Gc)
 7: while # satellites > 4 and detect_fault(Σ) do
 8:   index ← predict(un+1, vn+1)
 9:   exclude index from Dc

10:   G JD Jc c�� 1
2

11:   U, Σ, V ← SVD(Gc)
12: end while

FIGURE 4 This confusion matrix depicts the relationship between the ground truth fault 
status of measurements and the measurement fault status as predicted by each FDE method.
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the balanced accuracy metric in Equation (9) due to the reasons stated above. For 
other use cases, the thresholding parameters can be chosen to optimize the false 
alarm rate or missed detection rate in an approach similar to Yang et al. (2013). 
The open-source implementation of our EDM-based FDE is available online and 
includes all code needed to reproduce the result figures shown in this section 
(Knowles & Gao, 2021a). 

	 True Positive Rate True Positive
True Positive Missed Detecti

�
� oon

� (7)

	 True Negative Rate True Negative
True Negative False Alarm

�
�

� (8)

	 Balanced Accuracy True Positive Rate True Negative Rate� �� �1
2

� (9)

	 Missed Detection Rate Missed Detection
Missed Detection True 

�
� PPositive

� (10)

	 False Alarm Rate False Alarm
False Alarm True Negative

�
�

� (11)

5.1  Detection Sensitivity

The first real-world data set we used was a relatively clean data set of about a 
2,000-m trajectory with low average residuals (about 1.5 m) in an urban environ-
ment (Reisdorf et al., 2016). To test the detection sensitivity of each FDE method 
relative to the bias magnitude, we performed separate tests for fault magnitudes of 
10, 20, 50, 100, and 200 m. For each of the five bias magnitude tests, we added the 
tested bias magnitude to the conditioned pseudorange, ρc ,  with a probability of 
25% to a random satellite measurement (or set of satellite measurements depend-
ing on the test) at each timestep. Each FDE method used the same measurements 
at each timestep. 

We, first, use this data set to compare how the average computation time of 
each FDE method was affected by increasing the number of faults hypothesized. 
Figure 5 summarizes the experimental results. Not only does residual-based FDE 
run faster than solution separation on an absolute scale, but it also scales better 
computationally as the number of faults hypothesized increases. This is due to the 
fact that fault exclusion of EDM-based FDE runs in ( )f  time compared to solu-
tion separation fault exclusion that runs in  m

f
f

!� �  time, where f is the number of 
faults hypothesized and m is the number of measurements in the measurement 
epoch. As implemented in Parkinson and Axelrad (1988), residual-based FDE is 
only valid for a single fault hypothesis. 

While solution separation and EDM-based FDE are compared using strict fault 
hypotheses, an additional advantage of EDM-based FDE is that a fault hypothe-
sis is not strictly necessary. A fault hypothesis, in the case of EDM-based FDE, is 
only used to force termination of Algorithm 1 after the number of measurements 
excluded has reached the fault hypothesis. Without a fault hypothesis, EDM-based 
FDE would continue to remove measurements one after another until either a fault 
is no longer detected or only four satellite measurements are left. In practice, a 
maximum fault hypothesis can be used in EDM-based FDE to limit the maximum 
computation time allowed. 
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Figure 6 shows the results of how balanced accuracy for each FDE method 
changes with respect to the magnitude of added biases. Not only does EDM-based 
FDE rival residual-based and solution separation FDE when it encounters mea-
surements with large biases, but EDM-based FDE excels over the other two 
methods when measurements only have 10-m biases. EDM-based FDE excel-
ling at the 10-m bias threshold is due to the fact that our choice in threshold-
ing values was made with the intent of maximizing the balanced accuracy from 

FIGURE 6 Balanced accuracy (see Equation [9]) with respect to the magnitude of the faults 
added shows that EDM-based FDE rivals the balanced accuracy of the other two FDE methods 
with large magnitude biases excelling at low bias magnitudes.

FIGURE 5 Average computation time of each FDE method with an increasing number 
of faults hypothesized; the computation time of EDM-based FDE increases more slowly than 
solution separation as the number of faults hypothesized increases.
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Equation (9). As discussed below, EDM-based FDE is able to decrease the missed 
detection rate by ~15% over residual-based or solution separation FDE at the 
expense of a ~6% worse false alarm rate and, thus, achieves a better balanced 
accuracy metric overall. 

Figure 7 shows that EDM-based FDE is able to maintain a high balanced accu-
racy across a wide range of thresholding parameters. Figure 7 was created by 
sweeping over a large range of thresholding parameters from 10 2−  to 102  for each 
FDE method. The plot shows that, while residual-based and solution separation 
FDE have high balanced accuracy for only a narrow range of thresholding param-
eters, EDM-based FDE maintains a reasonable balanced accuracy across a wide 
range of thresholding parameters. This means that EDM-based FDE is much less 
sensitive to small changes in its thresholding parameter and the user would not 
need to spend as much time parameter tuning to achieve reasonable results. 

In Figure 8, we plot the missed detection rate with respect to the magnitude of 
added biases. EDM-based FDE is able to detect many more of the low-bias faults 
than residual-based or solution separation FDE and, thus, has a lower missed 
detection rate at low fault biases. However, from Figure 9, we see that EDM-based 
FDE has a much higher rate of false alarm than either of the other two FDE meth-
ods. This means that EDM-based FDE is more likely to predict a fault when no 
faults are present. This trade-off between missed detection rate and false alarm rate 
is due to our engineering decision to optimize the thresholding parameters based 
on the balanced accuracy but, depending on the use case, could be chosen to opti-
mize either the missed detection rate or false alarm rate instead. 

5.2  Detection Robustness Among Noisy Measurements 

The second real-world data set that we used contained many more measure-
ments (about 3.3 million measurements) representing roughly 36 hr of driving 
throughout the San Francisco Bay area and larger average residuals of about 

FIGURE 7 The balanced accuracy (see Equation [9]) of each FDE method swept across a 
wide range of FDE thresholding parameters shows that EDM-based FDE is much more robust to 
changes in its thresholding parameter than the other two FDE methods.
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20 m (Fu et al., 2020). We used this data set to test the robustness to noisier data 
across a wide range of open sky to urban conditions for each FDE method. 

Using this data set, we plotted in Figure 10 the average computation time of 
each FDE method as a factor of the number of measurements received in the mea-
surement epoch. Computation time was computed as the length of time it took 
a Python implementation of each algorithm to complete the fault detection and 
exclusion steps. Since this second real-world data set includes few faults relative 
to the total size of the data set, the computation time shown in Figure 10 is mostly 
representative of the computation time of the fault detection step of each FDE 

FIGURE 8 Missed detection rate (see Equation [10]) with respect to the magnitude of the 
faults added

FIGURE 9 False alarm rate (see Equation [11]) with respect to the magnitude of the faults added
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algorithm with a fewer number of fault exclusion steps. We see that EDM-based 
FDE, on average, is 1.4-times faster than residual-based FDE and nearly 70-times 
faster than solution separation due to its lower computational complexity. 

In Table 2, we present the accuracy results for each FDE method on this larger, 
noisier data set. For each FDE method, we used the FDE thresholding parame-
ter that achieved the highest balanced accuracy rate across the entire data set. 
EDM-based FDE had a superior balanced accuracy and missed detection rate 
across the data set, but solution separation FDE had the lowest false alarm rate.

6  CONCLUSION

This paper introduced the theory behind Euclidean distance matrices (EDMs) 
and then used that theory to propose a novel EDM-based method for GNSS signal 
fault detection and exclusion. Using two real-world data sets, we validated the the-
ory that EDM-based FDE has superior computational complexity when increas-
ing the number of faults hypothesized and measurements received compared with 
solution separation and residual-based FDE (see Table 1). We also showed that 
EDM-based FDE rivals solution separation and residual-based FDE in terms of 
exclusion accuracy. EDM-based FDE was shown to detect and exclude measure-
ment faults while using a broader range of thresholding parameters than either 
solution separation or residual-based FDE. 

TABLE 2
Average Accuracy Metrics for the Larger, Noisier Android Data Set

Solution Separation Residual-Based EDM-Based 

Balanced Accuracy % 84.9 88.7 91.6 

Missed Detection Rate % 29.9 18.4 11.7 

False Alarm Rate % 0.2 4.2 5.1 

FIGURE 10 Average computation time of each FDE method with increasing measurements 
in each measurement epoch; also shown is the best line fit for each FDE method.
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APPENDIX A  TIME COMPLEXITY DERIVATIONS

In this section, we outline the derivations of the first-order time complexities 
for each algorithm shown in Table 1. Exact computation time is dependent on 
numerous parameters such as programming language, specific function imple-
mentations, programming libraries used, CPU and GPU quality, etc. A detailed 
computation time estimate based on all of these parameters is beyond the scope of 
this work, so instead we provide a first-order approximation of the computational 
complexity based on the number of times the most time-consuming part of the 
algorithm needs to run. 

For solution separation, the most time-consuming part of the algorithm is the 
least-squares position estimate (Blanch et al., 2012; Joerger et al., 2014; Ma et al., 
2019; Pullen & Joerger, 2021; Zhu et al., 2018). For the fault detection step of solu-
tion separation, the least-squares position estimate is calculated using all measure-
ment subset combinations with a single measurement removed. The number of 
combinations needed can be calculated using the standard combination formula: 
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where m is the number of measurements in the measurement epoch and f is the 
number of faults hypothesized. The fault exclusion step of solution separation 

https://www.wiley.com/en-us/Position,+Navigation,+and+Timing+Technologies+in+the+21st+Century:+Integrated+Satellite+Navigation,+Sensor+Systems,+and+Civil+Applications,+Volume+2-p-9781119458494
https://www.wiley.com/en-us/Position,+Navigation,+and+Timing+Technologies+in+the+21st+Century:+Integrated+Satellite+Navigation,+Sensor+Systems,+and+Civil+Applications,+Volume+2-p-9781119458494
https://www.wiley.com/en-us/Position,+Navigation,+and+Timing+Technologies+in+the+21st+Century:+Integrated+Satellite+Navigation,+Sensor+Systems,+and+Civil+Applications,+Volume+2-p-9781119458494
https://www.wiley.com/en-us/Position,+Navigation,+and+Timing+Technologies+in+the+21st+Century:+Integrated+Satellite+Navigation,+Sensor+Systems,+and+Civil+Applications,+Volume+2-p-9781119458494
https://www.tu-chemnitz.de/projekt/smartLoc/paper/reisdorf2016.pdf
https://www.tu-chemnitz.de/projekt/smartLoc/paper/reisdorf2016.pdf
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1017/S0373463314000836
https://doi.org/10.1017/S0373463314000836
https://doi.org/10.1109/TVT.2019.2893456
https://doi.org/10.1109/TVT.2019.2893456
https://doi.org/10.1007/s00190-013-0629-0
https://doi.org/10.1007/s00190-013-0629-0
https://doi.org/10.1109/TITS.2017.2766768
https://doi.org/10.33012/navi.555


KNOWLES and GAO

removes the worst satellites depending on the number of faults hypothesized 
and does another solution-separation check to verify that no additional faults are 
detected. Hence, the solution separation exclusion step also has a time complexity 
according to the combination equation shown in Equation (A1). For the sake of a 
more intuitive and simple understanding, instead of using the combination for-
mula from Equation (A1) directly, we use an upper bound for Equation (A1) that 
is derived below. 
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Using the upper bound approximation in Equation (A2) results in a first-order 
time complexity approximation of  m

f
f

!� �  for both the fault detection and fault 
exclusion steps of solution separation. 

The most time-consuming part of residual-based FDE is calculating the differce 
between the measured and expected pseudoranges (Ma et al., 2019; Parkinson & 
Axelrad, 1988; Pullen & Joerger, 2021). This step runs only once for residual-based 
fault detection, resulting in a time complexity approximation of ( )1 .  For fault 
exclusion, residual-based FDE creates all measurement subset combinations with 
a single measurement removed and then computes the test statistic again based 
on the difference between the expected and measured pseudoranges (Parkinson & 
Axelrad, 1988). Since the test statistic calculation is performed for each subset, the 
first-order approximation for residual-based fault exclusion is ( )m .  

The most time-consuming part of EDM-based FDE shown in Algorithm 1 is 
the singular value decomposition (SVD) step. SVD is performed only once for 
fault detection resulting in a first-order time complexity approximation of ( )1  
for EDM-based fault detection. For EDM-based fault exclusion, the SVD step is 
repeated at most one time for each fault hypothesized resulting in a time complex-
ity approximation of ( )f .

To conclusively demonstrate the lower time complexity of EDM-based FDE, we 
present computation time comparisons between all three methods when tested on 
real-world data in Figures 5 and 10 of the main text. 


	Euclidean Distance Matrix-Based Rapid Fault Detection and Exclusion
	Abstract
	Keywords
	1  Introduction
	2  Euclidean Distance Matrix Preliminaries
	3  GNSS EDM Formulation
	4  Approach
	5  Results
	5.1  Detection Sensitivity
	5.2  Detection Robustness Among Noisy Measurements 

	6  Conclusion
	Acknowledgements
	References
	Appendix A  Time Complexity Derivations




