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O R I G I N A L  A R T I C L E

Optimized Position Estimation in Mobile Multipath 
Environments Using Machine Learning

Nesreen I. Ziedan

1  INTRODUCTION

Multipath signals are a major source of positioning errors in urban environments. 
Global navigation satellite system (GNSS) signals often encounter obstacles on 
their path from a satellite to a receiver, including buildings, structures, and vegeta-
tion. These obstacles can obstruct, reflect, or diffract the signals to be received and 
may result in multiple versions of the same signal arriving at a receiver via different 
paths and with different code delays (McGraw et al., 2020). Therefore, multipath 
signals arriving with delays within 1.5 chips of the line-of-sight (LOS) signal cor-
relate with the local replica signal and can lead to distortion in the cross-ambiguity 
function (CAF; Ziedan, 2014). A distorted CAF can lead to tracking and positioning 
errors. Positioning errors can also occur when the LOS signal is completely blocked 
and only non-LOS (NLOS) signals arrive at the receiver.
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Abstract
The positioning accuracy of global navigation satellite system receivers is 
frequently degraded in urban areas due to reflected signals. A moving receiver 
faces additional challenges because it needs to adjust to changes in the statuses of 
the signals received, including line-of-sight (LOS), multipath, non-LOS, or invis-
ible. This paper proposes two new algorithms that can be used to enhance the 
accuracy of a moving receiver. The first algorithm is called Optimized Position 
Estimation (OPE). The OPE algorithm estimates the most likely paths and iden-
tifies the one with the optimal weight. The second algorithm is called Intelligent 
Signal Status Estimation (ISE). The ISE algorithm utilizes a self-organizing map 
machine-learning algorithm to estimate the probability of a change in signal 
status. The algorithms are tested using global positioning system C/A signals, 
which have over 50 changes in their statuses. The results obtained using these 
algorithms reveal that the accuracy is enhanced by as much as 96.3% (i.e., a 
27-fold improvement) when compared to results using a conventional naviga-
tion algorithm. 
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When processing GNSS signals, a conventional tracking module does not distin-
guish between LOS and multipath or NLOS signals. Therefore, a receiver continues 
to track a signal regardless of its status and generates pseudorange measurements 
for the navigation solution (Steingass et al., 2017; Ziedan, 2017). Erroneous pseudo-
range measurements that are contaminated by reflected signals can degrade posi-
tioning accuracy. One popular set of approaches used to overcome these errors 
focuses on the identification of multipath and NLOS signals and excludes these 
measurements from the positioning computation. These approaches range from 
simple integrity monitoring and consistency checking (Hwang & Brown, 2006; 
Parkinson & Axelrad, 1988; Yu, 1998) to those that involve more complex process-
ing (Hsu et al., 2015; Jiang et al., 2011; Smolyakov et al., 2020; Wen et al., 2019; 
Ziedan, 2018). Some approaches use specifically designed receiver architecture to 
identify and exclude erroneous signals (Hsu et al., 2015; Smolyakov et al., 2020; 
Xu et al., 2020). While these approaches can be effective in increasing the posi-
tioning accuracy, discarding satellites can lead to poor geometry (Zhang & Zhang, 
2009), an increase in the geometry dilution of precision (GDOP), and thus degraded 
positioning accuracy. Discarding data from contaminated satellites may also result 
in an insufficient number of satellites available for positioning computations.

Another set of approaches mitigates the multipath effect without discarding the 
contaminated satellites. These approaches usually work at the signal processing 
level. The earliest techniques that used this method were the Multipath Estimating 
Delay Lock Loop (MEDLL; van Nee, 1992) and the Double Delta approach (Garin 
& Rousseau, 1997; Garin et al., 1996). However, these approaches are not effective 
when dealing with multipath signal delays close to the LOS signal delay. Signals 
in urban multipath environments frequently include multiple reflections with a 
variety of path delays. More advanced methods include filter-based approaches  
(Closas et al., 2009; Giremus et al., 2007; Steingass et al., 2017; Ziedan, 2011) 
which can adjust to the presence of a small number of reflected signals before the 
processing overhead becomes a hindrance. Other approaches designed to address 
a relatively small number of reflected signals are those based on sparse estima-
tion theory (Lesouple et al., 2019).

A recently developed category of approaches utilizes information from the sur-
rounding environment for multipath mitigation. Three-dimensional (3D) building 
models, mapping, and ray tracing can be used to generate predictions regarding 
satellite status and the path lengths of the reflected signals. Examples of approaches 
that employ these predictions include shadow matching (Groves et al., 2020; 
Wang et al., 2013; Yozevitch & Ben-Moshe, 2015), ray tracing (Bradbury et al., 
2007; Hsu et al., 2016; Lau & Cross, 2007; Miura et al., 2013; Ziedan, 2017), and 
neural networks (Li et al., 2019). While these approaches perform well in static 
multipath situations, they may not be fully adequate when used in dynamic mobile 
environments (Ziedan, 2022).

A receiver that is moving in an urban environment faces additional challenges 
for multipath mitigation. The status of the signals received is not constant and 
may change while the receiver is in transit. A signal can transition between four 
states, including LOS, multipath, NLOS, or invisible. For example, a LOS signal can 
become an NLOS signal when the surrounding structures block and reflect what 
was a direct signal. A tracking module can follow changes in these parameters and 
can continue to track an NLOS signal. Therefore, the objective of this paper is to 
develop an algorithm that utilizes both multipath and NLOS signals in position 
computations. The algorithms developed using this approach will be able to adapt 
to changes in the received signal status by identifying the transition from one status 
to another and adjusting the output accordingly.



    ZIEDAN

Two algorithms are proposed. The first algorithm is called Optimized Position 
Estimation (OPE). OPE estimates the most likely sequences of positions on a map, 
where each sequence forms a path. OPE then identifies the path with the optimal 
weight. The second algorithm, which is called Intelligent Signal Status Estimation 
(ISE), contributes to the computation of the optimal weight. The ISE algorithm esti-
mates the probability that a received signal will undergo a change in status and uses this 
information to compute the probability of transitions between these positions. Signal 
status changes based on the appearance or disappearance of LOS or reflected signals.

The ISE algorithm employs a supervised self-organizing map (SOM) neural 
network machine-learning algorithm (Kohonen, 1990) to compute the probabil-
ity of a change in signal status. The features of the SOM network are extracted 
from a tracking module. The probabilities of status changes of the satellites above 
the horizon are used to compute the probabilities of a transition between posi-
tions. This information is then used to compute the weight function of the OPE 
algorithm. A conventional SOM network uses unsupervised learning and clusters 
inputs based on their features (Vesanto & Alhoniemi, 2000). By constrast, the pro-
posed SOM network uses a supervised learning approach to estimate the probabil-
ity of a change in signal status.

In a recent publication by Ziedan (2020), two position estimation algorithms that 
could be used in multipath environments were proposed. The first algorithm is called 
Map Matching with Tracking Feedback (MMTF). The MMTF algorithm finds the 
most likely candidate position on a map based on predictions from the received signal. 
The second algorithm is called Adaptive Position Estimation (APE). The APE algo-
rithm uses output from the MMTF algorithm to compute code delay errors due to 
signal reflection and diffraction and removes them before proceeding to compute a 
position estimate. As observed by Ziedan (2020), the accuracies of the MMTF and APE 
algorithms differed from one another. In some cases, these differences were not small.

The proposed OPE algorithm integrates the MMTF and APE algorithms to achieve 
an optimized estimation of the signal position. The OPE algorithm extends the esti-
mation to the most likely path instead of the most likely position. As described by 
Ziedan (2020), the status of a signal was estimated using a Gaussian-like function 
that generated a probability based on the estimated change in the carrier-to-noise 
ratio (C / N0). In this paper, the machine learning ISE algorithm utilized several addi-
tional features to estimate the signal status and did not rely on the C / N0 alone.

While the proposed OPE algorithm does not operate at the signal processing level, 
it does require information from the tracking module. Therefore, it can operate 
with any receiver as long as the tracking module can provide the necessary infor-
mation (e.g., estimates of the C  /  N0). Furthermore, because the OPE algorithm 
estimates the most likely path, it can be classified as working with multiple epochs.

The remaining sections of this paper are organized as follows. First, the design 
of the OPE algorithm is presented; this is followed by the introduction of the ISE 
algorithm. The selection of specific features is explained in detail, followed by an 
explanation of the design of the SOM algorithm. The experiment and results are 
then provided. Finally, the summary and conclusions are discussed.

2  OPTIMIZED POSITION ESTIMATION (OPE)

The OPE algorithm developed for this study keeps track of the number (Ng) of the 
most likely paths over Nn steps. Each path has an associated weight, or W g. After 
Nn steps, the path with the optimal weight is selected as the estimated path and the 
positions that constitute the estimated path are identified as the estimated positions.
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There are three functions that contribute to the determination of path weight (W g). 
Various available data are utilized to determine path weight. 3D building models 
and the accelerated ray tracing algorithm (ART) developed as described in Ziedan 
(2017) are used to facilitate predictions of reflected signals and their path lengths. 
Analysis of information extracted from the tracking module is used to assess the 
probability of a receiver transitioning to a position based on the predictions of 
reflected signals. Therefore, the first function is computed from the transition prob-
ability, UE En

g
n
g

� �1
, between two consecutive positions, En

g
−1 and Eng, along a path, qg. 

UE En
g

n
g

� �1
, using the developed machine-learning ISE algorithm.

The first function alone is not always sufficient because more than one position 
can yield similar predictions of reflected signals. The second function circumvents 
this issue by computing the probability that the Eng position is correct. This is done 
by accounting for the impact of the predicted code delays on pseudorange mea-
surements and comparing the computed navigation solution to Eng. Therefore, the 
second function is computed from the difference between Eng and an estimated 
position calculated by the APE algorithm as described by Ziedan (2020).

The third function is computed from the distance between En
g
−1 and Eng based on 

the estimated velocity. The objective of the third function is to minimize jumps in 
the estimated positions that may occur if there are more than one Eng positions that 

yield similar transition probabilities, UE En
g

n
g

� �1
, even if these positions are not adja-

cent to one another. Figure 1 provides an outline of the functions that contribute to 
the computation of the path weight.

Each most likely path, qg, consists of Nn most likely sequences of positions,  
Eng . The Eng positions determined at a step n are based on a set of candidate positions, 
Cnj . In this case, Eng are a subset of Cnj  that have the highest transition probabilities 
from En

g
−1 to Cnj , as computed by the ISE algorithm and the distance between En

g
−1 

and Cnj . Using the APE algorithm described by Ziedan (2020) for each position Eng , 
the estimated signal status, ηn

gs , for a satellite s is used to estimate the code delay 
error, λns . The estimated λns  is removed from the code delay estimate, ��ns , and 
then a position Bng  is computed. The difference between the most likely position 
Eng  and the position Bng, computed as ||Bng – Eng||, is used to compute a probability 
Dng. Following this computation, Dng and the transition probabilities are used to 
update the weight function, Wn

g . After Nn steps, the path with the optimal weight 
is identified as the estimated path.

There are two types of estimated positions. The first type is estimated from 
candidate positions that are located at the center of predefined discrete cells on 
a map. These are the Eng of these positions. The second type is computed from a 
navigation solution. These estimated positions have continuous values and are 
not restricted to predefined discrete cells. Therefore, the estimated path is based 
on two sets of estimated positions. The first set is composed of the Eng positions, 

FIGURE 1 Outline of the functions that contribute to the computation of the path weight
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which are taken from the discrete map cells Cnj ; this set of positions is called OPE 
map matching (OPE-MM). The second set includes the corresponding Bng posi-
tions, which are calculated from a navigation algorithm; this set is called OPE 
navigation (OPE-NAV).

Figure 2 provides an overview of the OPE algorithm. The algorithm can be sum-
marized as follows:

1.	� An initial position estimate, P0, is obtained. The most likely position Eg
0 is 

set as P0. The initial path consists of only Eg
0 , with weight W g

0 0= .
2.	 Candidate positions, Cnj, located in the area around En

g
−1 are determined.

3.	� At each candidate position, Cnj, the ART algorithm described by Ziedan 
(2017) is used to predict the signal status (i.e., LOS, multipath, NLOS, or 
invisible) of each satellite, s, above the horizon. The ART algorithm also 
provides predictions for reflected signal path lengths.

4.	� The transition probability, UE Cn
g

n
j

� �1
, between each En

g
−1 and Cnj, is then 

computed using the ISE algorithm developed in this study in which 

UE Cn
g

n
j

� �1
 represents the probability that the predicted signal status 

identified above in Step 3 is correct.
5.	� Another transition probability, VE Cn

g
n
j

� �1
, is then computed based on the 

estimated velocity for the path qg as follows:
  5.1	� A value less than 1 is defined as κ  and an average distance is defined 

as dav; both κ  and dav are tuning parameters. Using this method, one 
can assign a probability between κ  and 1 to candidate positions that are 
separated from a predicted position, Png, by a distance of less than dav. 
As the distance increases beyond dav, the probability will decrease more 
rapidly. This is addressed below in Steps 5.2 through 5.6.

  5.2	� The predicted position, Png, at step n and path g, is computed as 

	 ˆ   
pp

gg g
n n Nn NP E v T−= + � (1)

FIGURE 2 Overview of the developed OPE algorithm
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where ˆ g
nv  is the estimated velocity for path g, as per the APE algorithm as 

described in Step 9. Np is a number of steps and is also a tuning parameter. 
TNp

 is the time between step n – Np and n.
  5.3	� The distance between Png and each candidate position, Cnj , is computed 

as  g j
nd . The minimum distance between Png and all the Cnj  positions is 

identified as dmin
g .

  5.4	 The following difference is computed: � d dg
av�  – dmin

g .
  5.5	 The ratio Rd

g is computed as 

	 



R
dd

g
g

�
�
�
1 � � (2)

  5.6	 VE Cn
g

n
j

� �1
 is 

	 V d d R d d d
dE C
n
gj

min
g

d
g

min
g

n
gj

av

n
gjn

g
n
j

� �
�

� � � �

� �1

1 ( ) �
(

,


for
� 

d R d dmin
g

d
g

n
gj

av) , for �

�
�
�

��
� (3)

6.	 The total transition probability is 

	 � E C E C E Cn
g

n
j

n
g

n
j

n
g

n
jU V

� � �� � �
�

1 1 1
������ � (4)

where, � Eng�1
 is used to update the weight function, Wn

j, for each candidate 
position as 

	 W W wn
j

n
g

t E Cn
g

n
j� �� ��

1
1

�� � (5)

where, Wn
g
−1 is the total weight for path g at step n �� �1 , and wt < 1 is the 

contribution of a transition probability to a path weight.
7.	� The Ng most likely positions, Eng, are determined as the candidate posi-

tions, Cnj, with the highest Wn
j. The weights, Wn

g , are set as Wn
j of the Ng 

most likely positions. The Ng paths are updated by appending Eng to each 
corresponding path, qng.

8.	� Based on the signal status determined at each Eng, errors in the code delays 
are estimated. For example, an NLOS signal would generate an error in 
the code delay computed based on the extra path length of the NLOS sig-
nal compared to the path length of the LOS signal; the NLOS signal extra 
path length is obtained using the ART algorithm described in Step 3. More 
details on this calculation can be found in Ziedan (2020).

9.	� For each Eng, the APE algorithm described by Ziedan (2020) is applied to 
compute a position, Bng, and a velocity, ˆ g

nv .
10.	 A probability, Dng , is computed based on the difference B En

g
n
g− , where 

	 D
B E

n
g

r

n
g

n
g

r
� �

��

�

�
�

�

�

�
�

�

�

�
�
�

�

�

�
�
�

1
2

�� �
exp � � (6)

with σ r as a standard deviation. This is also a tuning parameter.
11.	 The weight function, Wn

g , is updated as 

	 W W w Dn
g

n
g

t n
g� � �� �1 � � (7)
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12.	� If the current step number n is equal to Nn, then Step 13 is executed. 
Otherwise, the algorithm returns to Step 2.

13.	� The estimated path is identified as the path with the optimal weight. The 
estimated positions are set as the positions that constituted this estimated 
path. The position located at the end of the estimated path is used as an 
initial position, and the algorithm returns to Step 1.

Figure 3 illustrates the transition from the most likely positions, En
g
−1, to the can-

didate positions, Cnj , and then to the following Eng. Each oval represents one posi-
tion. The circles inside each oval represent the statuses of the satellites above the 
horizon at that position.

3  INTELLIGENT SIGNAL STATUS ESTIMATION (ISE)

The ISE algorithm uses several features to estimate the probability of transition 
between positions. This probability is computed from the probabilities of change in 
the signal status of the satellites above the horizon.

A probabilistic and supervised self-organizing map (SOM) neural network algo-
rithm is introduced to estimate the probability of change in a signal status. SOM is 
a machine-learning approach used for data clustering (Kohonen, 1990; Vesanto & 
Alhoniemi, 2000). A conventional SOM is an unsupervised approach that can be 
used to classify input data into clusters with similar features. Several publications 
have described modified supervised and probabilistic approaches that use SOM 
functionalities to address problems in different fields (Barreto & Araujo, 2004; 
Papadimitriou et al., 2001; Polzlbauer et al., 2008; Song et al., 2007). A SOM con-
sists of an input layer and an output layer. The input layer represents a number of 
Nnf features. The output layer transforms the input data into 1D or 2D maps with 
a total of Nnu neurons. A SOM involves both training and classification phases. 
Interested readers are referred to Kohonen (2001) for comprehensive details about 
SOM algorithms and their applications.

The features used as input for the SOM network include four features derived 
from the output of the delay-locked loop (DLL) and two features derived from the 
change in the C / N0. Although the change in the C / N0 was shown to be effective 
in estimating the transition probability in Ziedan (2020), machine learning was not 
used in that case.

FIGURE 3 Illustration of the transition from the most likely positions, En
g
−1, to the candidate 

positions, Cnj , and then to the next Eng; each oval represents one position. The circles inside the 
ovals represent the statuses of the satellites above the horizon at that position.
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3.1  ISE Features

The ISE features are derived from the output of the tracking module. These fea-
tures and their significance are discussed in this section.

The objective of using a SOM is to quantize the effect of a change in a signal status 
based on a probability by using various features. The probabilities of status changes 
of the satellites above the horizon are used to compute the probabilities of transition 
between positions. These values are then used to compute path weights.

A Doppler shift changes the received pseudorandom noise (PRN) code dura-
tion, as explained by Ziedan (2006). A negative Doppler shift increases the code 
duration, while a positive Doppler shift decreases it. An interval T, considering a 
Doppler shift fd, was changed to Tfd  as follows (Ziedan, 2006):

	 T T
f

f f Tf
L

L d d
d
�

� �
�

� /� 2
� (8)

where fL  is the carrier frequency and αd  is the Doppler rate. A tracking module 
generates an estimate of the start of the next integration interval as follows: 

	 t t T
f

f f Ts s I
L

L d i I
ei i

i
i

� �
� �

�
�1 2

�
� /�

� � (9)

where TI is the integration interval and tsi  and tsi−1
 are the estimated start of the i-th 

and (i-1)th integration intervals, respectively. fdi  and αi  are the estimated Doppler 
shift and rate, respectively. τ ei  is the estimated code delay error generated from the 
DLL. When a loop is in a steady state, then τ ei  should result in stabilization (i.e., it 
should have a zero mean and a stable variance). The mean and standard deviation 
of τ ei  are defined as ��e

 and ��e
, respectively.

When a signal status changes due to the appearance or disappearance of a 
reflected signal, then τ ei  will increase in magnitude, and ��e

 and ��e
 will change. 

Experimental testing using real and simulated data revealed that it is possible to 
use ��e

 and ��e
 to identify a probability of change in a signal status. One such exper-

iment is shown in the text to follow. Therefore, ��e
 and ��e

 are used to generate 
features for the ISE algorithm.

The following is an example of an experiment that illustrates the effect of a 
status change on ��e

 and ��e
 that was run using simulated GPS C/A signals. GPS 

signals are simulated using the GNSS software receiver developed as described 
by Ziedan (2006) and Ziedan and Garrison (2008, 2009, 2011). A coherent inte-
gration of 20 ms is used, with fd = – 1500 Hz and �d � 0 5.  Hz/sec. The sampling 
rate is fs = 6500 kHz. The measurement noise is generated from a white Gaussian 
distribution, while the oscillator phase and frequency noises are generated from 
normal random walks as described by Ziedan (2006). The runtime is 40 seconds. 
During the first 10 s, only the LOS signal is present with C  / N0 = 40 dB-Hz. 
At t  =  10  s, the LOS signal is blocked, and an NLOS signal appears with 
C  /  N0  =  35  dB-Hz and a code delay of �m � 0 23.  chips. At t  =  20  s, the LOS 
signal reappears. A new multipath signal appears with C / N0 = 30 dB-Hz and 
a code delay of �m � 0 314.  chips. At t = 30 s, the multipath signal disappears. 
Therefore, this scenario presents three distinct status changes, which include 
LOS to NLOS, NLOS to multipath, and multipath to LOS, at t = 10, 20, and 30 s, 
respectively.

For illustration, ��e
 and ��e

 are computed over intervals with lengths that range 
from 0.02 s to 0.5 s. This means that the two parameters are computed over 0.02 s, 
then 0.04 s, and so on. Figure 4 shows the heat map for ��e

, where the horizontal 
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axis is the start time of a computation interval and the vertical axis is the computa-
tion interval. The ��e

 values are normalized. As shown, at t = 10 s, there is a large 
increase in ��e

 when the LOS signal disappears and an NLOS signal appears. As 
the DLL converges, ��e

 decreases gradually, until it returns to a level similar to that 
observed before the change in signal status. At t = 20 s, the time point at which the 
LOS signal and a new multipath signal appears and the aforementioned NLOS sig-
nal disappears, the increase in ��e

 is larger than in the previous case, but the DLL 
converges more rapidly. At t = 30 s, the time point at which the multipath signal 
disappears and only the LOS signal remains, the increase in ��e

 is the smallest, and 
the DLL converges rapidly. Similarly, the heat map shown in Figure 5 documents 
the change in ��e

 in which different status changes exhibited different patterns in 
the change of ��e

.
Based on the analysis presented above, four features are computed from ��e

 and 
��e

. The feature computation is performed using a sliding window approach. This 
means that if a window has a size of (2j + 1), then for a position at time ti, the com-
putation is performed using data from ti–j to ti+j. Meanwhile, for a position at time 
ti+1, the computation is performed using data from ti+1–j to ti+1+j, i.e., the window 
slides forward by a factor of 1. ti is defined as the time to check for a transition. Two 
time periods are defined; the first time period, TPi–1, begins and ends before ti, while 
the second one, TPi, begins and ends after ti. tsi–1 and tei–1 are defined as the start 
and end time of Tpi−1

, respectively. tsi  and tei  are defined as the start and end time 
of Tpi , respectively. Ti*  is defined as the time period between tei−1

 and tpi , where tpi  is 
located inside Tpi . Figure 6 illustrates the relationship between these different time 
periods. The four features include: 

•	 The difference between the average ��e
 over Tpi−1

 and Tpi , defined as ���ei
•	 The maximum change between the average ��e

 over Tpi−1
 and the individual 

��e
 over Ti*  

•	 The difference between the average ��e
 over Tpi−1

 and Tpi , defined as ���ei  

FIGURE 5 Illustration of the change in the standard deviation, ��e
, for the investigated 

scenario

FIGURE 4 Illustration of the change in the mean, ��e
, for the investigated scenario
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•	 The maximum change between the average ��e
 over Tpi−1

 and the individual 
��e

 over Ti*

The two additional features are computed based on the estimated 0
ˆ /C N . This 

computational approach is similar to the one used for the first four features, which 
is as follows: 

•	 The difference between the average 0
ˆ /C N  over Tpi−1

 and Tpi , defined as  
∆ 0

ˆ /
i

C N
•	 The maximum change between the average 0

ˆ /C N  over Tpi−1
 and the individual 

0
ˆ /C N  over Ti*

3.2  Supervised Self-Organizing Map (SOM)  
Neural Network

This paper proposes a novel supervised SOM neural network algorithm. 
Conventional SOM algorithms are unsupervised and used to classify input data 
into clusters with similar features.

Four satellites statuses are defined as described by Ziedan (2020). These include 
LOS (L), multipath (M), NLOS (N), and invisible (I). Therefore, as explained by 
Ziedan (2020), there are 16 possible transitions. Each satellite, s, can have only one 
status, ηns , at a single instance n. A transition from a source status, X, to a destina-
tion status, Y, can take place with X and Y as either L, M, N, or I. The 16 potential 
transitions are as follows:

•	 If X = L, the potential transitions are L → L (LL), L → M (LM), L → N (LN), 
and L → I (LI).

•	 If X = M, the potential transitions are M → L (ML), M → M (MM),  
M → N (MN), and M → I (MI).

•	 If X = N, the potential transitions are N → L (NL), N → M (NM), N → N (NN), 
and N → I (NI).

•	 If X = I, the potential transitions are I → L (IL), I → M (IM), I → N (IN), and 
I → I (II).

Four SOM networks are used (i.e., one for each source status). Each SOM 
network has a size of Nnu = 36 neurons. The inputs of each SOM network are 
the features extracted from a signal with a satellite source status that is similar 
to that of the SOM network. This means that the SOM network is designed to 
generate transition probabilities based on the assumption of a specific source 
status.

For the training phase, the inputs of each SOM network are used as training data 
for each of the four transitions with the same source status. The number of training 
samples for each SOM network are defined as NtX

. Each training sample included 

FIGURE 6 Illustration of the relationship between different time periods
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Nnf = 6 features. SOM network training is performed using the MATLAB neural 
network clustering tool (nctool).

After training, each SOM network generates a weight matrix with a size equal 
to N Nnu nf× . Each row in the weight matrix represents the weights of the Nnf fea-
tures for one neuron. The weight matrices for the four networks are defined as 
Wx, X = L, M, N, or I. Figure 7 outlines the training steps. Of note, a conventional 
SOM network would classify a new sample by finding the closest neuron, i.e., the 
neuron located at a minimum distance from the sample to be classified. However, 
the SOM network developed here goes a step further and assigns each neuron with 
a probability of transition to each Y. This requires a conversion from unsupervised 
to supervised learning. Figure 8 outlines the steps involved in the conversion to 
supervised SOM, which is done as follows:

1.	� Each training sample is labeled by the transition that is used to generate 
it, XY.

2.	� The training is performed as is described above.
3.	� The Euclidean distance between each training sample and each neuron is 

computed. This produced a distance matrix, DX, for each network, with a 
size of N Nnu tX

× . Each training sample is assigned to a neuron based on 
minimum distance. The minimum distance, dminXY , and the sample label 
are recorded.

4.	� Each neuron had labeled training samples assigned to it together with 
their dminXY . Different transitions with the same X could be assigned to the 
same neuron, albeit with different values of dminXY .

5.	� For each neuron, the probability of transition to each destination status 
is computed from dminXY . A probability matrix, PrX , of size N Nnu Y×  is 
computed for each network, where NY = 4 is the number of destination 
statuses with the same source. The probability matrix is computed using 
an approach similar to the one used to compute VE Cn

g
n
j

� �1
 in Section 2. The 

probability matrix is computed as follows:
  5.1	� For each neuron, the mean distance, EuXY , of dminXY  of the samples with 

the same label is computed, where the subscript u refers to a neuron and 
XY refers to a label. EuXY  is used as the main factor in the computation of 
the probability of transition assigned to a neuron.

FIGURE 8 Outline of the proposed supervised SOM

FIGURE 7 Outline of the SOM training process
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  5.2	� For each destination Y, the mean of EuXY  calculated over all neurons is 
computed as EXY. The minimum of EuXY  from all the neurons is identified 
and defined as EminXY . The difference between EXY  and EminXY  is computed 
and defined as EdiffXY .

  5.3	� A ratio RXY is computed as 

	 R
EXY
diffXY

�
�1 � � (10)

where v is a value less than 1.
  5.4	� The entry in the matrix PrX  for a destination Y and a neuron u, which rep-

resents the probability of a transition X → Y at a neuron u, is 

	 P
E E R E E E

E Er
u min XY min u XY

u min
XYu

XY XY XY XY

XY XY

�
� �� � � �

� ��
1 , �for

� �� �

�
�
�

��
R E EXY u XYXY

, �for
�

The goal is to assign a probability between v and 1 to transition with a 
mean distance less than the mean EXY . The transition with the minimum 
mean distance EminXY  will have a probability of 1 at its assigned neuron. As 
the mean distance EuXY  increases beyond the mean EXY , the probability 
will decrease more rapidly.

6.	� The probability of a transition X → Y for a new sample is determined by 
finding the neuron in the network X with the minimum distance to the 
new sample. The probability of transition would then be PrXYu

.

7.	� The probability of transition UE Cn
g

n
j

� �1
 between a position En

g
−1 and each 

candidate position, Cnj , is determined based on the status X at En
g
−1 and 

the predicted status Y at Cnj .

3.3  Generating Training Samples

The training samples are extracted from the output of a tracking module that 
contained simulated GPS signals. GPS signals are simulated and tracked using 
the GNSS software receiver that was developed as described by Ziedan (2006) and 
Ziedan and Garrison (2008, 2009, 2011).

500 GPS signals are generated. Each signal included approximately 30 different tran-
sitions and lasted for approximately 150 seconds. This resulted in the generation of a 
minimum of 500 samples for each transition. Some transitions are present in more 
than 1,000 samples (e.g., multipath transitions) which covered a wide range of possi-
bilities. Each signal parameter (e.g., C / N0, Doppler shift, number of multipath signals, 
multipath delays, power, and phase) is generated based on random distributions. All 
transitions times are marked for use in generating the training samples.

The output, which is the tracking of each signal, is processed to extract the six 
features required for each training sample. Each training sample is marked by its 
transition and is used in the supervised version of the SOM network developed in 
this paper.

4  EXPERIMENTS AND RESULTS

GPS C/A signals are used to evaluate the proposed OPE algorithm. The signals 
are generated using the Skydel software-defined GNSS simulator (Orolia, 2020). 
While the Skydel simulator can generate GNSS signals using a real route on a 
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map, it does not consider the effect of the surrounding environment on the signals 
received, for example, multipath reflections. However, the simulator can generate 
signals from multipath reflections when the multipath characteristics and timing 
have been set up appropriately.

In order to generate signals that are typically detected in an urban area, an actual 
urban area is used as the location of the simulated scenario. The area selected for 
this simulation is located inside the main campus of Zagazig University, Egypt. The 
scenario start time is April 4, 2021, at 8:00 AM GPS time. The route of the tested 
scenario (described further below) is analyzed using the ART algorithm described 
by Ziedan (2017) to obtain satellite statuses and the path lengths of the reflected 
signals at each point on the route. Furthermore, the timing and duration of each 
signal are recorded and used to code a Python script for the Skydel simulator. The 
simulator is then run to generate the signals that identified the correct satellite 
statuses.

Figure 9 shows a display from the user interface (UI) of the Skydel simulator. 
Figure 10 shows this area on Google Earth. Google Earth does not provide 3D 
images of the buildings in this area; thus, 3D building models are constructed as 
described by Ziedan (2017). The constructed models are superimposed over the 
view shown in Figure 10. This model is needed to run the ART algorithm inside the 
OPE algorithm; therefore, the model is reconstructed using MATLAB as described 

FIGURE 9 A view of the tested area from the UI of the Skydel simulator

FIGURE 10 A view of the test area from Google Earth with superimposed 3D building 
models
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by Ziedan (2017). Figure 11 shows the reconstructed model. There are seven sat-
ellites above the horizon during the simulation with PRNs of 13, 15, 17, 19, 24, 28, 
and 30. Figure 12 depicts a sky plot of these satellites.

The simulated scenario began at the point marked Start Point and ended at the 
point marked End Point as shown in Figure 10. The total running time of the sce-
nario is 180 seconds. A vehicle moving at a velocity of 4 km/hour is included in 
the simulation to represent heavy stop-and-go traffic. The scenario included four 
intervals. During the first and third intervals, the vehicle is moving. During the 
second and fourth intervals, the vehicle is static. The scenario began with the 
vehicle moving for approximately six seconds. The vehicle then stops for approx-
imately 16 seconds, and then moves again for approximately 120 seconds until it 
reaches the End Point, after which it stops for approximately 40 seconds until the 
end of the scenario. The four intervals are defined as T1, T2, T3, and T4, respec-
tively. The scenario includes more than 50 changes in signal status. Figure  13 
shows the number of signals associated with each of the four statuses (L, M, N, 
and I) over the entire scenario. As shown, only five satellites are in LOS status 
between approximately 0 to 80 seconds, except for the short time during which a 
sixth satellite is in LOS. After 80 seconds, the number of LOS signals decreased, 
eventually reaching only two LOS signals during the final interval. Moreover, for 
most of the simulation, one or two of the satellites are invisible. The number of 
multipath and NLOS signals ranges from one to three each during the simula-
tion. Figure 14 shows how the signal statuses of PRNs 24 and 30 change during  

FIGURE 11 A reconstruction of the 3D building models

FIGURE 12 A sky plot of the satellites above the horizon
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the scenario. This scenario is thus suitable to test the OPE algorithm as it features a 
challenging environment with a continuous change in signal status.

Each satellite above the horizon is acquired and tracked using the software 
receiver developed as described by Ziedan (2006) and Ziedan and Garrison (2008, 
2009, 2011). The navigation message is decoded and used to obtain the parameters 
needed to compute the navigation solution. This is done as described by Ziedan 
(2019, 2020). The Skydel simulator provides a RINEX navigation file that is also 
used in the computation of the navigation solution.

For the OPE algorithm, an area of approximately 250 m by 250 m (i.e., 62,500 m2)  
is considered. The area is divided into cells with centers separated by 4  m. Cells 
located inside buildings are discarded. When testing, the ART algorithm is applied 
to each cell to obtain the status of each satellite and the path lengths of the 
reflected signals. The following values are used for the various tuning parameters: 
dav = 25 m, � � 0 9. , v = 0.9, Np = 9, and wt = 0.5.

Positions are also estimated using a conventional navigation solution with-
out applying the OPE algorithm for a comparison. Figure 15 shows the 
root-mean-square (RMS) of the ENU horizontal position error for the conven-
tional approach as well as for the estimated OPE-NAV and OPE-MM over the 
duration of the scenario. The RMS error is computed every 200 ms. The jump in 
the positioning accuracy observed using the conventional approach is a direct 
response to signal transitions (i.e., becoming invisible or reappearing). The mod-
ule used to track these signals can detect a loss of lock and can reacquire a signal 
once it becomes visible again. A complete description of the software receiver used 
here can be found in Ziedan (2006) and Ziedan and Garrison (2008, 2009, 2011). 

FIGURE 14 Illustration of the changes in the signal statuses of PRNs 24 and 30 during the 
entire scenario

FIGURE 13 Illustration of the number of signals in each of the four statuses (L, M, N, and 
I) over the entire scenario
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Meanwhile, there is no jump in the positioning accuracy when using either 
OPE-NAV or OPE-MM to estimate positions. The OPE algorithm can detect 
changes in the signal statuses and adjust the estimated code delay accordingly to 
mitigate potential errors resulting from multipath or NLOS signals estimated by 
OPE-NAV. The adjustment of the code delay is done as described for the APE algo-
rithm (Ziedan, 2020). The use of the weight function contributes to the enhance-
ment of the estimated most-likely cell and improves the accuracy of the estimated 
OPE-MM position. This enhancement in OPE-MM accuracy also enhances the 
accuracy of OPE-NAV positioning.

There are only two LOS signals, two multipath signals, two NLOS signals, and 
one invisible signal at interval T4. As shown in Figure 15, the RMS error of the 
conventional approach degrades rapidly during this interval. However, the estima-
tion accuracy remains stable when using the OPE algorithm, which also provides 
high-level positioning accuracy.

Figure 16 documents the RMS error for each interval of the scenario using both 
the conventional approach and the OPE algorithm. The accuracy enhancement 
provided by the OPE-NAV algorithm over the conventional approach is 92%, 90%, 
84%, and 89% at intervals T1, T2, T3, and T4, respectively. The accuracy enhance-
ment of the APE algorithm described by Ziedan (2020) compared to a conventional 
approach ranged from 67% to 80%. The accuracy enhancement of the OPE-MM 
positioning over the conventional approach is 96.4%, 96%, 85%, and 94.7% at inter-
vals T1, T2, T3, and T4, respectively. The accuracy enhancement of the MMTF 
algorithm described by Ziedan (2020) that estimates cells on a map compared to a 
conventional approach ranges from 42% to 96%.

FIGURE 15 The RMS of the ENU horizontal position error for a conventional approach and 
the estimated OPE-NAV and OPE-MM positions over the entire scenario

FIGURE 16 The RMS error at each interval of the scenario using a conventional approach 
and estimated OPE-NAV and OPE-MM positions
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Collectively, these results suggest that the OPE algorithm can achieve supe-
rior accuracy enhancement when compared to the APE and MMTF algorithms. 
However, a direct comparison between the OPE, APE, and MMTF algorithms will 
be needed to assess actual differences in performance. This evaluation will be per-
formed in a future study.

As shown by Ziedan (2020), no weight function was used, and the MMTF algo-
rithm was used to estimate cells, not paths. In this situation, the APE and MMTF 
algorithms provided different accuracies when applied to different conditions. This 
result suggests that, in some cases, use of the APE algorithm results in better accu-
racy, while in other cases, the opposite is the case. Here, the OPE-MM estimated 
positions are more accurate than those provided by OPE-NAV by 54%, 57%, 6%, 
and 49% during intervals T1, T2, T3, and T4, respectively. The OPE-NAV positions 
are obtained using a navigation algorithm, while those generated by OPE-MM 
are based on cells on a map. This means that the computations used to generate 
OPE-NAV positions remain bounded by the signal characteristics (in this case, GPS 
C/A signals) as well as other error residuals (e.g., the ionospheric error residual 
when using the Klobuchar model). The OPE-MM estimated positions are limited by 
the position of the cell that is closest to the real position. Here, the cells have a 4-m2 
size. This means that, in the worst-case scenario, the closest cell will be separated 
from the real position by 2 m in the north and east directions. Therefore, because 
positions are determined more accurately by the OPE-MM than the OPE-NAV, one 
can conclude that the use of the weight function by the OPE-MM contributes pos-
itively to its accuracy.

It should be noted that urban environments can encompass countless different 
scenarios with varying positioning results. Some of the factors that affect the posi-
tioning results include building heights and density, the type and distribution of 
vegetation, and the number of surrounding vehicles. Some settings will require 
specialized algorithms that address their specific needs. For example, the appli-
cation of 3D building models and ray tracing algorithms may not be suitable for 
highly dynamic applications because of the need for increased processing to ana-
lyze more cells in a shorter period. Furthermore, positioning algorithms that uti-
lize 3D building models might be affected by modeling errors.

5  SUMMARY AND CONCLUSION

Two new algorithms are introduced in this paper. The first algorithm, OPE, esti-
mates the most likely path on a map, which is the path with the optimal weight. 
Three functions are used to compute the weight, including the probability of a 
transition between positions based on predictions of the signal status, the esti-
mated velocity, and the difference between a position on a map and a correspond-
ing position computed from a navigation algorithm. The second algorithm, ISE, 
is a probabilistic supervised SOM machine-learning algorithm that estimates the 
probability of transitions between positions.

The OPE algorithm generates two sets of estimated positions. The first of these is 
the set of OPE-MM positions, which correspond to cells on a map. The second set 
includes the OPE-NAV positions, which correspond to the OPE-MM positions, and 
are computed using a navigation algorithm after adjusting errors in the code delays 
based on reflected signals.

The estimations provided by the OPE-MM and OPE-NAV algorithms are not 
independent of one another. The OPE-MM positions are used in a function inside 
the navigation algorithm that provides estimates designed to minimize the dif-
ference between OPE-MM and OPE-NAV estimated positions. This difference is 
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then used to compute the weight function of the most-likely paths. This means 
that there is some degree of feedback between the estimates of the OPE-MM and 
OPE-NAV positions that aims at achieving superior positioning accuracy.

The results presented in this paper indicate that the OPE-MM estimated posi-
tions have enhanced estimation accuracies ranging from 85% to 96% compared to 
a conventional navigation approach. At the same time, the accuracy enhancement 
provided by the OPE-NAV estimated positions compared to a conventional navi-
gation approach ranges from 84% to 92%. The OPE-MM provides more accurate 
position estimates compared to the OPE-NAV, where the accuracy enhancement 
ranges from 6% to 57%.

The accuracy of the OPE-NAV algorithm is limited by the GNSS signal and 
constellation used (in this case, the GPS C/A signal). The OPE-MM algorithm is 
limited by the size of the cells used. The feedback between the elements that gen-
erate estimates of the OPE-MM and OPE-NAV positions aims at enhancing the 
estimated positions. The results indicate that this feedback has a positive effect on 
positional accuracy.

Modern GNSS signals and multi-constellation receivers typically provide better 
positioning accuracy than the legacy GPS C/A signal; use of these signals may have 
a positive effect on the performance of the OPE-NAV algorithm. However, this 
hypothesis needs to be investigated in order to assess the effect of different signals 
and constellations on overall performance.
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