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O R I G I N A L  A R T I C L E

Accurate Covariance Estimation for Pose Data  
From Iterative Closest Point Algorithm

Rick H. Yuan  Clark N. Taylor  Scott L. Nykl

1  INTRODUCTION

One of the key algorithms used when working with 3D point clouds is the itera-
tive closest point (ICP) algorithm introduced by Chen and Medioni (1992) and Besl 
and McKay (1992). Since then, the ICP algorithm has been used in many robotics 
applications such as search and rescue, powerplant inspection, shoreline moni-
toring, and autonomous driving (Pomerleau et al., 2015). It is also used in 2D or 
3D self-localization methods such as simultaneous localization and mapping 
(SLAM; Mendes et al., 2016). Input data for the ICP algorithm can come from lidar, 
monocular, or stereo vision sensors.

The ICP algorithm consists of iterating through the following two steps:

1.	 For every point in the measured point cloud, find the closest point in the 
reference point cloud. 

2.	 Compute the best 6D pose (location and orientation) to align each measured 
point with its closest reference point. Note that finding the best 6D pose to 
align points with a 1-to-1 correspondence can be solved in closed form using 
quaternions or the singular value decomposition (SVD) of a 3x3 matrix (e.g., 
Arun et al. [1987], Horn [1987], and Horn et al. [1988]).

By iteratively executing this process, the ICP algorithm outputs the best-fit 6d 
pose, as well as the correspondence between the sensed and reference points. This 
best-fit rotation and translation estimate is what can be used by downstream algo-
rithms to complete their tasks.
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Abstract
One of the fundamental problems of robotics and navigation is the estimation 
of the relative pose of an external object with respect to the observer. A com-
mon method for computing the relative pose is the iterative closest point (ICP) 
algorithm, where a reference point cloud of a known object is registered against 
a sensed point cloud to determine relative pose. To use this computed pose infor-
mation in downstream processing algorithms, it is necessary to estimate the 
uncertainty of the ICP output, typically represented as a covariance matrix. In this 
paper, a novel method for estimating uncertainty from sensed data is introduced. 
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To use a position and rotation estimate in a navigation framework, knowing the 
accuracy of the derived estimate can be as important as the estimate itself. For exam-
ple, many robotics applications use the output of ICP to form a pose graph, where 
the 6d transform between two point clouds is used to estimate the movement of the 
robot. To estimate the robot trajectory over time, a trajectory that is the best match 
(probabilistically) to the measured 6d transforms is found. What makes the best 
match depends on the uncertainty estimated for the ICP output. Unfortunately, as 
mentioned in Censi et al. (2008), most ICP algorithms do not return estimates of 
their own uncertainty. Therefore, in this paper, we look to improve the estimation 
of the uncertainty obtained when running the ICP algorithm. We do not propose 
modifying the ICP algorithm, itself, but simply the estimation of its uncertainty 
after ICP has converged to a solution. Therefore, Section 1.2 only covers methods 
for estimating uncertainty, and not the ICP algorithm itself.1

The motivating application for this paper is two aircraft attempting to fly in for-
mation. There will be some safety margin built into the desired (relative) location 
of the aicraft to ensure a collision does not occur. However, if the ICP uncertainty 
is high, then the safety margin can be violated even without external disturbances 
due to errors in the ICP algorithm. This, combined with external disturbances, 
can quickly lead to catastrophic failures. Therefore, modeling the safety margin 
using an accurately estimated uncertainty is vital to ensuring safe operation. The 
focus of this paper is computing an accurate estimate of the uncertainty of the 
ICP output pose.

1.1  Notation

For clarity, we utilize the following notation in this paper: 

•	 Scalar: denoted by a non-boldface letter (e.g., k or N) 
•	 Vector: denoted by a boldface lowercase letter (e.g., n) 
•	 Matrix: denoted by a boldface uppercase letter (e.g., K) 
•	 Set: denoted by curly brackets (e.g., a set of vectors {pr}); the elements of the set 

are denoted as pr,i, where i is the index of that element. 
•	 Identity matrix: denoted by I followed by a subscript denoting its size (e.g., I6 

is a 6 × 6 identity matrix) 

1.2  Prior Work

To understand how uncertainty has been computed in the past, it is necessary 
to precisely define the objective of Step 2 in the ICP algorithm. The second step of 
the ICP algorithm is based on finding the relative pose that minimizes the sum of 
squared distances between the reference points and the sensed points. This step 
optimizes the following cost function (Markley & Mortari, 2000): 

	 arg�min
R t

p Rp t
,

, ,
i

n

s i r i
�

� �� � �
1

2
 � � (1)

1 �The literature on efficiently executing ICP, navigating using ICP, applying ICP-based algorithms to different robotics 
scenarios, and many other aspects of ICP is extensive and beyond the scope of this paper, though a recent survey of 
some such topics can be found in Kolhatkar and Wagle (2021).
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where R and t are the relative rotation and translation between the reference 
and sensed points, ps,i is the i-th sensed point, ϕ(·) is a function that takes in an 
index to a point in the sensed cloud and returns an index to a matching (closest) 
point in the reference cloud, and pr,ϕ(i) is the position of the ϕ(i)-th point in the 
reference cloud.

As the solution to Step 2 is a least-squared problem, there are well-known 
methods for computing the covariance for the result. We term this the Jacobian 
method and describe it in the next section. We then describe some modifications 
that have been made in the literature to obtain more accurate uncertainty esti-
mates. In simulation, the true covariance of this result can be obtained through a 
Monte-Carlo method.

1.2.1  Jacobian Method

The second step of the ICP algorithm is based on finding the relative pose that 
minimizes the sum of squared distances between the reference points and the 
sensed points defined in Equation (1). To understand the uncertainty resulting 
from this step, we will represent this step as a least-squares equation using normal 
form, yielding: 
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where zi=ps,i – Rpr,ϕ(i) – t is a 3-vector and consists of an x, y, and z element, and  
x is a vector of changes to the relative pose expressed as: 

			   x = [Δt1 Δt2 Δt3 Δr1 Δr2 Δr3]T� (3)

where tj is the j-th element of the three-element translation vector, rj is the rotation 
around the j-th axis, and J is the differential change in z with respect to tj and rj. 
Specifically: 
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The weighted least-squares problem solution can be solved as: 

	 x = (JT WJ)–1 JTWz� (5)
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where W is the weighting matrix. For data with a known covariance, cov(z),  
W = cov(z)–1, which also means W is symmetric. To find the covariance of x: 

	 E[xxT] = E [(JT WJ)–1 JT WzzT WT J(JT WJ)–1]� (6)

	 = (JT WJ)–1 JT WE[zzT] WT J(JT WJ)–1� (7)

	 = (JT WJ)–1 JT WW–1 WT J(JT WJ)–1� (8)

	 = (JT WJ)–1 JT WJ(JT WJ)–1� (9)

	 = (JT WJ)–1� (10)

Note that, when computing the covariance using the Jacobian method, we are 
assuming that the first step of the ICP algorithm perfectly matches every sensed 
point to the correct point in the reference model. With real data, however, there 
are two sources of error that are not considered by the Jacobian method. First, 
because the reference model consists of a set of points, there may not be a point 
at the exact location that the sensed point represents. Second, even if there was a 
reference point at the exact noise-free source of the sensed point, Step 1 of the ICP 
algorithm may match the sensed point to the wrong reference point. If we were to 
think of the reference model as a set of points lying on a surface, both of these noise 
sources introduced lose information along the surface, but preserve information 
orthogonal to the surface.

1.2.2  Advanced Methods

In Brossard et al. (2020), Censi (2007), Landry et al. (2019), Mendes et al. 
(2016), and Prakhya et al. (2015), more advanced methods of estimating ICP 
covariance are introduced. Censi (2007) lays the groundwork for this area of 
research by introducing a closed form estimation of ICP’s covariance that con-
siders the additional error sources described above and demonstrates it on a 
2D scan matching problem. Prakhya et al. (2015) extends Censi’s method into 
a 3D application. Mendes et al. (2016) utilizes this technique to apply ICP to a 
ground robot SLAM application. Brossard et al. (2020) examines the sources of 
error named by Censi: wrong convergence, underconstrained situations, and 
sensor noise. The most comparable work to ours was found in Prakhya et al. 
(2015). We describe how this method (termed the Prakhya method after the first 
author) solves for ICP covariance in the following subsection.

Prakhya et al. (2015) implements a closed form method of estimating the uncer-
tainty of an ICP fit. The key insight of this method is finding a method to include 
the ICP cost function (Step 1 of ICP) within the Jacobian computation. The output 
covariance is calculated through Equations (11) and (12): 
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where x is the output state vector, cov(x) is the covariance of the output pose, C is 
the cost function optimized by ICP, and z is the input point vector.
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Derivation: Let F be the ICP function where x = F(z). The first-order Taylor 
series approximation at z = z0 is then defined as: 
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To take the covariance of this form, the constants F(z0) and ∂
∂
F
z0

0( )z  can be 

ignored. Substituting into the expression, cov(Bz + c) = Bcov(z)BT, the covariance 
can now be defined as: 
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F, however, is not in closed form and it is difficult to compute the partial deriv-
ative of F with respect to z0. Censi (2007) solves this problem with the implicit 
function theorem: 
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Thus, substituting Equation (16) into Equation (15) yields the solution in 
Equation (12).

While this approach leads to significantly more accurate uncertainty results, 
the work introduced in this paper has two significant advantages over prior 
work. First, prior work has assumed the input covariance from the sensors is 
known a priori. This requires careful characterization of the sensors and may be 
violated as temperature or other environmental conditions change. We remove 
the requirement of a priori characterization in this work. Second, the approach 
proposed in this paper is computationally much faster than the Prakhya 
approach. Furthermore, we believe it to be conceptually easier to understand, 
enabling greater understanding of the uncertainty estimation problem for the 
ICP algorithm.

Another work that bears some similarity to our approach is Guehring (2001). 
In this work, Guehring propose modifying (weighting) the ICP least-squares solu-
tion by what we call the point-to-point method in this paper. Unfortunately, it does 
not show how this weighting can be used to compute an uncertainty (covariance) 
estimate for the final ICP results, nor does it show how this weighting affects the 
covariance estimate. Therefore, we do not directly compare against this approach 
in our results section.

1.3  Motivation/Test Scenario

This research is motivated by the problem of automated aerial refueling (AAR). 
Aerial refueling is the process of transferring fuel from one aircraft (the tanker) 
to the receiving aircraft while in flight and is a key enabler of Air Forces around 
the world. Currently, a human is used to guide the boom (a large pipe that pro-
trudes from the back of the tanker) into the correct spot on the receiving aircraft. 
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AAR proposes to automate the task of guiding the boom and requires a very 
accurate relative pose between the tanker and receiving aircraft. To accurately 
estimate relative pose, our research group has proposed using stereo computer 
vision in Anderson et al. (2021), where two cameras are mounted to the under-
side of the tanker aircraft. Stereo block matching is applied to the two images 
from the cameras to generate a point cloud representing the object in the visual 
field. Then, the ICP algorithm is used to fit a known model of the aircraft against 
the visually generated point cloud to estimate the output pose. This process is 
outlined in Figure 1. Noise may be introduced at multiple levels throughout this 
process; there may be pixel error in the cameras or the wrong features may be 
matched in stereo block matching, for example. To guarantee safe operation of 
the AAR application, the uncertainty in the system must be carefully evaluated 
and characterized. The covariance estimation methods proposed in this paper 
were tested on a complete simulation environment of the AAR application, 
enabling us to identify and evaluate the uncertainty due to different sources of 
error in the pipeline.

In the remainder of this paper, we introduce our new technique for estimating 
covariance information of the ICP algorithm in Section 2. We present some pre-
liminary results of our technique in Section 3, and conclude the paper in Section 4.

2  METHODOLOGY

To enable accurate estimation of the ICP uncertainty while considering the 
point matching (first) step of the ICP algorithm, we propose a Kalman filter 
update-based technique. In this section, we first introduce the Kalman filter-based 
approach, while subsections fill in details necessary for the implementation of 
this approach.

There are three key attributes of the Kalman filter that we use to properly  
estimate the covariance of the ICP algorithm, namely: 

1.	 The Kalman filter is a least-squared estimator. Typically, the Kalman 
filter is used to perform a least-squares estimate using both dynamics and 
measurement updates. In this case, however, we will be doing just a multi-
measurement update step (i.e., no dynamics for this system). This attribute 
shows that a Kalman filter can be used to properly estimate the covariance of 
a least-squares solution. 

2.	 As shown in Sorenson (1966), as long as the measurements are not correlated, 
different measurements from the same time step can be applied in any order 
to the Kalman filter and the same result will be achieved. This enables us 
to create a computationally efficient algorithm that applies the measurement 
from only one point match at a time. Even though only the current estimate 
and covariance are stored, the final covariance will accurately reflect the 
impact of all point matches in the ICP algorithm. 

FIGURE 1 Stereo vision pipeline for automated aerial refueling (AAR)
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3.	 The H or measurement matrix of the Kalman filter can be used to express 
in which direction a particular measurement has information. By properly 
choosing the H matrix, we can create a covariance matrix that is an accurate 
representation of the ICP uncertainty. This concept of a measurement’s 
direction is key to properly estimating the uncertainty of the ICP algorithm 
and will be discussed in detail later in this section. 

Having motivated our choice of a Kalman filter, we show our specific implemen-
tation for this problem in Algorithm 1. Note that this algorithm is implemented 
after the ICP algorithm has completed execution, meaning we have both the best 
relative pose estimate (R, t) between the point clouds and a mapping, ϕ(i), that 
relates points in the sensed cloud to points in the reference cloud. Also note that 
the �r values are incremental rotations around the 1st, 2nd, and 3rd axes.

In Algorithm 1, we start with a large initial value for the covariance (theoret-
ically, infinity) and, with each measurement reduce the uncertainty depending 
on the new information given by the measurement. The unique aspects of our 
approach include:

1.	 The measurement covariance is estimated from the data rather than being an 
input. The actual calculation is shown on Line 4 in Algorithm 1 and is further 
discussed in Section 2.1. 

2.	 Each measurement only reduces the covariance in a particular direction 
determined by H. The key working principle is that the measurement 
model, H, is constructed so that each sensed point only provides information  
(a reduction in covariance) in the direction denoted by the vector, n. The 
underlying assumption is that if there were any error orthogonal to the 
normal vector, that error would cause the sensed point to be registered to  
the next point over. Thus, all the information orthogonal to the normal vector 
is hidden from the ICP algorithm while the information parallel to the normal 
is preserved. Sections 2.2 and 2.3 describe two approaches to computing the 
normal vector, n. 

2.1  Measurement Noise Estimation

Any approach to calculate the output noise must have a good understanding of 
the input noise. Note that the papers cited in Section 1.2.2 assumed that the input 
noise was known a priori. In our application, however, we are generating point 
clouds from a stereo vision setup. An inherent property of point clouds generated 
from stereo cameras is that the noise is strongly and non-linearly dependent on 
range. Thus, it is necessary to re-compute the input noise of the sensor for each 
image pair.

In a previous automated aerial refueling paper by Johnson et al. (2017), this error 
was characterized every 0.5 m from 30- to 100-m away from the camera. To utilize 
this method, however, creates a heavy characterization requirement. Nor can it 
take into account in-flight scenarios such as rain or out-of-focus cameras that may 
cause a change in the input uncertainty. 

Therefore, instead of attempting to pre-characterize the sensor noise, we propose 
estimating the input noise from the data itself. Specifically, we can estimate the 
measurement noise, σm

2 ,  as the mean squared error of the distances between the 
matched points as shown on Line 4 of Algorithm 1. Assuming the ICP algorithm 
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has converged onto the correct global minimum, σm
2  should accurately reflect the 

variance of the sensor noise orthogonal to the local surface.
Note that, for this calculation to be valid, there are a few assumptions that should 

be satisfied. First, the ICP algorithm needs to converge to the right solution. Similar 
to the other advanced approaches described in Section 1.2.2, the proposed algo-
rithm does not account for the possibility of the ICP algorithm converging to an 
incorrect solution. Second, we assume that the sensor noise is evenly distributed 
in all directions, following a spherical Gaussian distribution that is identical for 
each sensed point. Third, we assume all the sensed points are independent of each 
other. In Section 3, we present results demonstrating the efficacy of the proposed 
approach and its robustness to different imaging conditions.

2.2  Computing n from Point-to-Point Constraints

To execute the Kalman filter-based covariance estimation approach outlined in 
Algorithm 1, the ComputeNormal function must be defined. In this subsection, 
we describe a simple approach—the point-to-point method—to estimating the 

ALGORITHM 1
Kalman Filter-Based ICP Covariance Estimation

 Inputs   : p p R ts r� � � �, , , , ()�
 Outputs: P, the covariance matrix for ICP
 1 //Initialize P to a large value;
 2 P = 1e6 * I6;
 3 //Estimate the noise on the measurements;

 4 � �m i
N

s i r iN
2

1
21

� � �
� � ��  p Rp t, ,

 5 //Take each measurement (sensed point) individually and update P;
 6 for i ← 1 to N do
 7   n = ComputeNormal(Ps,i, {Pr}, R, t, ϕ(i));
 8   //Make a temporary variable v;
 9   v = Rpr, ϕ(i);

10    ��r v1
0 0 0
0 0 1
0 1 0

��� ;�
�

�

�

�
�
�

�

�

�
�
�

11    ��r v2
0 0 1
0 0 0
1 0 0

��� ;�
��

�

�
�
�

�

�

�
�
�

12    ��r v3
0 1 0
1 0 0
0 0 0

��� ;� �

�

�

�
�
�

�

�

�
�
�

13   H = [nx ny nz δr1 · n δr2 · n δr3 · n];

14    S T
m� �HPH � 2 ;

15   K PH� �TS 1 ;

16   P = (I6 – KH)P;
17 end
18 return P;
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normal that leads to improved covariance results compared with the Jacobian 
method.

The point-to-point method, illustrated in Figure 2, computes the normal vector 
as the difference between the sensed point (i) and its corresponding reference point 
(ϕ(i)). Because this vector should be normalized, it is computed as: 

	 n
p p

p p
�

�

�
� �

� �

s i r i

s i r i

, ,

, ,

�

� 

� (17)

While this method works well in general, we also found that when the noise is 
small and/or the reference points are spread far apart, the normal vectors gener-
ated by this method can be significantly different than the true normal vectors of 
the surface defined by the set of reference points. For example, consider the exam-
ple shown in Figure 3. The true normal of the reference surface should be pointed 
straight up as the reference points are in a horizontal line. Due to the small error in 
the true normal direction compared with the spacing between the reference points, 
however, the computed normal in this case will be significantly different from the 
true normal.

To overcome this weakness of the point-to-point approach, we introduce 
another approach for estimating normal vectors—point-to-plane—in the follow-
ing subsection.

2.3  Point-to-Plane Approach for n Estimation

The basic idea behind the point-to-plane approach is illustrated in Figure 4. The 
reference surface is locally approximated by forming planes between reference 
points that are close together. Then, rather than simply computing the unit vector 
to the closest reference point, the normal is computed to the closest plane. Note 
that there are several variants of the ICP algorithm that utilize a point-to-plane 
technique to try and improve the robustness of the ICP algorithm itself, e.g., Low 
(2004) and Segal et al. (2009).

FIGURE 2 An example n vector from the point-to-point method

FIGURE 3 An example point-to-point scenario that generates a normal vector with 
significant error
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FIGURE 4 A simplified illustration of the point-to-plane approach for computing n

In this application, n was found using a brute-force method. From the refer-
ence point cloud, the set {c} is populated from the eight closest neighbors in the 
reference model to Pr,ϕ(i). For each combination of two points in set {c}, a plane is 
defined between Pr,ϕ(i) and the two points, leading to different candidate planes. 
This produces a set of unit normal vectors local to Pr,ϕ(i). The plane normal vector 
with the greatest absolute dot product against the point-to-point normal vector is 
selected as the new n value.

While the point-to-plane method overcomes the problem discussed at the end 
of Section 2.2, there are two difficulties with this approach that can be observed. 
First, the reference model is assumed to be smooth and continuous. If the refer-
ence points have large discontinuities, then defining what the correct normal is is 
problematic. Second, information from points sensed past the edge of the reference 
model will not be properly accounted for. As shown in Figure 5, even though the 
presence of a point beyond the end conveys information orthogonal to the nor-
mal vector of the plane (i.e., the whole set of red points should shift right), the 
point-to-plane method will not consider that information. Therefore, the covari-
ance information in the direction of the plane will be overestimated.

3  RESULTS

To demonstrate the effectiveness of our new technique for estimating the uncer-
tainty of an ICP-based registration, we conducted several different experiments as 
outlined in this section. In Section  3.1, we demonstrate the effectiveness of our 
technique for estimating covariance with a simulated box object where the sensed 
point cloud consists of points on the box with noise added. In Section 3.2, we extend 
the simulation to a full aerial refueling scenario. In this simulation, the points 
are derived from a complete stereo block matching process, including generating 
images of the object, simulating a realistic process for obtaining the sensed point 
clouds. Finally, we compare our method with the Prakhya et al. (2015) method (the 
most comparable method in the literature) in Section  3.3. While the covariance 
estimates are almost indistinguishable from Prakhya et al. (2015), we demonstrate 

FIGURE 5 Point-to-plane when the sensed point is beyond the end of the reference points
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significant computational savings in our method. Furthermore, we present results 
showing our method is more robust to changes in the sensing scenario.

3.1  1x2x3 Box

In this section, several different ICP covariance estimation methods are run on 
a relatively simple shape: a 1x2x3 box. The box has dimensions of length 1 in the x 
direction, 2 in the y direction and 3 in the z direction. The faces orthogonal to the 
x-axis are the largest, so x is expected to have the lowest ICP covariance while the 
sides orthogonal to the z-axis are the smallest, indicating that the z translation’s 
covariance should be the highest.

Sensed points are sampled from the mathematical definition of the shape and 
then corrupted with isotropic Gaussian noise. The magnitude of this Gaussian 
noise is swept over a logarithmic range to demonstrate behavior at different 
noise levels. For the Jacobian method, this known noise level is fed directly into 
Equation (5), while our method estimates the covariance of the inputs from the 
sensed data. At each noise level, 100 runs of the ICP algorithm are sampled to 
generate a Monte-Carlo covariance to compare the prediction against. Each run 
in the Monte-Carlo simulation has an independently sampled set of sensed points 
corrupted with independently generated noise.

In Figure 6, we show the uncertainty results that come from the Monte-Carlo 
(MC) runs using the Jacobian method from Section 1. Note that the MC runs (solid 
plots) show significant differences between the x, y, and z translation as we dis-
cussed earlier, but the Jacobian-based covariance estimates are almost the same for 
all three axes. (Unfortunately, they are so similar that only one axis’ results can be 
viewed on the plot.) While not shown, a similar pattern is exhibited for the rota-
tional angles. This demonstrates the fundamental weakness of computing covari-
ance without explicitly considering the first step of the ICP algorithm. 

In Figures 7 and 8, we show the results of the point-to-point and point-to-plane 
methods from Section 2, respectively. The point-to-point method performs much 
better than the Jacobian method. However, it still suffers from the error case shown 
in Figure 3, causing it to assume information was generated in more directions 

FIGURE 6 Results of Jacobian Method on a 1x2x3 box
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than the box shape actually allows for. In aggregate, these optimistic errors com-
bine in the extended Kalman filter (EKF) to result in an output covariance estimate 
that is more optimistic than the truth (Monte-Carlo estimate).

Finally, the performance of the point-to-plane method is shown in Figure 8. By 
explicitly limiting the information generated by each sensed point to the vector 
orthogonal to the planes generated by the reference points, errors due to point mis-
matches and finding points between reference points can be overcome. In Figure 8, 
specifically note that (a) there is now significant differentiation in the predicted accu-
racy between points that corresponds with the size of the orthogonal planes (x has 
the smallest covariance, z the largest) and (b) the plot lines of MC vs predicted are 
significantly closer together than for either the Jacobian or point-to-point techniques. 
Note that the results are slightly less accurate at the lower end of the input noise 
range due to the noise becoming lower than the sample rate of the reference model.

FIGURE 7 Results of point-to-point method on a 1x2x3 box

FIGURE 8 Results of point-to-plane method on a 1x2x3 box
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To more concisely describe the closeness of plots together, we will use a new met-
ric, the root-mean-square log error (RMSLE) for future plots. The RMSLE between 
predicted and MC run covariance values can be computed as: 

	 RMSLE d n MC P
i

n

d d i d d i� � � �� �
�
�1
1

10 10
2

/ ( ) ( ), , , ,log log � (18)

where d is the index corresponding with elements to be evaluated (e.g., X→1, roll→ 4, 
etc.), i indexes across the different noise levels of the run, MC is the Monte-Carlo 
covariance, and P is the predicted covariance. In this metric, a 1 would signify a 
10x variance error and a 0.3 would signify a 2x variance error. Figure 9 shows the 
RMSLE of the three predictions on the 1x2x3 box. Using this view, it is easy identify 
the significant improvement in using either the point-to-point or point-to-plane 
method compared with the Jacobian method, and that the point-to-plane method 
is the overall best covariance estimator in this scenario.

3.2  Simulated Aerial Approach

While the previous section demonstrated that our method provided significant 
advantages over the Jacobian method, the way the sensed points were generated was 
not very realistic. To gain a more realistic evaluation of performance, in this test, the 
point-to-point and point-to-plane methods are applied to a simulated aerial approach 
of the receiver aircraft to the tanker. The simulation includes the entire vision pipe-
line: Cameras in the virtual world are mounted to the underside of the tanker and 
collect images of the receiver aircraft model; the stereo images are passed through ste-
reo block matching to create a sensed point cloud, and the output of the stereo block 
matching is then fed to the ICP algorithm. Figure 10 shows an example scenario 
where the tanker and receiver are illustrated, together with simulated imagery in the 
bottom-left and -right corner of the image. The yellow dots represent the sensed point 
cloud generated by this system, while the red dots are the reference point cloud.

The receiver aircraft is initially placed 25 meters away from the camera and is 
moved back in 1-meter increments to a distance of 45 meters. At each position, 100 
trials of ICP are run on the stereo images to create a Monte-Carlo truth covariance. 

FIGURE 9 RMSLE plot on a 1x2x3 box
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To inject randomness into the simulation, a secondary point light source is moved 
to a random location around the tanker for each trial. In this way, the point cloud 
generated with each Monte-Carlo run is randomized without substantially changing 
the simulation parameters.

The results of this experiment are shown in Figure 11, where the RMSLE of each 
method is plotted. Unfortunately, no single method appears to be the best across all 
axes at all times. However, we still believe the point-to-plane method is best overall as:

•	 It has no extreme errors. Note that the y-axis is on the log scale, so when the 
Jacobian method is off by >1.2, this corresponds to errors of more than an 
order of magnitude! The point-to-plane method, on the other hand, is usually 
less than 0.6 (a 4x variance error, or 2x standard deviation) and only exceeds 
this value once by a small amount. 

•	 In areas where the point-to-plane method is worse than the alternatives, the 
differences are generally small (and lower on the log scale) than some of the 
differences in the other direction. For example, when compared with the point-
to-point method, the x and yaw axes both see very significant improvements 
in the point-to-plane methods, while the roll and z-axis results have smaller 
differences between the point-to-point and point-to-plane approaches. 

•	 As we show in the next section, the point-to-plane method has essentially 
identical performance results when compared with the state-of-the-art 
technique introduced in Prakhya et al. (2015).

3.3  Prakhya vs our Method

In this section, Prakhya’s covariance estimation method (Prakhya et al., 2015)—
the most applicable method from prior literature—was compared against our 
Kalman filter approach. This test was performed on a 1x2x3 box as discussed in the 

FIGURE 10 The ICP algorithm performed on simulated receiver aircraft



    YUAN et al.

prior section, and both methods were in their point-to-plane configuration. The 
same method for computing normal vectors and the same input noise values were 
used for both algorithms.

The results show that the two estimation techniques have virtually identical pre-
dictions for the translational covariance states. The rotational states are also very 
similar but diverge slightly at higher input noise levels.

While the accuracy estimates are very similar, computationally, the requirements 
for these algorithms turn out to be completely different. In Figure 14, we show the 
runtime required to run the Prakhya algorithm vs our approach. Both methods 

FIGURE 11 RMSLE across various distances and lighting conditions in full AAR simulation

FIGURE 12 Translational comparison for Prakhya vs our method on a 1x2x3 box
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were implemented in C++ code and on the same computer. As shown, the runtime 
of our approach is approximately two orders of magnitude faster than the Prakhya 
approach. This is primarily due to the operations on large matrices required to 
implement the Prakhya approach versus the the sequential processing of each 
point in our approach. Note that this time comparison is purely for the covariance 
estimation step. ICP point correspondence still takes the majority of the time in the 
overall loop.

3.3.1  Robustness to Sensing Conditions

In addition to being more computationally efficient, the method proposed in this 
paper is more robust to different sensing conditions than prior work. Because the 
Prakhya method relies on a fixed input noise covariance matrix that is computed 

FIGURE 13 Rotational comparison for Prakhya vs our method on a 1x2x3 box

FIGURE 14 Speed comparison for Prakhya vs our method on a 1x2x3 box 



    YUAN et al.

a priori, its accuracy may be adversely affected by changes or degradation to the 
sensing scenario. Our method, on the other hand, computes the input noise values 
online, as described in Section 2.1, making it more robust to changing sensing con-
ditions. To demonstrate this robustness, a 21x21 box filter was applied to simulate 
a degraded sensor by blurring the input images. Example sensor inputs are shown 
in Figure 15. A real-life analogue of this effect would be fog accumulating on the 
camera lenses or the camera’s focus adjusting slightly (e.g., due to vibration).

In Figure 16, we plot the errors from two different techniques for dealing with 
the blurred sensor input: (a) we utilize precomputed input noise values collected 
from the nominal (unblurred) AAR run, and (b) with live computation of the input 
noise values as described in Section 2.1. Figure 16 shows that, for the majority of 
the states, computing the input covariance matrix live allowed our algorithm to 
increase the accuracy of the output predicted covariance matrix. This test shows 
that computing the input covariance online increased the robustness of the cova-
riance estimate while reducing the calibration requirement of the computer vision 
pose estimation system, representing a significant improvement over prior work.

FIGURE 16 Comparative results when sensor has degraded

FIGURE 15 Original image vs degraded image



     YUAN et al.

4  CONCLUSION

This paper introduces a novel method to estimate the covariance matrix of an ICP 
pose estimation problem. This approach uses the EKF update step to consolidate 
the information generated by each point in the sensed point cloud with each point 
being treated as a scalar measurement against its local surface normal vector. While 
this paper does not address some known shortcomings of prior methods, particu-
larly the assumption that the ICP algorithm converged to the best solution, this 
method can accurately estimate the covariance matrix of the 6d pose more rapidly 
and with more intuitive appeal than prior methods.

This method was tested against Monte-Carlo simulations of a basic shape as 
well as on a fully simulated stereo vision application of automated aerial refueling.  
Results show that, of the two methods introduced, the point-to-plane method con-
sistently is the better predictor of ICP covariance. Compared against the existing 
method by Prakhya et al. (2015), this approach produced near-identical covari-
ance estimations while achieving a runtime improvement of over two orders of 
magnitude.

In this approach, the input sensor covariance is recreated from error statistics of 
the measured point cloud so that no information about the sensor setup is needed 
prior to computation. This creates a self-tuning effect, reducing the characteriza-
tion load, and making the system robust to sensor degradation

For future work, a full sensor fusion application of automated aerial refueling 
can be implemented using the covariance matrix from this method. More gener-
ally, this ICP covariance estimation method can be directly applied to point clouds 
generated from other sources such as lidar, structured light, or 3D scanners.
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