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O R I G I N A L  A R T I C L E

Low-Cost Inertial Aiding for Deep-Urban Tightly Coupled 
Multi-Antenna Precise GNSS

James E. Yoder  Todd E. Humphreys

1  INTRODUCTION

The rise of connected and automated vehicles has created a need for robust 
globally referenced positioning with lane-level (e.g., sub-30-cm) accuracy (Reid 
et al., 2019). Much automated ground vehicle (AGV) research focuses on the use 
of lidar and cameras for navigation, but these sensing modalities often perform 
poorly in low-illumination conditions or during adverse weather such as heavy fog 
or snowy white-outs. By contrast, positioning techniques based on radio waves, 
such as automotive radar or GNSS, are robust to poor weather and lighting condi-
tions (Narula et al., 2022). Recent work has found that fusing measurements from 
low-cost automotive radars with inertial sensing can provide lane-level accuracy in 
urban environments (Narula et al., 2022). But radar-based positioning in a global 
coordinate frame requires the production and maintenance of radar maps, which 
is a time-consuming and costly endeavor.
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Summary
A vehicular pose estimation technique is presented that tightly couples 
multi-antenna carrier-phase differential GNSS (CDGNSS) with a low-cost 
MEMS inertial sensor and vehicle dynamic constraints. This work is the first 
to explore the use of consumer-grade inertial sensors for tightly coupled urban 
CDGNSS, and first to explore the tightly coupled combination of multi-antenna 
CDGNSS and inertial sensing (of any quality) for urban navigation. An 
unscented linearization permits ambiguity resolution using traditional integer 
least-squares while both implicitly enforcing known-baseline-length constraints 
and exploiting the multi-baseline problem’s inter-baseline correlations. A novel 
false fix detection and recovery technique is developed to mitigate the effect of 
conditioning the filter state on incorrect integers. When evaluated on the pub-
licly available TEX-CUP urban positioning data set, the proposed technique 
achieves, with consumer- and industrial-grade inertial sensors, respectively, a 
96.6% and 97.5% integer fix availability, and a 12.0-cm and 10.1-cm overall (fix 
and float) 95th percentile horizontal positioning error.
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GNSS signals provide a source of high-accuracy all-weather absolute positioning 
that does not require expensive investments in systems for map production, storage, 
maintenance, and dissemination. If the so-called integer ambiguities associated 
with the carrier-phase measurements can be correctly resolved, carrier-phase-based 
GNSS positioning offers exquisite accuracy. However, GNSS signal blockage, dif-
fraction, and multipath effects make this family of techniques extremely chal-
lenging to use in urban areas. Carrier-phase differential GNSS (CDGNSS), whose 
real-time variant for mobile platforms is commonly known as real-time kinematic 
(RTK) GNSS, is a centimeter-accurate positioning technique that differences a 
receiver’s GNSS observables with those from a nearby fixed reference station to 
eliminate most sources of measurement error (Teunissen & Montenbruck, 2017). 
Previous work by this paper’s authors probed the limits of unaided CDGNSS in the 
deep urban environment and found that the combination of a GNSS measurement 
engine optimized for urban positioning and robust estimation techniques for out-
lier exclusion make CDGNSS feasible in deep urban environments (Humphreys 
et al., 2020b). But the the unaided CDGNSS system described in Humphreys et al. 
(2020b) suffers from availability gaps of up to 90 seconds in duration, making it 
insufficient to serve as the sole navigation sensor for an AGV.

A natural method to bridge such availability gaps is to incorporate measurements 
from an inertial measurement unit (IMU). These measurements are uniquely valu-
able due to their invulnerability to environmental effects such as radio interference 
and weather. Combined GNSS and inertial navigation systems that incorporate 
only GNSS position solutions as measurements for a downstream navigation fil-
ter are termed loosely coupled, whereas tightly coupled systems directly incorpo-
rate raw GNSS observables (pseudorange, Doppler, or carrier-phase; Teunissen & 
Montenbruck, 2017). While both loosely and tightly coupled aiding can bridge 
availability gaps, tightly coupled aiding additionally reduces these gaps’ frequency 
and duration; the inertial sensor provides probabilistic constraints between GNSS 
measurement epochs that increase the success rate of carrier-phase integer ambi-
guity resolution. These constraints additionally make the navigation solution 
observable with fewer GNSS measurements.

AGV navigation filter performance can be further improved by tightly coupling 
with so-called vehicle dynamics constraints (VDCs). One such technique exploits 
the natural motion constraints of four-wheeled ground vehicles, commonly 
referred to as non-holonomic constraints (NHCs). A second VDC technique 
infers a lack of vehicle motion by monitoring, for example, wheel odometry ticks, 
or by detecting a lack of road vibration. This constraint is then enforced as a 
strong zero-velocity pseudo-measurement called a zero velocity update (ZUPT) 
in the literature.

This paper extends the navigation filter component of the CDGNSS system 
described in Humphreys et al. (2020b) by tightly coupling with an inertial sensor 
and with vehicle dynamics constraints, and by incorporating measurements from 
multiple vehicle-mounted GNSS antennas. It also develops a novel robust estima-
tion technique to mitigate the effects of multipath and allow for graceful recovery 
from incorrect integer fixes.

1.1  Related Work

This subsection reviews relevant existing literature on urban GNSS positioning, 
inertial aiding, vehicle motion constraints, and multi-antenna CDGNSS.



    YODER and HUMPHREYS

1.1.1  Unaided Urban CDGNSS

Performance of CDGNSS unaided by inertial sensing in urban environments 
has historically been poor. Experiments in Ong et al. (2009) suffered from poor 
availability (<60%) and large positioning errors (>9 m root-mean-square [RMS]) 
in suburban and urban environments. A 2018 assessment of commercial CDGNSS 
receivers found that no low-cost solution offered greater than a 35% fixed-integer 
solution availability in urban environments (Jackson et al., 2018). Li et al. (2018) 
achieved a 76.7% unaided correct integer fixing rate in urban Wuhan, China, using 
dual-frequency CDGNSS with a professional-grade receiver. In 2019, Humphreys 
et al. (2020b) achieved an unaided correct integer fix rate of 84.8% in the urban core 
of Austin, Texas.

1.1.2  Inertial Aiding

Tightly coupled inertial aiding has long been employed as a method to increase 
CDGNSS solution availability and robustness. Early systems built around highly 
accurate but expensive tactical-grade IMUs were capable of providing robust 
positioning in dense urban areas (Kennedy et al., 2006; Petovello et al., 2004; 
Scherzinger, 2006; Zhang, 2006). The recent emergence of inexpensive consumer- 
and industrial-grade micro-electromechanical system (MEMS) inertial sensors has 
led to a new chapter of research in low-cost inertial aiding for urban CDGNSS.

Li et al. (2018) demonstrated that tight coupling of single-antenna professional-grade 
GNSS measurements with an industrial-grade MEMS IMU increased the integer fix 
availability of single-frequency CDGNSS from 44.7% to 86.1% on a test route in urban 
Wuhan, China. However, the authors did not provide the GNSS data set, information 
on the incorrect integer fix rate, or a full error distribution, making these results diffi-
cult to assess.

This paper, in contrast, is the first to demonstrate an increased CDGNSS integer 
fix rate in an urban environment via tightly coupling with a consumer-grade iner-
tial sensor. Furthermore, it incorporates vehicle dynamics constraints and multi-
ple vehicular GNSS baselines. The system’s performance is evaluated on a publicly 
available urban positioning data set, allowing for a head-to-head comparison of 
techniques by the urban positioning research community.

1.1.3  Tightly Coupled Urban PPP

One disadvantage of CDGNSS is that it requires observations from a nearby base 
station to eliminate modeling errors (e.g., for atmospheric delays or satellite clocks 
and orbits) common to both the base station (the reference) and the vehicle (the 
rover). Short-baseline CDGNSS, which offers the greatest robustness against urban 
multipath (Murrian et al., 2016), is limited to reference-rover baseline lengths 
below approximately 10 km (Odijk, 2002). To avoid the requirement for a nearby 
base station, attention has recently focused on extending precise point positioning 
(PPP), which is based on precise orbit, clock, and atmospheric corrections, to urban 
areas by tightly coupling with inertial sensors.

Rabbou et al. in 2015 explored tight coupling of PPP with a tactical-grade iner-
tial sensor in mostly open-sky conditions with simulated GNSS outages, achiev-
ing centimeter-level accuracy (Abd Rabbou & El-Rabbany, 2015). Gao et al. (2017) 
and Vana (2021) extended tightly coupled PPP to industrial-grade MEMS inertial 
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sensors in highway and suburban environments. More recently, Elmezayen and 
El-Rabbany (2021) demonstrated tightly coupled PPP using both a geodetic-grade 
and a low-cost GNSS receiver and an industrial-grade MEMS sensor along an urban 
route in downtown Toronto, Canada, but only achieved meter-level accuracy when 
using the low-cost GNSS receiver. A drawback of PPP-based positioning is that 
the aforementioned results all required a roughly 10-minute convergence period 
before producing an accurate navigation solution. Short-baseline CDGNSS posi-
tioning with a modern multi-frequency, multi-constellation receiver, by contrast, 
typically yields instantaneous initialization.

1.1.4  Vehicle Dynamics Constraints

Recent research has also explored the tight coupling of CDGNSS measurements 
with vehicle dynamics constraints. Nagai et al. (2021) found, in a simulation study 
using a realistic 3D map of an urban environment, that a tightly coupled CDGNSS 
system using GPS only could feasibly provide high-integrity decimeter-level posi-
tioning when aided with vehicle-dynamics constraints, a tactical-grade IMU, and 
odometry based on wheel-speed sensors. Yang et al. (2021) explored tightly cou-
pled single-antenna CDGNSS with non-holonomic constraints and a tactical-grade 
fiber-optic IMU, but only evaluated their system under open-sky GNSS conditions 
with simulated GNSS degradations.

1.1.5  Multi-Antenna CDGNSS

The use of multiple GNSS antennas on the vehicle for CDGNSS offers four advan-
tages. First, the full six-degrees-of-freedom vehicle pose (position and orientation) 
becomes instantaneously observable when CDGNSS measurements are combined 
with the gravity vector as measured by an inertial sensor. With a single GNSS 
antenna, the vehicle yaw is observable only over multiple epochs, and only if the 
vehicle accelerates during the observations (Hong et al., 2005). Second, the shared 
reference antenna creates redundancy in the measurement model that allows for 
better ambiguity resolution performance than any CDGNSS baseline taken indi-
vidually (Medina et al., 2020). Third, the additional set of GNSS measurements at 
the second antenna provides reduced position estimation error. Fourth, a highly 
effective method for GNSS spoofing detection, the multi-antenna defense (Psiaki 
et al., 2014), can readily be implemented.

Multi-antenna GNSS has long been used for attitude-determination applica-
tions with snapshot estimation methods such as C-LAMBDA (Teunissen, 2006) 
and MC-LAMBDA (Giorgi & Teunissen, 2010), which provide globally optimal 
single-epoch maximum-likelihood solutions to the full nonlinear GNSS attitude 
determination problem, and have been successfully extended to the pose estima-
tion case (Wu et al., 2020). Other work has incorporated special cases of a priori 
attitude  information into the nonlinear solution process (Henkel & Günther, 
2012). These snapshot methods, however, are computationally demanding, and 
their extension to recursive estimation for tight coupling with other sensors is not 
straightforward and remains unexplored.

Fan et al. (2019) found that a hard constraint using an a priori known vehicle 
attitude to combine CDGNSS observations from multiple vehicle antennas can 
increase ambiguity resolution and urban CDGNSS performance. However, this 
method requires a highly accurate independent source of attitude information, 
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such as from an expensive gyrocompass-capable tactical-grade IMU following an 
initial static alignment period.

Medina et al. (2020) proposed pose estimation based on multiple vehicle anten-
nas for inland waterway navigation. This work sidestepped the complexity of 
C-LAMBDA or MC-LAMBDA by linearizing the attitude model in an extended 
Kalman filter (EKF) update and propagating the state with a simple motion model. 
This formulation was found to increase ambiguity resolution performance over 
either the positioning or attitude determination problems taken independently. 
However, the authors made no attempt to incorporate an inertial sensor or addi-
tional motion constraints.

Hirokawa and Ebinuma (2009) developed a multi-antenna GNSS system for air-
craft pose estimation that tightly coupled with a MEMS inertial sensor, but only 
used CDGNSS for attitude measurements, relying on standard pseudorange mea-
surements for the estimator’s position component.

Henkel et al. (2020) tightly coupled triple-antenna CDGNSS with an 
industrial-grade inertial sensor for a micro air vehicle navigation application, but 
only evaluated the system’s performance over a single, short test flight in open-sky 
conditions, and did not compare against a ground truth reference.

Previous work (Humphreys et al., 2020a; Yoder et al., 2020) by this paper’s 
authors explored a suboptimal federated filtering approach to the tightly coupled 
multi-antenna CDGNSS + inertial problem, additionally incorporating monocular 
vision measurements from Yoder et al. (2020). But the approach did not properly 
model the multi-antenna CDGNSS measurement update, instead resolving the 
position and attitude baselines separately.

1.2  Contributions

This paper makes five contributions:

1.	 An estimation technique that tightly couples multi-antenna CDGNSS with 
vehicle dynamics constraints and inertial measurements; to the best of the 
authors’ knowledge, this paper is the first in the open literature to explore the 
tightly coupled combination of multi-antenna CDGNSS and inertial sensing 
for navigation in urban environments. Furthermore, it is the first to explore 
the use of consumer-grade inertial sensors for tightly coupled deep urban 
CDGNSS (Sections 3 and 4).

2.	 A novel application of the unscented transform for the multi-baseline 
CDGNSS integer ambiguity resolution and measurement update step, which 
widens the operating regime of the filter to allow for significantly greater 
attitude uncertainty without suffering from excessive integer least-squares 
(ILS) failures seen by existing EKF approaches (Section 3)

3.	 A novel false fix detection and recovery technique that limits the degree to 
which an incorrectly resolved integer ambiguity can corrupt the tightly 
coupled CDGNSS estimator’s state (Section 4.4)

4.	 Demonstration of state-of-the-art deep urban CDGNSS performance, 
achieving, by tightly coupling with consumer-grade and industrial-grade 
inertial sensors, respectively, a 96.6% and 97.5% integer fix availability, 
and 12.0-cm and 10.1-cm overall (fix and float) 95th percentile horizontal 
positioning error on the publicly available TEX-CUP urban positioning data 
set (Narula et al., 2020; Sections 5.1 to 5.3).
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5.	 A detailed evaluation and breakdown of the positioning and ambiguity 
resolution performance contribution of various sensors and algorithmic 
components (Section 5.5)

2  COORDINATE AND NOTATION CONVENTIONS

2.1  Vector Notation, Sensor Platform, and Coordinate 
Frames

Superscripts indicate the coordinate frames associated with vectors and rotation 
matrices. For example, rw denotes a vector r expressed in the w frame, and Rwb 
denotes a rotation matrix that converts vectors from their representation in the b 
frame to their representation in the w frame (i.e., rw = Rwb rb).

The sensor platform described in this paper and used in the evaluation in Section 5 
is the University of Texas Sensorium (Narula et al., 2020), a roof-mounted vehicu-
lar perception platform incorporating multiple grades of inertial sensors, two GNSS 
antennas (denoted primary and secondary), stereo cameras, and three automotive 
radars. Only the inertial sensors and GNSS antennas are used in this work.

Several coordinate frames are referenced in this paper:

u:	 The IMU frame is centered at and aligned with the IMU accelerometer triad.
b:	 The body frame has its origin at the phase center of the Sensorium’s primary 

GNSS antenna. Its x-axis points towards the phase center of the secondary 
antenna, its y-axis is aligned with the boresight vector of the primary antenna, 
and its z-axis completes the right-handed triad.

v:	 The vehicle frame is a body-fixed frame, centered at the vehicle’s center of 
rotation as determined by an offline calibration using GNSS and IMU data. 
Its x-axis points in the direction of vehicle travel with no steering angle 
deflection, its z-axis points upwards, and its y-axis completes the right-handed 
triad.

w:	 The world frame is a fixed geographic east-north-up (ENU) frame with its 
origin at the phase center of the reference GNSS antenna, which is located at 
a fixed base station with known coordinates.

Figure 1 shows the relationships between these frames.

FIGURE 1 Diagram of relevant University of Texas Sensorium coordinate frames
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2.2  State Representation and Error-State Filtering

The tightly coupled navigation estimator described in this work is an 
unscented Kalman filter (UKF) that recursively fuses inertial measurements, 
double-difference (DD) GNSS pseudorange and carrier-phase measurements, and 
vehicle dynamics pseudomeasurements. The estimator’s state at epoch k is given 
by the ordered set

x r v R b bk k k k k k� � �w wb u u, , , ,w
a g

where rw ∈ R3 is the position of the u frame origin in the w frame; vw ∈ R3 is the 
velocity of the u frame origin relative to the w frame, expressed in the w frame; 
Rwb ∈ SO(3) is the attitude of the b frame relative to the w frame; and b ba g

u u, ∈R3  
are the IMU’s accelerometer and gyro biases, respectively.

This paper adopts the conventions and notation of Solà et al. (2018), which 
appeals to Lie theory to unify and generalize various error-state filtering meth-
ods so that the filtering equations are agnostic to the specific choice of atti-
tude parameterization. The filter state, xk, is a point on the composite manifold 
X  R R R R3 3 3 33× × × ×SO( ) , which has Nx = 15 independent degrees of freedom. 
A state increment, d xk ,  is defined on the tangent space of X  at xk, which can 
be parameterized with the vector space RNx .  These spaces are related using the 
operators � � �:X XRNx  and � X X: ,� �RNx  which correspond to standard 
addition and subtraction for vector-valued components of xk and to more complex 
operations for the attitude component:
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where   denotes rotation composition, Exp SO(3),:R3 →  and Log SO: ( ) .3 3→R  
With xk denoting the true system state at k, the filter’s a priori estimate is denoted 
xk  with error covariance, Pk .  The a posteriori state is ˆkx  with error covariance, ˆ .kP

3  AN UNSCENTED MULTI-BASELINE CDGNSS 
MEASUREMENT UPDATE

3.1  CDGNSS Measurement Model

At each GNSS measurement epoch, the estimator ingests Nk pairs of 
double-difference (DD) GNSS observables, each pair composed of a pseudo-
range and a carrier-phase measurement, across all baselines. The baselines and 
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relevant relative position vectors are shown in Figure 2. The measurement vector 
at epoch k is

zg T T T T T
k k k k k

Nk
 �� �� �� ��1 1 2 2

2, , ,�� �� �R

where � �mk mkand  are vectors of double-difference pseudorange and carrier-phase 
measurements, both in meters, for baseline m∈ { , }1 2  at epoch k. The measure-
ment zgk is a function of the state, xk, the integer ambiguity vector, nk

Nk∈ ,  and 
zero-mean white Gaussian measurement noise, gk  (Psiaki & Mohiuddin, 2007):

	 z h b x ng g g g gk k k k k k k� � � � � � �� �, , ,ε ε N 0 �� � (1)

ΣΣgk  contains off-diagonal elements due to the effect of the shared pivot satellite. 
The function b(xk) relates the baseline vectors, b1k

w  and b2k
w ,  shown in Figure 2 to 

the position and attitude components of the state:
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Here, r ru
b b, ,p  and rs

b  are the body-frame positions of the IMU, primary GNSS 
antenna, and secondary GNSS antenna, respectively. Under this formulation, the 
known length of b2k

w  serves as an implicit constraint on integer ambiguity resolu-
tion due to the parameterization of b2k

w  as a function solely of attitude.
Importantly, the off-diagonal blocks of the measurement noise covariance 

matrix, ΣΣgk, are nonzero because baselines one and two share a GNSS antenna. 
By consuming the GNSS measurements for all baselines in a single update, this 
correlation is exploited and typically yields a higher integer fix success rate than 

FIGURE 2 Baseline and antenna-to-satellite vectors of the multi-antenna CDGNSS 
measurement model for pivot satellite i and non-pivot satellite j; rrnkw ,  rpnkw ,  and rsnk

w  refer to 
vectors pointing from the reference, primary, and secondary GNSS antennas, respectively, to the 
antenna phase center of GNSS satellite n at epoch k.
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either baseline taken individually (Medina et al., 2020). Additionally, the vehicle 
attitude Rk

wb  is often known a priori to sub-degree precision, providing a tight 
constraint on all three degrees of freedom of b2k

w .  This constraint both strengthens 
the combined integer model (Fan et al., 2019) and increases positioning accuracy, 
since the off-diagonal blocks of ΣΣgk  encode the sensitivity of GNSS measurements 
on the secondary vehicle antenna to rk

w .

3.2  Linearization

The function hgk(b, nk) is accurately modeled as linear due to the extreme dis-
tance to GNSS satellites relative to the CDGNSS baseline lengths:
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Here, nmk
Nmk∈  is the vector of carrier-phase integer ambiguities for baseline 

m, n n nk k k� �� ��1 2
T T T
, ,  and Λm is a diagonal matrix composed of the wavelengths 

in meters of each DD carrier-phase measurement. The geometry matrix, Gmk, is 
defined as
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for pivot satellite i and non-pivot satellites one to Nmk, where ˆjk
wr  denotes a unit 

vector in the w frame directed from a GNSS antenna to GNSS satellite j of baseline 
m at epoch k. Under the small-angle approximation, these unit vectors are assumed 
to be approximately equal for all receiver antennas involved:
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The nonlinearity of Equation (2) due to the manifold structure of vehicle atti-
tude Rk

wb  is nontrivial. Optimal snapshot estimators for the nonlinear GNSS 
attitude problem, such as C-LAMBDA (Teunissen, 2006) and MC-LAMBDA 
(Giorgi & Teunissen, 2010), have been studied, but these estimators are computa-
tionally expensive and their extension to recursive filtering does not seem straight-
forward. Instead, extant Kalman-filtering-based multi-baseline CDGNSS estimators 
(Henkel et al., 2020; Medina et al., 2020) typically linearize the baseline measure-
ment model about the current state estimate with a simple first-order Taylor expan-
sion in order to perform integer ambiguity resolution with a standard ILS solver 
such as the well-known LAMBDA method (Teunissen, 1995). This is essentially an 
extension of the LC-LAMBDA method described by Teunissen and Giorgi (2009) 
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to the multi-baseline recursive estimation case. As demonstrated in Teunissen & 
Giorgi (2009), this method performs poorly for ultra-short (length   1m) baselines, 
for which the a priori attitude estimate and the pseudorange measurements cannot, 
together, offer a sufficiently accurate estimate about which to linearize.

3.2.1  Alternatives

Recursive Bayesian estimation of xk requires finding the distribution of b(xk) 
given a Gaussian prior for xk with mean xk and covariance Pk. While the true distri-
bution of b(xk) is nontrivial, it is desirable to approximate it as Gaussian to enable 
ambiguity resolution with standard ILS techniques, which are computationally 
efficient and well understood. Dropping the k subscripts for notational clarity, such 
an approximation produces a joint Gaussian distribution over x and b(x):

x
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This can be parameterized in terms of mean, b, Jacobian, Hb, and additional 
baseline uncertainty, ΣΣb* ,  that accounts for errors due to linearization:

	
P H PH
P PH
bb

xb





b b
T

b
*

b
T

� ��
� (3)

Extant multi-baseline CDGNSS Kalman filters obtain these parameters with a 
first-order Taylor expansion scheme, which is shown in Algorithm 1.

An alternative approach is to approximate the distribution of b(x) using a deter-
ministic sampling technique such as the unscented transform (UT), which is used 
in the UKF (Julier & Uhlmann, 2004). The UT infers the probability distribution 
of a transformed Gaussian by transforming a set of weighted sigma points through 
the nonlinearity and evaluating the statistics of the transformed points. The UT 
implementation used by this paper’s CDGNSS measurement update is shown in 
Algorithm 2.

A simplified two-dimensional example of the two linearization schemes for a 
single constrained baseline is shown in Figure 3. The EKF distribution is infinitely 
thin, as EKF linearizations only consider baseline vectors on a plane tangent to 
the true spherical distribution at the a priori estimate, causing ILS failures when 
the a priori uncertainty is large enough that the sphere significantly diverges from 
the tangent plane. The UT, by contrast, yields an approximate Gaussian distribu-
tion over the baseline vector that more closely matches the true mean and covari-
ance of b(x). For this reason, ILS-based ambiguity resolution has a higher success 
rate when linearization is based on linearizeUkf rather than linearizeEkf 
under large a priori attitude uncertainty, as will be demonstrated in Section 3.4.

3.2.2  UKF Measurement Update

A vector zgk of DD GNSS observables is ingested by the estimator at epoch k. 
Linearizing about the a priori state estimate, xk:

b H x Pk k k k k, , ,b b
*���� �� � � �linearizeUkf



    YODER and HUMPHREYS

ALGORITHM 1
linearizeEkf

 Input: x, P
 Output: b, Hb, ΣΣb*

1  b
b x
b x

�
�

�
�
�

�

�
�
�

1

2

w

w

( )
( )

2  H

b x
x

b x
x x

b �

�
�

�
�

�

�

�
�
�
�

�

�

�
�
�
�

1

2

w

w

( )

( )

3  ��b* � 0

ALGORITHM 2
linearizeUkf

  Input: x, P
  Output: b, Hb, ΣΣb*

 1 � �� �0 001 0. ,��

 2  � � �� �� � �2 N Nx x  

 3  S s s s P� ��� �� �
� �1 2, , , Nx

chol T
 

 4  x x( )0 =  

 5  b
b x
b x

( )
( )

( )
0 1

0

2
0

�
� �
� �

�

�
�
�

�

�
�
�

w

w
 

 6  w
Nm
x

( )0 �
�
�
�

 

 7  w
Nc
x

( )0 21�
�

� � �
�
�

� �  

 8 for i Nx��� ��1 2,  do

 9  x
x s

x s
( )

( )

( )

� ,

� ,
i x i x

x i x x

N i N

N i N N
�

� � ��� ��
�� � � ��� ��

�
�
�

�

0

0

1

1 2

�

���

�
� �
� �

�

�
�
�

�

�
�
�

� �
�� �

b
b x
b x

( )
( )

( )

( ) ( )

i
i

i

m
i

c
i

x
w w

N

1

2

1
2

w

w

�

 10 

11 

12 end

13  b b�
�
�
i

N

m
i i

x

w
0

2
( ) ( )  

14 
P P
P P

x x
b b

xxx xb

xb bb i

N

c
i

i

i

x

wT

�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
���

�
0

2 0
( )

( ) ( )

( )

( ii

i

) ( )

( )

 x
b b

0

�

�

�
�
�

�

�
�
�

�

�

�
�

�

�

�
�

T

 

15  H P Pb
T

� � ��
xx xb
1  

16  ��b* b b
T� � � �P H P Hbb xx  



YODER and HUMPHREYS    

yields the following approximation of the measurement model for innovations 
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Here, the state estimate error vector, d x x xk k k  ,  is expressed in the tan-
gent space of X at xk, and g*k  represents additional measurement error caused by 
approximation of b (xk).

3.3  Square-Root Formulation

The CDGNSS measurement update can be cast in square-root form for greater 
numerical robustness and algorithmic clarity (Psiaki & Mohiuddin, 2005). Given 
vgk, Hrk, Hnk, xk, and Pk, the measurement update can be defined as finding d xk and 
nk to minimize the cost function:

Jk k k k k k k k k
k k

� � �x n v H x H n x
P

,( ) = − − +
− −g r n �� 1 1

2 2

where ΣΣ ΣΣ ΣΣk k k= +g b b
*

b
TH H .  The vector cost components can be normalized 

by left-multiplying with square-root information matrices based on Cholesky 

factorization Rgk k= ( )−chol ΣΣ 1 ,  R Pxxk k= ( )−chol 1 :

FIGURE 3 Simplified two-dimensional example of Gaussian distributions produced by 
linearizeEkf and linearizeUkf for a single constrained baseline of a length of 1 m with 
a Gaussian prior over the attitude angle; the lines represent the cost contours in the position 
domain associated with each Gaussian distribution at the 3σ likelihood; the × symbols represent 
the means. 
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The cost, Jk, can be decomposed via QR factorization:
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where matrix Qk is orthogonal and Rk is upper triangular. Because Qk is orthogo-
nal, the components of Jk inside the norm can be left-multiplied by Qk

T  without 
changing the cost, and Jk can be decomposed into three terms:
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If both the measurement model and Rxxk are not ill-conditioned, then Rxxk and 
Rnnk are invertible. J3k is the irreducible cost, and, under a single-epoch ambigu-
ity resolution scheme, can be shown to be equal to the normalized innovations 
squared (NIS) associated with the double-difference pseudorange measure-
ments. J2k is the extra cost incurred by enforcing the integer constraint on nk. 
If nk is allowed to take any real value (the float solution), J2k can be zeroed due 
to the invertibility of Rnnk. Similarly, J1k can be zeroed for any value of nk due to 
the invertibility of Rxxk. The float solution, �  x nk k, ,� �  can therefore be formed by 
choosing d xk  and nk  to zero J1k and J2k. Because Rk is upper triangular, these 
values can be found by efficient backsubstitution. The fixed solution, {d xǩ, ňk}, is 
found via an ILS solver, yielding

	
n

n

n

x R v R
nk k k

k xxk k xnk k

k
n
J� � �

�� �� ��
�

�

arg min

� 2

1
1�

� (5)

Rxxk is the a posteriori state vector square-root information matrix conditioned on 
nk = ňk. Therefore, if the fixed solution is accepted (having passed validation via an 
integer aperture test), the a posteriori state and covariance are
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If, instead, the float solution is accepted, the a posteriori state and covariance are 
found by marginalizing over the distribution of nk:
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Here, [1 : n, 1 : n] denotes taking the first n rows and columns of the matrix.
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3.4  Evaluation of Unscented Multi-Antenna Update

The UKF linearization of b(xk) yields a Gaussian prior in the position domain 
that better captures the true mean and covariance of the constrained attitude base-
line than the EKF linearization. Consequently, the UKF linearization achieves a 
higher ILS success rate than the EKF linearization when attitude uncertainty is 
large.

Figure  4 demonstrates this effect by evaluating integer aperture success, fail-
ure, and float rates for a multi-baseline CDGNSS measurement update via 
Monte-Carlo simulation with 106 samples. The vehicle pitch and roll angles were 
assumed to be known to 2° (1s), and the a priori yaw angle uncertainty was varied 
from 0° to 90° (1s). The simulation assumed that GPS L1 C/A signals were visible 
from the equator with a representative satellite constellation and a 15° elevation 
mask angle. Two vehicle GNSS antennas were simulated with a baseline length 
of 1.0668  m (equivalent to that of the Sensorium). Other GNSS measurement 
model parameters were selected as in Table 2. The threshold function approxima-
tion to the fixed-failure rate distance test (Wang & Verhagen, 2015) was used with 
fixed-failure rate Pf = 0.01.

For a dual-antenna platform similar to that of the University of Texas Sensorium 
with loose yaw knowledge, this effect becomes apparent as 1s yaw uncertainty 
exceeds approximately 8°, whereupon the ILS success rate with the EKF lineariza-
tion begins a rapid decline with increasing uncertainty, eventually falling below 
even that of the unconstrained multi-antenna CDGNSS snapshot estimator. In con-
trast, the integrity of the integer aperture test is maintained for the UKF case due to 
the approximate linearization error term, ΣΣb* ,  provided by the UKF linearization.

The UKF linearization expands the operating regime of the CDGNSS navigation 
estimator to greater levels of attitude uncertainty than with the EKF linearization. 
This effect is relevant for low-cost urban CDGNSS; while even a low-cost acceler-
ometer can provide pitch and roll angles with degree-level accuracy, it is desirable 
to tolerate large yaw uncertainty, as may occur, for example, following a long GNSS 

FIGURE 4 Integer aperture (IA) success (validated correct fix), failure (validated false fix), 
and float (failed IA validation) rates found via Section 3.4’s Monte Carlo simulation. UKF and 
EKF denote the ILS success rates for models derived from linearizeUkf and linearizeEkf, 
respectively. Note that Pu = 1 - Pf - Ps (Green & Humphreys, 2018).
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outage in a parking garage. Upon emerging from such an outage, a system using 
an EKF linearization may require re-initialization using a snapshot attitude esti-
mator. This scheme also allows initialization of the estimator with loose attitude 
knowledge, as may be provided, for example, by a magnetometer whose heading 
measurement may be uncertain in the presence of nearby buildings and vehicles.

4  TIGHTLY COUPLED NAVIGATION FILTER

This section presents the remaining development of the full tightly coupled 
multi-antenna CDGNSS recursive estimator with vehicle dynamics constraints and 
false integer fix mitigation.

4.1  Propagation Step

State propagation is based on a model replacement approach in which IMU 
measurements supplant a vehicle dynamics and kinematics model. This is imple-
mented as a standard UKF time update step, and is described in detail in this 
paper’s supplemental material.

4.2  Vehicle Dynamics Constraints

This paper adopts the VDC scheme of Narula et al. (2022) with minor modifi-
cations to the NHC sideslip model and ZUPT detection mechanism. Details of the 
VDC scheme are provided in this paper’s supplemental material.

4.3  Outlier Rejection Using Pseudorange Innovations

Let vρk = [vρk1, …, vρkn]T contain the elements of the GNSS innovation vector, vgk, 
that correspond to pseudorange measurements. Its covariance matrix vρk is
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where Pbbk is formed as in Equation (3), and ∑ρk is formed by selecting the rows 
and columns of ∑gk that correspond to pseudorange measurements. If the estima-
tor is consistent and the pseudorange measurements are not corrupted by large 
multipath errors, then �� ��kn k nn

� � �� � 0, .P  A test can be used to detect outlier 

pseudorange measurements using the detection statistic:

qkn k n k nn
� � �� � ��,

2 / P

with a threshold, g 2, selected to yield a sufficiently low false-positive rate. If a pseu-
dorange outlier is detected for some index n (i.e., qkn > g 2), then the corresponding 
DD pseudorange measurement is assumed to be corrupted by multipath. Because 
the effect of multipath on GNSS signals is primarily a function of the line-of-sight 
vector to the transmitter, all pseudorange and carrier-phase measurements 
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associated with the offending non-pivot satellite on all frequencies and baselines 
are assumed to be corrupt. They are removed from the measurement vector, zgk, 
before proceeding with the measurement update.

4.4  False-Fix Detection and Recovery

4.4.1  Single-Epoch Ambiguity Resolution

An optimal CDGNSS filter (in the maximum a posteriori sense) must append a 
new carrier-phase integer ambiguity to its state each time a cycle slip is detected 
in a carrier tracking loop (Psiaki, 2010). This causes the update and ILS solve oper-
ations to quickly become computationally intractable when applied to an urban 
environment where cycle slips are common and detection of discrete cycle slips is 
often impossible.

A scheme could be imagined whereby cycle slips are modeled to occur with some 
probability, PCS, at each epoch, and a suboptimal dynamic multiple-model estima-
tor such as the interacting multiple-model or generalized pseudo-Bayesian estima-
tor (Bar-Shalom et al., 2001) is used to handle the resulting multiple hypotheses 
over past cycle slips. However, for large PCS, as is the case for urban CDGNSS, 
these methods would require measurement update and ILS solve operations for a 
quickly growing number of alternate hypotheses. Such a method would be compu-
tationally prohibitive without aggressive hypothesis pruning.

This paper’s estimator adopts a posture of maximum pessimism regarding cycle 
slips: Each carrier tracking loop in the GNSS receiver is assumed to slip cycles 
between each pair of measurement epochs (i.e., PCS = 1). Ambiguity state growth 
is curtailed by discarding all ambiguity states at every GNSS measurement epoch, 
either by conditioning the state vector on the candidate fixed solution (if the can-
didate fix is validated), as in Equations (5) and (6), or by accepting the float solu-
tion and marginalizing over the ambiguities, as in Equation (7). This single-epoch 
ambiguity resolution scheme is suboptimal because it discards what continuity 
may be present in the integer ambiguities from epoch to epoch, weakening the 
integer model strength. But it renders the navigation filter entirely insensitive to 
cycle slips, which may be a practical necessity for urban CDGNSS, and is compu-
tationally efficient. Moreover, the conditioning operation, when applied, greatly 
increases the integer model strength for subsequent epochs, allowing the filter to 
hold on to fixes by virtue of the tight epoch-to-epoch position domain constraint 
provided by the inertial sensor and the vehicle dynamics pseudo-measurements.

4.4.2  False Integer Fixes

Even in the absence of modeling errors and measurement outliers, the integer 
fixing procedure of Section 3.3 occasionally yields an incorrect integer vector, ňk, 
that passes ambiguity validation tests, a situation referred to as a false integer fix or 
an ambiguity resolution failure (Green & Humphreys, 2018). This occurs because 
validation tests can only provide probabilistic guarantees of integer correctness 
(Teunissen & Verhagen, 2009). In an urban environment, measurement outliers 
due to multipath and diffraction cause the true false integer fix rate, Pf, to greatly 
exceed the specified rate, Pf, for the validation test (Humphreys et al., 2020b). Thus, 
conditioning the filter state on fixed and validated integers at each epoch, as is 
done under a single-epoch ambiguity resolution scheme, is perilous because false 
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integer fixes eventually corrupt the filter state with incorrect but highly confident 
priors. This causes future GNSS measurement updates to accept a similarly incor-
rect fix with high probability, repeatedly conditioning the filter state on incorrect 
ambiguities. While the simple rectilinear motion model of the unaided estimator 
in Humphreys et al. (2020b) contains sufficient process noise that the filter even-
tually re-fixes to the correct ambiguities, the tight epoch-to-epoch constraints of 
the present paper’s tightly coupled estimator can cause these cycles of false fixes to 
persist indefinitely.

To mitigate the effect of conditioning on incorrect integer ambiguities, this 
paper’s estimator employs a fault detection and exclusion technique based on 
solution separation. A float-only filter, configured to never attempt fixing inte-
ger ambiguities, is operated in parallel to the primary navigation filter. Under the 
single-epoch ambiguity resolution scheme, the float-only filter’s behavior is equiv-
alent to accepting only pseudorange measurements, discarding carrier-phase mea-
surements entirely.

4.4.3  Carrier-Phase Residuals Testing

Recall from Equation  (4) that J2k (nk) is the residual cost associated with the 
carrier phase in the square-root formulation of the CDGNSS measurement update. 
When evaluated at ňk, the fixed solution for the integer vector nk found via an ILS 
solver, this cost becomes the fixed-ambiguity residual cost:

�k k kJ� � �2 n

This quantity is small whenever the carrier-phase measurements are consis-
tent with the prior state estimate, the pseudorange measurements, and with the 
assumption of integer-valued carrier-phase ambiguities. It is one of several accep-
tance test statistics used to decide whether the fixed solution ňk is correct with high 
probability (Teunissen & Montenbruck, 2017).

In Mohiuddin and Psiaki (2007), φk  was incorporated in a statistic used to 
detect carrier cycle slips. It can similarly be used to detect false integer fixes (as 
a form of integer aperture test statistic) or the lingering effects of performing the 
conditioning operation in Equation (6) on an incorrectly fixed integer vector at 
some epoch in the past. A windowed sum of φk  offers even greater sensitivity to 
false-fix events at the expense of a longer time to detect. The test statistic used 
to detect false fixes in this paper’s estimator is the windowed fixed-ambiguity 
residual cost (WFARC), Yk. This is calculated over a moving window of fixed 
length l of past GNSS measurement epochs. It has N

kY  degrees of freedom and 
is calculated by
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where Nk is the number of DD carrier-phase measurements at epoch k. If the filter 
is consistent and the integer ambiguities are correctly resolved, then Yk  should be 
approximately χ 2- distributed with N

kY  degrees of freedom. (This distribution is 
approximate due to the integer-folding effect; large phase residuals are not possi-
ble because of integer-cycle phase wrapping.) A statistical consistency test can be 
performed by choosing a desired false-alarm rate, Pf , ,Y  and declaring a false fix if 

̌
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� �k k� � ,  where the threshold, ��k ,  is calculated by evaluating the inverse cumu-
lative distribution function (CDF) of � 2 N

k�� �  at Pf , .Y

4.4.4  False-Fix Recovery

If a false fix is detected � �k k�� �� ,  the estimator performs a soft reset, discard-
ing the primary navigation filter’s state estimate and covariance and replacing them 
with a copy of the float-only filter’s state and covariance, as shown in Figure 5.

4.4.5  Float-Only Estimator Re-Seeding

To increase the probability of a correct fix after a soft reset, the float-only filter 
is occasionally re-seeded with the state of the primary filter during epochs over 
which a set of heuristic criteria indicates that a correct fix is extremely likely. This 
operation carries the risk that the float-only filter could also be contaminated with 
information from a false integer fix in the primary filter. But in practice, heuristic 
criteria can be set to strictly limit this event’s probability. The four criteria used in 
the next section’s evaluation are given in Table 1.

One might argue that these criteria for re-seeding the float-only filter are 
redundant because an integer aperture test for validating the primary filter’s inte-
ger estimate can be made arbitrarily strict, obviating additional validation. But 

TABLE 1
Re-Seed Criteria Used in the Evaluation of Section 5

Normalized residual φk kN  ≤ 1 0.  

Normalized WFARC Y Yk kN  ≤ 0 5.  

Last fix number of DD measurements Nk  ≥ 10  

Time since last soft reset t ksr,  ≥ 2 0.  s 

Note: A re-seed operation is performed if all four conditions are met.

FIGURE 5 A false-fix detection and recovery event; ! denotes a test failure � �k k�� ��  at 
k = 4. The primary navigation filter’s state estimate and covariance matrix are replaced with those 
of the float-only filter.

FIGURE 6 A re-seed event: ✓ denotes re-seed criteria being met at epoch four. The estimator 
replaces the state estimate and covariance of the float-only filter with a copy of that of the primary 
navigation filter.
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integer aperture theory is founded on modeling measurement error distributions as 
Gaussian (Teunissen, 2003), which is a poor approximation in urban environments 
leading to low fixed solution availability (Humphreys et al., 2020b). Teunissen’s 
recent extension of the so-called best integer equivariant estimation to the class 
of elliptically contoured distributions in Teunissen (2020) may offer a means of 
providing a better re-seed estimate for the float-only filter in urban environments, 
but it has not been tested with empirical urban data. Meanwhile, application of 
this paper’s re-seeding technique with the criteria in Table 1 will be shown in the 
next section to significantly increase integer fix availability while respecting a low 
false-fix rate.

5  PERFORMANCE EVALUATION IN A DEEP URBAN 
ENVIRONMENT

5.1  Experimental Setup

The tightly coupled CDGNSS estimator described in the foregoing sections 
was implemented in C++ as a new version of the PpEngine sensor fusion engine 
(Humphreys et al., 2020b), and was experimentally evaluated against the publicly 
available TEX-CUP urban positioning data set. TEX-CUP is comprised of raw 
GNSS intermediate-frequency (IF) samples and inertial data, which were collected 
on May 9, 2019, and May 12, 2019, using the University of Texas Sensorium vehic-
ular perception research platform (Narula et al., 2020). The data set consists of a 
total of over 2 hours of driving in Austin, Texas, in conditions ranging from light to 
dense urban; routes are shown in Figure 7.

Two-bit-quantized IF samples were captured at the Sensorium and at the refer-
ence station through RadioLynx, a low-cost L1+L2 GNSS front end with a 5-MHz 
bandwidth at each frequency, and were processed with the PpRx software-defined 

FIGURE 7 Overview of the CDGNSS reference station position and routes driven through 
the urban core of Austin, Texas, in the TEX-CUP urban positioning data sets; routes differ slightly 
from May 9 to May 12 due to road closures.
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GNSS receiver (Humphreys et al., 2020b). The Sensorium RadioLynx was con-
nected to two Antcom G8 GNSS antennas separated by 1.0668 meters in the vehi-
cle Y direction, and the reference RadioLynx was connected to a Trimble Zephyr 
II geodetic-grade GNSS antenna. The number of double-difference measurements 
available to PpEngine over the two data sets ranged from one to 25, with an average 
of 11.68.

The system’s performance was separately evaluated using inertial data from 
each of the Sensorium’s two MEMS inertial sensors. The first, a LORD MicroStrain 
3DM-GX5-25, is an industrial-grade sensor. The second, a Bosch BMX055, is a 
surface-mount consumer-grade sensor. Their relevant datasheet specifications are 
compared in Yoder (2021).

The system’s positioning performance was evaluated by comparing with 
TEX-CUP’s forward-backward smoothed ground-truth reference trajectory. This 
ground truth was generated by postprocessing the data from an iXblue ATLANS-C 
mobile mapping system comprised of a Septentrio AsteRx4 RTK receiver and a 
high-end tactical-grade IMU. The AsteRx4 was configured to use additional con-
stellations (BDS and GLONASS) and frequencies (GPS L5, Galileo E5, GLONASS 
L1 and L2) that were unavailable to PpEngine. The reported accuracy of the ground 
truth trajectory varied between 2 and 15 cm (1σ) along the route. Due to the diffi-
culty of directly evaluating integer ambiguity resolution performance in the pres-
ence of outlier carrier-phase measurements, the integer fixing performance in the 
following sections was evaluated by considering integer fixes to be correct if the 3D 
distance to the ground truth was below 30 cm, following Humphreys et al. (2020b).

One might naturally be concerned that the ground truth trajectory’s reported accu-
racy, which degrades to 15 cm (1σ) at some points along the route, may not be good 
enough to evaluate the accuracy of the proposed system, whose errors are also at the 
decimeter-level. However, the errors in the TEX-CUP ground truth data set are likely 
to be substantially uncorrelated with the errors of the proposed system, for three 
reasons. First, the truth data set employed an independent receiver with access to 
additional GNSS constellations (BeiDou and GLONASS) and frequencies (GPS L5, 
Galileo E5, GLONASS L1 and L2) that were unavailable to PpEngine for the exper-
iments reported here. Second, the high-end tactical-grade IMU used to produce the 
ground truth has noise characteristics much different from the low-cost IMUs of the 
proposed system. Third, the estimation process that produced the ground truth was 
non-causal forward-backward smoothing, whereas the proposed system processes 
the data only causally. Assuming that the ground truth errors and PpEngine’s errors 
are not strongly correlated, it follows that the results presented in this section will, in 
fact, be pessimistic compared to an evaluation against the absolute truth.

Because TEX-CUP contains several minutes of no motion in an open-sky envi-
ronment at the beginning and end of each capture, the estimator was run on a 
subset of each capture beginning approximately 10 seconds before the first motion 
and ending 10 seconds after the last motion. In the May 9 data set, the estimator 
was run and evaluated from GPS time of week (TOW) 411,003 s to 415,029 s, and in 
the May 12 data set, from TOW 63,770 s to 67,972 s.

5.2  Baseline Configuration

The performance of the tightly coupled estimator with all proposed features and 
signals enabled (the baseline configuration) was evaluated using each IMU on the 
May 9 and May 12 TEX-CUP data sets. PpRx was configured for dual-frequency 
operation as described in Humphreys et al. (2020b), tracking the GPS L1 C/A, GPS 
L2C (combined CL+CM codes), Galileo E1 (combined B+C codes), and L1 SBAS 



    YODER and HUMPHREYS

(WAAS) signals on the reference and both rover antennas. Data bit prediction and 
wipeoff were performed on the GPS L1 C/A and SBAS signals. Reference and rover 
GNSS observables were produced at a rate of 5 Hz. PpEngine’s baseline configura-
tion parameters are given in Table 2.

TABLE 2
Baseline PpEngine Configuration Parameters

CDGNSS parameters

Carrier-to-noise ratio threshold C
N0

 ≥ 40  dB-Hz 

Phase lock statistic threshold sθ  ≥ 0 8.  

Elevation mask θel  ≥ 10  

Integer aperture (IA) validation test Fixed-failure-rate difference test (Wang & 
Verhagen, 2015)

IA fixed-failure rate Pf  = 0 001.  

Undifferenced zenith pseudorange std ��  = 1 5.  m 

Undifferenced zenith phase std ��  = 0 006.  m 

Elevation-dependent weighting ws  � � � �( ( / ))1 10 10 1exp el�   

Pseudorange outlier threshold std g  � 1 5. �  

False-fix detection window length l  = 10  

False-fix detection threshold Pf ,Y  � �10 15  

IMU parameters

Accelerometer noise density Sa  � 100 300, �� /�g Hz
*

 

Accelerometer bias steady-state std σba
 = 0 5 10. , ��m *g  

Accelerometer bias time constant τa  = 100  s

Gyroscope noise density Sg  = 0 01 0 05. , . ��( / ) / s Hz
*

 

Gyroscope bias steady-state std σbg
 = 8 30, �� / hr*  

Gyroscope bias time constant τ g  = 100  s

NHC parameters

Lateral std σnhc, y  = 0 1.  m/s 

Vertical std σnhc,z  = 0 2.  m/s

ZUPT parameters

Longitudinal std σ zx  = 0 05.  m/s

Lateral/vertical std σ σz zy z,  = 0 01.  m/s

Accelerometer noise threshold g zupt a,  = 0 8.  m/s2 

Gyroscope noise threshold g zupt g,  = 0 006 0 018. , .  rad/s*

ZUPT detection window Nzupt  = 10 30, *

Innovations test threshold Pf ,zupt  � � �10 1030 6, *

Note: Pairs marked with “*” indicate separate parameter values used with the industrial-grade 
and consumer-grade IMU, respectively. IMU noise parameters were increased from datasheet 
values for consistency with empirical observations. The elevation-dependent GNSS measurement 
weighting scheme is derived from Verhagen et al. (2010). Details of the NHC and ZUPT schemes 
are provided in this paper’s supplemental information.
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The phase center variation of the Sensorium antennas with respect to signal 
elevation angle was calibrated as in Humphreys et al. (2020b). The orientation, 
body-frame position, axis scale factors, and steady-state biases of both inertial sen-
sors were calibrated offline using a short period of dynamic open-sky GNSS data at 
the beginning of the May 12 data set.

The position and attitude states of the tightly coupled navigation estimator were 
initialized with the first available batch of GNSS observables and inertial measure-
ments. The position state was initialized with the standard (single-ended) pseudo-
range position solution for the primary antenna. The attitude state was initialized 
by combining the gravity vector as determined by the IMU’s accelerometers with 
a constrained-baseline snapshot CDGNSS solution for the baseline connecting 
the primary and secondary vehicle antennas, as determined with a brute-force 
attitude-domain search.

5.3  Baseline Performance

5.3.1  Ambiguity Resolution and Positioning

The achieved integer-fix availability was 97.52% and 96.62% when tightly cou-
pled with the industrial-grade and consumer-grade IMUs, respectively, across 
both days of the data set. When tightly coupled with the industrial-grade IMU, the 
95th-percentile horizontal positioning error was 8.4 cm when fixed and 10.1 cm 
overall (fixed and float). Using the consumer-grade IMU, the 95th-percentile hori-
zontal error was 9.2 cm when fixed and 12.0 cm overall. The empirical CDF of the 
3D positioning errors using both grades of inertial sensor is shown in Figure 8. 
Detailed statistics of the estimator’s positioning performance in the baseline con-
figuration are given in Table 3, and statistics of its attitude performance in Table 4. 
Figures 9 and 10 show the position and attitude error, respectively, over time for 
the May 9 portion of TEX-CUP. In Figure 9, the longest two float periods seen with 
the industrial-grade IMU lasted 47 and 36 seconds, and exhibited position errors 
of a few meters. Positioning error spikes are visible during these float epochs as, 
under this paper’s single-epoch ambiguity resolution scheme, only pseudorange 

FIGURE 8 CDFs of 3D positioning error of baseline estimator configuration across both 
days of the TEX-CUP urban positioning data set
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measurements that have meter-level accuracy have any effect during float epochs. 
Some smaller error excursions are visible during fixed epochs due to periods of 
poor satellite visibility and increased multipath error.

One may note that Table 3 appears to show that the consumer-grade IMU slightly 
outperformed the industrial-grade IMU by some metrics on the May 12 data set. 
While the consumer-grade IMU did achieve a slightly higher PV  (and correspond-
ingly lower RMS position error) than the industrial-grade, it should be noted that 
the Pf  value was also slightly higher (i.e., worse), so a direct comparison cannot be 
drawn between the two PV  values. However, the consumer-grade IMU allowed a 
few more large positioning error excursions than the industrial-grade, resulting in 
both Pf  and d95  larger than those of the industrial-grade IMU.

TABLE 3
Baseline Estimator Ambiguity Resolution and Positioning Performance on Each Day of the TEX-
CUP Data Set

Overall positioning performance (fix & float 
epochs) 

Ambiguity 
Resolution 

3D Horizontal Vertical

Data set PV (%) Pf (%) d95 
(cm) 

RMSE 
(cm) 

d95h 
(cm) 

RMSE 
(cm) 

d95v 
(cm) 

RMSE 
(cm) 

May 9 Unaided 77.31% 0.33% 742.1 1799.6 471.4 1713.3 209.3 550.5 

Consumer-grade 
IMU 

94.56% 0.19% 20.2 34.4 16.4 28.6 7.3 19.2 

Industrial-grade 
IMU 

97.28% 0.21% 13.8 20.6 10.6 18.9 4.0 8.1 

May 12 Unaided 76.94% 0.49% 860.5 571.9 525.5 406.1 467.9 402.7 

Consumer-grade 
IMU 

98.63% 0.56% 13.7 7.7 10.6 6.0 5.7 4.8 

Industrial-grade 
IMU 

97.74% 0.43% 12.3 13.8 9.7 12.5 4.9 5.8 

Note: Position errors are reported relative to the TEX-CUP ground truth trajectory, which was 
generated with a survey-grade mobile mapping system as described in Section 5.1, with a self-
reported accuracy varying between 2 and 15 cm (1s) along the route. Unaided indicates the use 
of the motion model of Humphreys et al. (2020b) in lieu of inertial tight coupling, as described in 
Section 5.4. Quoted 95th percentile and RMS error quantities are over the entire data set (i.e., for 
both float and fixed epochs). PV denotes the availability of an aperture-test-validated fixed solution 
for conditioning in the primary filter. Pf denotes the false-fix rate as determined by an excursion 
of the primary filter beyond 30 cm from the ground truth when conditioned on fixed ambiguities.

TABLE 4
Baseline Estimator Attitude Performance on Each Day of the TEX-CUP Data Set 

Roll (°) Pitch (°) Yaw (°)

Dataset p95 RMS p95 RMS p95 RMS 

May 9 

Consumer-grade IMU 0.99 0.59 0.99 0.60 0.99 0.26 

Industrial-grade IMU 0.28 0.21 0.28 0.18 0.28 0.22 

May 12 

Consumer-grade IMU 0.84 0.43 0.84 0.41 0.84 0.27 

Industrial-grade IMU 0.29 0.21 0.29 0.17 0.29 0.18 

Note: The quoted 95th percentile and RMS error quantities are over the entire data set (i.e., for 
both float and fixed epochs).
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Of the two data sets, the May 9 data set had more difficult GNSS satellite geom-
etry, yielding a lower PV  for both IMU grades vs. May 12. The tighter motion con-
straints provided by the industrial-grade IMU were able to overcome the degraded 
geometry to a greater degree than those provided by the consumer-grade IMU.
Pf ,  however, was worse for all estimators on May 12 than on May 9, despite 

generally better GNSS geometry. This appears to be because the May 12 data set 
happened to contain more trouble spots: portions of the data set with very heavy 
multipath that yielded frequent incorrect fixes, typically when the vehicle slowed 
down or came to a complete stop in the deepest urban canyon portions of the route.

FIGURE 9 Baseline estimator positioning error over time in the east, north, and up directions 
for the May 9 TEX-CUP data set: Gray shading indicates float epochs (periods when the estimator 
accepted the float CDGNSS solution). Elapsed time indicates time since since the data set start at 
GPS TOW 411,003 s.

FIGURE 10 Baseline estimator attitude estimation error over time for the May 9 TEX-CUP 
data set; heading-dependent pitch and roll errors are evident when tightly coupled with the 
industrial-grade IMU; these are likely due to residual calibration errors.
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5.3.2  Attitude

The attitude performance of the baseline estimator is excellent when tightly 
coupled with either the industrial-grade or consumer-grade inertial sensor, achiev-
ing single-degree-level precision in all three axes with the consumer-grade sensor 
and sub-degree precision with the inertial sensor. Better performance with the 
industrial-grade sensor is as expected due to its significantly better gyroscope noise 
properties.

5.4  Effect of Inertial Tight Coupling

To evaluate the benefit of inertial tight coupling, PpEngine was run in an unaided 
mode, using the nearly-constant-velocity motion model described in Humphreys 
et al. (2020b) for propagation in place of an inertial sensor. Attitude dynamics 
were modeled as a simple integrated white noise process, with noise intensity of 
0.3  s  in the vehicle pitch and roll axes, and 5.7  s  in the vehicle yaw axis. 
Because vehicle pitch (rotation about the axis connecting the primary and second-
ary Sensorium antennas) is not strongly observable, a weak pseudo-measurement 
of zero pitch was added a with standard deviation of 10  at a rate of 5 Hz, which 
was found to provide good estimation performance.

The positioning and ambiguity resolution performance of the unaided estima-
tor is shown in Table 3. Tight coupling with even a consumer-grade IMU has a 
clearly beneficial effect on ambiguity resolution, greatly increasing the fraction of 
fixed-integer epochs for comparable Pf ,  and reducing 95th-percentile and RMS 
positioning errors from meters to centimeters.

5.5  Performance in Alternate Configurations

Next, the estimator was run in a collection of alternate configurations (with vari-
ous features disabled) in order to study its performance’s sensitivity to the presence 
of various algorithmic components. Results are given in Table 5.

5.5.1  Performance in Single-Antenna Mode

In Configuration 2, the estimator was run using only a single vehicle-mounted 
antenna. CDGNSS observables were formed for only a single baseline, between 
the reference antenna and the primary Sensorium GNSS antenna. Despite having 
fewer integer ambiguities (only one baseline’s worth) to fix at each measurement 
epoch, the integer fix availability was lower than for the multi-antenna case in this 
configuration because the estimator was no longer able to exploit the measurement 
noise cross-covariance between baselines due to the shared antenna. Positioning 
performance is slightly worse in the single-antenna case by all metrics, as would be 
expected due to the loss of half of all GNSS measurements.

5.5.2  Performance Without Vehicle Motion Constraints

The non-holonomic constraints were disabled in Configuration 3, and 
zero-velocity updates were disabled in Configuration 4. It can be seen that the 
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non-holonomic constraints have only a small effect on performance when tightly 
coupling with the industrial-grade IMU. With the consumer-grade IMU, how-
ever, the effect is much greater. Clearly, non-holonomic constraints provide a 
major performance boost in the consumer-grade IMU case, cutting the number 
of float GNSS measurement epochs in half (fix availability increased from 94.86% 
to 96.62%).

The incorporation of zero-velocity updates improves all of the presented sta-
tistics when tightly coupling with either the industrial-grade or consumer-grade 
IMU. But for the consumer-grade IMU, the benefit of ZUPTs is minimal. This is 
likely because the poor noise properties of the consumer-grade IMU required such 
strict thresholds to limit false detections that many opportunities to apply a ZUPT 
were missed. However, ZUPTs have a clearly positive benefit on overall RMS posi-
tion error, as they help to constrain against float-solution position error when the 
vehicle is stopped, which is when urban code multipath errors are largest.

5.5.3  Performance Without Pseudorange Outlier Exclusion

The pseudorange innovations-based outlier exclusion mechanism (Section 4.3) 
was disabled in Configuration 5. Without this mechanism, the availability of val-
idated integer-fixed solutions decreased drastically due to the presence of out-
lier measurements caused by multipath. Interestingly, the false-fix rate, Pf ,  was 

TABLE 5
Estimator Ambiguity Resolution and Positioning Performance on the Combined TEX-CUP May 9 
and May 12 Data Sets With Various Estimator Features Disabled

Configuration

Industrial-grade IMU Consumer-grade IMU

Pv (%) Pf (%) d95 (cm) RMSE (cm) Pv (%) Pf (%) d95 (cm) RMSE (cm)

1 Baseline (all 
features enabled)

97.52 0.33 13.0 17.5 96.62 0.38 16.2 24.8

2 Single vehicle 
antenna

96.89 0.55 16.2 25.3 95.73 0.53 19.3 30.6

3 Sans 
non-holonomic 

constraints

97.48 0.33 13.2 18.3 94.86 0.60 26.1 116.0

4 Sans zero-velocity 
updates

97.39 0.34 13.8 38.2 96.39 0.40 16.9 27.1

5 Sans pseudorange 
outlier exclusion 

(§4.3)

93.09 0.48 19.1 45.5 87.73 1.25 241.8 133.6

6 Sans re-seed 
(§4.4.5)

97.00 0.91 15.0 36.8 96.58 0.46 16.5 34.2

7 Sans false-fix 
detection & 

recovery (§4.4)

99.00 24.28 590.8 194.7 97.27 10.03 121.6 46.2

8 Single frequency 
(L1 only)

97.65 0.96 14.7 24.2 90.35 0.38 138.9 87.1

9 Sans SBAS 95.73 0.55 17.1 25.6 88.86 0.86 191.2 80.3

10 EKF CDGNSS 
Update 

(linearizeEkf)

97.52 0.33 13.0 17.5 96.62 0.38 16.2 24.8
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elevated, but not to extreme levels. This was likely because false fixes due to 
multipath-induced outliers were reverted by the false-fix recovery mechanism.

5.5.4  Performance Without False-Fix Detection and 
Recovery

In Configuration 6, the re-seed mechanism described in Section 4.4.5 was dis-
abled and, in Configuration 7, the entire false-fix detection and recovery mech-
anism (Section  4.4) was disabled. Integer fix performance without the re-seed 
mechanism is appreciably reduced, as the estimation performance of the float-only 
estimator suffers without the ability to re-seed from especially trustworthy integer 
fixes. Disabling the false-fix detection and recovery mechanism has a catastrophic 
effect on the false-fixing rate, Pf ,  for the reasons given in Section 4.4.

5.5.5  Performance on Subsets of GNSS Signals

In Configuration 8, the estimator was run using only L1 GNSS signals (i.e., 
GPS L2C was disabled), and in Configuration 9, SBAS L1 signals were disabled. 
Ambiguity resolution and positioning performance on these GNSS signal subsets 
was fairly close to the baseline case when using the industrial-grade IMU, but with 
the consumer-grade IMU, a substantial loss of integer-fix availability occurred 
(down from 96.62% to 90.35% and 88.86% in each of these configurations, respec-
tively). The weaker motion constraints provided by the consumer-grade IMU cause 
the estimator to require more GNSS signals for acceptable integer fix availability.

5.5.6  Performance With EKF-Based Linearization

The estimator was run using linearizeEkf in place of linearizeUkf 
in Configuration  10. Due to the excellent attitude performance of the estimator 
with either inertial sensor, no significant difference in performance arises on the 
TEX-CUP data set by using the UKF update. This can be explained by referring 
to the results of Figure 4, which show that the benefit of the UKF linearization is 
significant for the Sensorium’s inter-antenna distance only when attitude uncer-
tainty exceeds approximately 8  on a single axis, whereas the attitude error on the 
TEX-CUP data set never exceeded 2.

6  CONCLUSION

A vehicular pose estimation technique has been presented and evaluated that 
tightly couples multi-antenna CDGNSS, a low-cost MEMS IMU, and vehicle 
dynamics constraints (non-holonomic constraints and zero-velocity updates). The 
unscented transform was used to linearize the multi-antenna CDGNSS update, 
allowing for the use of a linear integer least-squares solver for ambiguity resolution 
while exploiting between-baseline correlations and respecting the constraints pro-
vided by known vehicle antenna geometry, even under large attitude uncertainties. 
Robust estimation techniques were developed to mitigate the effects of urban mul-
tipath and signal blockage, and to recover from false integer fixes. The estimator 
was evaluated using the publicly available TEX-CUP urban positioning data set, 
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yielding a 96.6% and 97.5% integer fix availability, and a 12.0-cm and 10.1-cm overall 
(fix and float) 95th-percentile horizontal positioning error with a consumer-grade 
and industrial-grade inertial sensor, respectively, over more than two hours of driv-
ing in the urban core of Austin, Texas. A performance sensitivity analysis showed 
that the false-fix detection and recovery scheme is key to achieving an accept-
ably low false integer fixing rate of 0.3% and 0.4%, respectively. Having a second 
vehicle-mounted GNSS antenna significantly increased integer-fix availability, 
decreased false-fix rate, and improved both root-mean-square and 95th-percentile 
positioning performance as compared to a single-baseline CDGNSS configuration. 
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