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O R I G I N A L  A R T I C L E

Multi-Parameter Adaptive Notch F ilter (MPANF) for 
Enhanced Interference Mitigation

Johannes Rossouw van der Merwe  Iñigo Cortés  Fabio Garzia   
Alexander Rügamer  Wolfgang Felber

1  INTRODUCTION

Global navigation satellite system (GNSS) receivers are vulnerable to interfer-
ence signals (Dovis, 2015). Frequency-modulated continuous waves (FMCWs) 
are common interference signals that transmit a constant signal but vary their 
instantaneous frequency over time. Chirp signals, also known as swept-frequency 
signals, are popular FMCW signals (Mitch et al., 2011) and are often used for pri-
vacy protection devices (PPDs; van der Merwe et al., 2018). Chirps change their 
center frequency linearly over time, then periodically jump back to the starting 
frequency. If a receiver mitigates an FMCW interference signal, it may regain 
robustness and reliability.
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Abstract 
Interference signals degrade global navigation satellite system (GNSS) per-
formance and must be mitigated. Chirp signals can be mitigated with an 
adaptive notch filter (ANF), but the dynamic behavior limits performance. 
An ANF determines the instantaneous frequency and removes interference 
with a notch filter. However, there are several limitations. In this article, we 
propose a multi-parameter adaptive notch filter (MPANF) approach that sig-
nificantly enhances conventional ANFs. First, it uses an loop-bandwidth 
control algorithm (LBCA) to alter the loop bandwidth of an frequency-locked 
loop (FLL)-based adaptation algorithm to facilitate superior tracking 
agility-to-precision trade-off. Second, it dynamically adjusts the notch depth to 
switch on interference mitigation or pass the signal through. Third, it modifies 
the notch width to accommodate tracking stability and optimize interference 
signal suppression to GNSS signal removal. The presented MPANF exhibits 
superior performance against chirp signals, including faster response to jump 
discontinuities. 
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Adaptive notch filters (ANFs) have shown good interference mitigation capa-
bilities, and they estimate the instantaneous frequency of an FMCW signal, then 
create a notch filter to surgically remove the interfering signal (Borio et al., 2014; 
Friedlander & Smith, 1984; Gamba & Falletti, 2018, 2019; Musumeci et al., 2016). 
The least-mean-squares (LMS; Wendel et al., 2016) or frequency-locked loop (FLL; 
Gamba & Falletti, 2018) methods are commonly used for adaption algorithms. 
The chirp dynamics and frequency jump discontinuities limit the adaption algo-
rithm performance of the ANF. Fine tuning the adaptive algorithm can optimize 
the ANF performance for a given interference (Qin et al., 2019). However, it does 
not generalize the performance for the diversity of interference signals (van der 
Merwe et al., 2018) and requires reoptimization for each new signal. An improve-
ment is to use the adaptive FLL ANF (AFLL-ANF; van der Merwe et al., 2021). It 
uses the loop-bandwidth control algorithm (LBCA) to adapt the loop bandwidth of 
an FLL. A critical tuning parameter of the FLL is the loop bandwidth, which is a 
trade-off between the agility and noise suppression of the FLL. The LBCA allows 
the adaptation algorithm to respond more agilely to jump discontinuities and 
improve tracking precision when the interference signal is stable. The architecture 
of the AFLL-ANF is shown in Figure 1. 

The AFLL-ANF solves several issues with fixed ANFs (van der Merwe et al., 
2021) and performs well in most cases. However, it does not outperform all static 
loops if correctly tuned for a specific interference (Qin et al., 2019). More complex 
ANF methods such as using a Kalman filter (Kang et al., 2018; Panchalard et al., 
2006) or the cardinalized probability hypothesis density (CPHD) approach (Kim 
et al., 2019) further improve ANFs but are complex, require significant resources 
to implement, and restrict real-time operation. Therefore, there is a need for an 
improved AFLL-ANF, but not for excessive complexity.

This article proposes a multi-parameter adaptive notch filter (MPANF) 
that extends the AFLL-ANF. The MPANF adapts the loop bandwidth 
(agility-versus-precision trade-off), the notch width (filter suppression versus fil-
ter isolation), and notch depth (filter on versus pass-through). It uses three stag-
gered notch filters to achieve superior mitigation capability. The primary goal is 
to improve the mitigation performance for different chirp types, including pulsed 
chirp signals. The secondary goal is to limit excessive resource requirements, 
which are approximately 2.5-times more complex than an AFLL-ANF. Figure 2 
shows the architecture of the MPANF.

The contribution of this article is twofold. First, it presents a thorough analysis of 
the notch filter, including the characterization of the notch width and the transient 

FIGURE 1 Architecture of the AFLL-ANF, with its three main parts: notch filter, FLL, the 
LBCA, and their interfaces
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effects on the instantaneous transfer function in Section  5. Second, it presents 
approaches to adapt the notch width (Section 5) and notch depth (Section 4). To 
the authors’ knowledge, such adaptation approaches have not yet been considered 
in the literature. Finally, the theoretical adaptation methods are compared with 
the AFLL-ANF and static ANFs (i.e., fixed loop bandwidth ANFs). The results 
show that the MPANF is superior to previous methods in various chirp signals. 
Furthermore, the methods are also tested against pulsed chirps, which increase 
the mitigation challenge as the ANF should be switched off if no interference is 
present, but it often results in tracking instabilities.

The rest of the article is structured as follows: Section 2 introduces conventional 
ANFs. The LBCA algorithm is described in Section 3. Section 4 demonstrates meth-
ods of dynamically switching the notch filter on and off. Section 5 analyzes the 
notch width and presents methods to steer it. To illustrate the different adaption 
techniques, Section 6 exhibits two case studies. Section 7 describes a Monte-Carlo 
simulation showing the results. Finally, Section 8 draws some conclusions and sug-
gests future research.

2  ADAPTIVE NOTCH FILTERS

This section presents the standard FLL-based ANF. The architecture is shown in 
Figure 3 with the two main components: the notch filter and the FLL. 

FIGURE 2 Architecture of the MPANF with its subcomponents and interfaces: The interfaces 
are indexed according to the filter stage (i.e., primary, secondary, or tertiary notch filter).
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2.1  Notch Filter

A notch filter removes a narrow portion of the spectrum. Several implementa-
tion methods exist, but the most popular is a digital first-order infinite impulse 
response (IIR) filter (Dovis, 2015). This filter type is simple to implement, requires 
few resources, and has a deep notch characteristic compared with finite impulse 
response (FIR) filter implementations. However, it results in a nonlinear phase 
response and may become unstable. The transfer function, H0(z), for a digital 
first-order IIR ANF processor is (Borio et al., 2014):
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where kα is the pole contraction factor, and ẑ0[n] is a complex value that relates to 
the estimated notch frequency, such that: 

	 0 s
ˆ2

0
[ ] jeˆ [ ] f n Tanz π ⋅= ⋅ � (2)

where 0̂ [ ]f n  is the instantaneous notch frequency, Ts is the sample interval of the 
digital system, and a is the amplitude of the complex estimate ẑ0.

FIGURE 3 Flow diagram of the ANF with the notch filter and the FLL

FIGURE 4 Magnitude of the transfer function for different kα values with a = 1
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The pole contraction factor, kα, determines the width of the notch filter relative 
to the sample rate of the digital system. It must be in kα ∈ [0, 1] to ensure filter 
stability (Borio et al., 2014). However, it is usually selected to be in kα ∈ [0.7, 0.99] 
to limit the notch width (i.e., so that the notch is not too wide and ineffective) 
and for numerical stability (i.e., if the notch is too narrow, limited bit width in 
fixed-point signal processing may result in a value temporarily exceeding kα > 1). 
Figure 4 shows the magnitude response of the transfer function (Equation [1]) 
for different pole contraction factors, kα and ẑ0[n] = 1, and Figure 5 shows the 
phase response. 

The amplitude a of the complex estimate ẑ0 determines the notch depth. Only if 
a = 1 will the notch have a spectral null at the center frequency, 0̂ [ ]f n . If the ampli-
tude a  is zero, the notch filter reverts to an all-pass filter. Therefore, the amplitude 
a  allows the filter to be switched on or off. Figure 6 shows the magnitude response 
of the transfer function for amplitudes a and 0̂ [ ] 0f n = , and Figure 7 shows the 
phase response. 

FIGURE 5 Phase of the transfer function for different kα values with a = 1

FIGURE 6 Magnitude of the transfer function for different a values with kα = 0.8
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The adaptation algorithm alters the ẑ0 [n] value for each sample offset n. The 
notch filter is separated into two parts to estimate the correct value for ẑ0 [n]: The 
feedback part is called the IIR or auto-regressive part, and the feed-forward part 
is called the FIR or moving average part (Borio et al., 2008). First, the IIR part is 
implemented with a feedback loop: 

	 r[n] = x[n] + kα ẑ0 [n − 1]r[n − 1]� (3)

with r[n] being the output of the IIR part. The IIR part adds the pole to the transfer 
function, H0(z). The pole results in a gain increase around the estimated frequency 

0̂f , and improves the adaptation sensitivity near the current estimate. Therefore, 
this part is responsible for the width of the notch. Secondly, the FIR part is imple-
mented with the feed-forward loop: 

	 y[n] = r[n] − ẑ0 [n − 1]r[n − 1]� (4)

The FIR part adds a null to the transfer function, H0(z). As such, this part con-
trols the null location for the filter. The previous output of the IIR loop, r[n − 1], in 
conjunction with the complete filter output, y[n], is used as the base metric, xNF[n], 
to adapt the loop filter (Borio et al., 2008): 

	
*

NF[ ] [ 1] [ ]n r n nx y= − ⋅ � (5)

where *( )⋅  is the complex conjugate of the signal.
There are several adaptation algorithms, including LMS (Borio et al., 2008; 

Wendel et al., 2016), FLL (Gamba & Falletti, 2018), Kalman filtering (Kang et al., 
2018; Panchalard et al., 2006), and any of these aided with machine learning 
(Abbasi et al., 2020). However, this article focuses on FLL-based methods, as they 
are simple to use with the LBCA. The LBCA also synergizes with Kalman filters 
(Cortés et al., 2022), which is an exciting topic for future research.

Finally, ANFs apply to frequency sparse signals like FMCW signals. However, 
other interference signal waveforms, e.g., band-limited noise, are not appropri-
ate, requiring other mitigation techniques (Dovis, 2015; van der Merwe et al., 
2021). Furthermore, the performance will degrade if two simultaneous signals 

FIGURE 7 Phase of the transfer function for different a values with kα = 0.8
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are received (van der Merwe et al., 2020). This study is limited to chirp-like 
FMCW signals.

2.2  Frequency-Locked Loop

An FLL has many applications (Talbot, 2012), but for GNSS, it is most known 
to estimate and remove the carrier in the signal tracking stage (Kaplan & Hegarty, 
2017). FLLs are extensively used for ANFs (Gamba & Falletti, 2018) since they can 
track an FMCW signal’s instantaneous frequency.

An FLL consists of four main parts: a correlator, the frequency discriminator, a 
loop filter, and a numerically controlled oscillator (NCO), as shown in Figure 3. 
The correlator compares the base metric, xNF[n], representing the measured signal 
to an estimated signal, xNCO[n]: 

	 *
x NF NCO[ ] [ ] [ 1]nc x xn n= −× � (6)

where cx[n] is the correlator output, xNF[n] is the measured value from the notch 
filter, and xNCO[n − 1] is the previous estimate from the NCO. Next, the discrimi-
nator estimates the instantaneous frequency difference between the measured and 
received signals.

Several discriminator functions exist, but for the presented implementation, a 
four-quadrant arc-tangent frequency discriminator is used (Kaplan & Hegarty, 2017): 

	 *
x x x[ 1[ ] ] [ ]n nc n c c− ×∆ = � (7)
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where δcx[n] is the product of the input signal with its past conjugated, u [n] is 
the un-smoothed frequency error in Hertz relative to the sample frequency, fs, 
atan2(·, ·) is the four-quadrant arc-tangent function, ℜ{⋅}  is the real operator, and 
ℑ{ ⋅}  is the imaginary operator.

The loop filter smooths out the frequency error by suppressing noise. It is imple-
mented as an IIR digital filter and has many design parameters to consider. The fil-
ter order and the loop bandwidth, B, directly characterize the FLL performance. 
A low filter order tends to be more stable and has less overshooting but has limited 
performance in high dynamic changes, whereas a high filter order can accommo-
date increased dynamics but is more prone to overshooting and instability (Gardner, 
2005). The filter order is selected as a fixed value during the design phase. A large loop 
bandwidth, B, results in an agile FLL with large errors and is suitable for fast-changing 
signals (Cortés et al., 2020). A small loop bandwidth, B, results in a slow response but 
improves noise suppression, which is more suitable for stationary and noisy signals. 
Altering the loop bandwidth facilitates a dynamics-to-noise trade-off and is discussed 
in more detail in the subsequent section. The loop filter is modeled as a simple linear 
filter: 

	  s[ ] [ ] [ ]n h n n� LF u�. � (9)

where .s[ ]n  is the smoothed frequency error rate, hLF [n] is the impulse response 
of the filter, and ∗  denotes the convolution operation. For the final implementa-
tion, a standard second-order loop filter based on the bilinear transform is selected 
(Kaplan & Hegarty, 2017): 
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where Ts is the sample time of the filter, ω0  is the natural frequency of the filter 
and relates to the loop bandwidth (also referred to as the noise bandwidth) as: 

	 00.53B ω= ⋅ � (11)

where B is the loop bandwidth.
The NCO generates a replica signal and determines the instantaneous frequency 

of the loop. The NCO acts like an integrator: 

	 .�NC s s s s s0 2 2 1� � � �� ��� �T Tn n n  [ ] [ ] [ ]� � (12)

where s  is the smoothed error related to the NCO frequency, ωNC0. The estimated 
instantaneous frequency of the notch is determined based on the NCO output and 
can be used for the notch filter as described in Equation (2): 

	 NC0 j [ ]
0 eˆ [ ] nnz ω= � (13)

Finally, the last integration step is needed in the NCO to predict the signal for 
the next cycle: 

	 � � �NC NC NC0 0 01[ ] [ ] [ ]n n n� � � � (14)

	 x n n
NC

je NC0 0[ ] � [ ]� � � (15)

where NC0[ ]nφ  is the instantaneous phase of the NCO.
An alternative FLL ANF approach is the exponential discriminator (Gamba & 

Falletti, 2018), which smooths, stabilizes, and improves estimates. However, it 
introduces additional delays, which impede the agility of adaptive FLL methods. 
Hence, it is not considered for the remainder of the article.

2.3  Adaptive Notch Filter Improvements

The ANF cannot immediately jump with the interference signal (except in post-
processing, where it can be compensated for), resulting in a large portion of the 
interference signal bleeding through (Wendel et al., 2016). A method to counter 
this is to add a pulse blanker immediately after the ANF. It is effective, especially 
considering that this transition period is typically only a couple of microseconds 
(Borio, 2016; Wendel et al., 2016).

Multipole notch filters are computationally more complex but improve the notch 
suppression capabilities (Borio et al., 2008). Alternatively, a multi-stage approach 
may also be used to mitigate multiple signals, but it has several limitations (van der 
Merwe et al., 2020).

The ANF is known to degrade the signal if there is no interference or the 
interference-to-noise ratio (INR) is too low (Falletti et al., 2020). A solution is to 
include a detector to switch the ANF on or off (Borio et al., 2008; Falletti et al., 
2020). However, an improved approach is presented in Section 4.
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3  LOOP BANDWIDTH CONTROL ALGORITHM

This article applies adaptive loop techniques deployed in adaptive scalar tracking 
loops (A-STLs) to alter the loop bandwidth of the FLL. The adaptive loop responds 
faster against jump discontinuities by temporarily increasing the loop bandwidth 
before settling back to a smaller loop bandwidth once it is locked on the chirp sig-
nal. In recent publications (Cortés et al., 2020; Cortés et al., 2020, 2021), the LBCA 
has shown promising results for robust tracking in GNSS receiver tracking loops. 
The LBCA was initially developed for phase-locked loops (PLLs), but it is extended 
to adapt an FLL in this article.

The AFLL-ANF combines the LBCA with the ANF for superior performance 
(van der Merwe et al., 2021). A similar suggestion to use the LBCA for ANF was 
made by Dimc et al. (2021). The LBCA for the AFLL-ANF additionally includes an 
early warning jump detector to detect and adapt to the frequency jump discontinu-
ities more quickly.

3.1  Standard LBCA

The LBCA (Cortés et al., 2020) adapts the loop bandwidth, B, based on the sta-
tistics of the discriminator output, u[ ].n  The algorithm achieves this by combin-
ing sigmoid-based weighting functions of the normalized bandwidth BN. Figure 8 
shows the structure of the LBCA.

First, the absolute mean, µ
u ,  and the standard deviation, σu ,  of the discrimi-

nator output are estimated. The absolute mean, µ
u ,  is interpreted as the dynam-

ics or bias of the estimate and the standard deviation, σu ,  as the estimation noise. 
Second, the normalized dynamics, D,  are estimated as: 

	 D n
n

n n

u

u u
[ ]

[ ]

[ ] [ ]
�
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� �


 

� (16)

Third, at the core of the LBCA, the normalized dynamics D  are combined with 
a weighting function, g n B[ , ].N  The difference between the normalized dynamics 
estimate, D, which is scaled by the maximum value of the weighting function, 
gMax , and the weighting function, g n B[ , ],N  determines the update of the normal-
ized bandwidth, BN. This update divided by the sampling period represents the 
control signal, c n[ ],  in Hz: 

FIGURE 8 Architecture of the LBCA, including the preprocessing and postprocessing stages
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Finally, the addition of the control signal c n[ ]  into the current loop bandwidth 
B n[ ]  determines the estimated loop bandwidth, ˆ[ ]B n : 

	 [ ] [ ]ˆ [ ]B n B n c n= + � (19)

The estimated loop bandwidth, ˆ[ ],B n  goes through a Schmitt trigger to reduce 
possible switching instabilities. 

	 schmitt[ ] if   [ ] [ ]
[ 1]

[ ] otherwise

ˆ ˆB n B n B n T
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where Tschmitt  is the Schmitt trigger threshold set to 10 kHz.
The weighting function, g n B[ , ],N  directly specifies the adaptation performance 

of the LBCA. It is a linear combination of K  normalized positive sigmoid functions: 
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where Pk  is the shift parameter, Sk  is the horizontal scaling, wk  is the vertical scal-
ing, and ( )⋅ T  is the transpose. The sigmoid function, Sig( ),x  is defined as (Domingos, 
2015):

	 Sig x
e x� � �

� �

1
1

� (23)

The maximum value of the weighting function, gMax ,  is the sum of the vertical 
scaling values: 

	 Max
1

K

k
k

g w
=

= ∑ � (24)

The weighting function, gMax ,  indicates the maximum update the algorithm can 
perform at each iteration. It implicitly constrains the control value: 

	 c n g T[ ] /≤ Max s� (25)

If the noise and signal dynamics estimates are reliable, a larger gMax  value is 
appropriate to facilitate a faster reaction.

Figure 9 shows the shape of the normalized weighting function used for the 
AFLL-ANF as a linear combination of two sigmoid functions and is defined as: 
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The biases (P1 and P2) determine the borders of the regions, the horizontal scal-
ings (S1 and S2) indicate the slope of the transition between regions, and the verti-
cal scalings (w1 and w2) define the sensitivity to normalized dynamics.

Finally, the additional inputs of the jump detector, d[n], and power ratio, ∆p n[ ],  
in Figure 8 are external early-warning triggers and are presented in Sections 3.2 
and 4, respectively.

3.2  Jump Detector

A jump detector works as an early warning for a frequency jump discontinuity. 
The mean and standard deviation estimators of the LBCA are too slow for quick 
reaction, which motivates the early detection.

The jump detector takes an absolute mean of the current and previous discrimi-
nator outputs as a decision metric, d[n]: 

	 d n
nn

[ ]
[ ] [ ]

�
� � u u 1
2

� (29)

Using the last two values, it has a reaction delay of one sample. If the metric d[n] 
is larger than three times the standard deviation of the discriminator, σ

u n[ ] (i.e., 
less than 99% chance of randomly triggering), it forces the FLL to use the largest 
possible loop bandwidth, BMax: 
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FIGURE 9 Normalized weighting function of the LBCA for the MPANF
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	 � �d � � �� ��3 
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This approach is simple yet has shown effective results (van der Merwe et al., 
2021). Furthermore, the conservative threshold makes it improbable to trigger 
during noisy scenarios. It results in enhanced stability of the LBCA. Once the trig-
ger occurs, the LBCA will adjust the loop bandwidth to an optimal value. A maxi-
mum bandwidth relating to the sample rate, fs , is selected for the rest in this article: 

	 B
f

Max
s MHz= =
4

5 � (32)

4  NOTCH FILTER DEPTH ADAPTATION

An ANF is capable of mitigating an interference signal, emphasizing its use. 
However, if no interference is present, it may disrupt the GNSS signal. Borio and 
Gioia (2021) demonstrated that an ANF causes significant pseudorange biases that 
motivate the need to bypass the ANF if no interference is present. Gamba and 
Falletti (2019) considered methods to detect when chirp interference is present 
and either uses an ANF to mitigate the interference or bypasses the ANF. This 
approach results in a hard switching between the mitigation and bypass that may 
lead to phase disruptions in the signal. The superior interference detection method 
is the power ratio (Gamba & Falletti, 2019). It uses the instantaneous power of the 
input signal, p nx [ ],  to determine the average input signal power p nx [ ]:  
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where x n[ ]  is the complex input signal and K is the number of samples used to 
calculate the average power. Similarly, the instantaneous power, p ny[ ],  of the out-
put signal, y n1[ ]  (i.e., after the primary ANF mitigation) is also averaged p ny[ ]:  
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Finally, the power ratio between the input power, p nx [ ],  and the output power, 
p ny[ ],  is determined: 
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If the ANF successfully mitigated an FMCW signal, then the power ratio, 
∆p n[ ],  tends to be a large value. Conversely, if no interference is present, the 
power ratio, ∆p n[ ],  tends to be zero. It forms the basis for FMCW detection 
(Gamba & Falletti, 2019).

This approach can be mapped to the notch depth, a, by extending it to a smooth 
transposition. A simple approach is to use a sigmoid function, defined by two 
thresholds, λ1  and λ2: 

	 P Sp p�
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	 a n S p n P'[ ] [ ]� �� �� �Sig p p� � (37)

where Pp  is the position bias of the sigmoid function, Sp  is the sigmoid scaling 
value, and a n'[ ]  is the estimated gain. The thresholds for the MPANF are empiri-
cally tuned to be: 

	 � �1 21 4� �����[ ]�������� ����[ ]dB dB � (38)

Figure 10 shows the mapping of the power ratio, ∆p n[ ], to the estimated gain, a n'[ ]. 
The issue with this approach is the delay of the mean power estimate. The first 

solution uses a first-order IIR filter to estimate the mean power to minimize the 
delay, similar to what is used in the LBCA (Cortés et al., 2020). In addition, an early 
detector must immediately switch the interference signal on when an interference 
signal is detected. Kurtosis is an excellent indicator for detecting changes (Caviedes 
& Gurbuz, 2002). Therefore, the kurtosis, κ [ ],n  of the unsmoothed error from u  
suffices as an early detector to switch on the filter. The kurtosis, κ [ ],n  relates to 
the fourth-order statistical mean and requires the mean u[ ]n  and variance σ2[ ]:n  
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FIGURE 10 Power delta to notch filter gain mapping
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The final notch filter gain, a n[ ],  is either the estimated gain, a n'[ ],  or forced 
to be on: 

	 a n
d

a
a

n n
n

n
[ ] ' .

'

[ ] [ ]
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[ ]
�

� �
�

�

�
�

�
�

1
1 0 998

if or
if

k d� � �

otherwise
� (44)

where λk  is the kurtosis threshold, λd  is the jump-detector threshold 
(Equation [31]), and d n[ ]  is the jump-detector decision metric (Equation [29]). 
The bootstrapping by 0 998.  limits switch bouncing. This approach allows the 
ANF to immediately switch on if an interference signal is present but takes lon-
ger to switch off. The kurtosis threshold is selected as �k � 2 75.  for the MPANF. 
Figure 11 shows the flow diagram to calculate the notch depth, a . The same 
notch depth a  is used to adapt the secondary and the tertiary notch filters in 
Figure 2. 

In Figure 2, a low-pass IIR filter is used instead of a mean operator (Equations [33] 
and [34]), for implementation efficiency.

Another significant issue with an absent interference is that the ANF with an 
LBCA tends to push the bandwidth down. This results in a slow response when 
the interference appears. However, the power ratio can be reused to force the loop 
bandwidth of the primary, B n1 1[ ],+  and secondary, B n2 1[ ],+  LBCA to its maxi-
mum value, BMax: 
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where the reset threshold is set to �R dB� 0����[ ].  This approach allows the MPANF 
to dynamically switch on and off depending on whether an interference is present 
or not.

5  NOTCH FILTER WIDTH ADAPTATION

The width of the notch filter directly impacts mitigation capabilities. However, 
optimizing it is difficult, and previous research focused on parametric sweeps (Qin 
et al., 2019). This section aims to provide a quantitative analysis of the notch filter 
width and present methods to adapt the width.

FIGURE 11 Adaptive gain flow diagram
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5.1  Ideal Notch Width

To understand the effect of the kα on the notch filter width, let: 

	 1 2 j
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The transfer function is simplified (see Appendix A): 
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The required power suppression, L, is defined as: 
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Then the single-sided notch width is derived as (see Appendix B): 
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Therefore, if kα  is defined and the cutoff frequency fc  for a specific power loss 
L  can be determined. Figure 12 shows the cutoff frequency relative to a 20-MHz 
sampled notch filter for L = 3 dB and L = 6 dB suppression. Usually, 3 dB is selected 
as a design point for digital filters (Ifeachor & Jervis, 2002), but for the remainder of 
this article, 6 dB is selected to enhance suppression capabilities. 

Equation (51) is practical for analyzing the filter. However, it does not facilitate 
the steering of the pole-contraction factor, kα .  Therefore, it needs to be reformu-
lated as a function of the cutoff frequency and power loss L  (See Appendix C): 

FIGURE 12 Cutoff frequency for a specified pole-contraction factor estimation error for a  
20-MHz sampled notch filter
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	 k x L x x� � � �cos( ) sin sin2 4 22 2( ) ( ) � (52)

This expression gives a theoretical function but is not practical for firmware sys-
tems due to the trigonometric functions and square root. Through a second-order 
Taylor approximation, the function is optimized and simplified for the constraints 
k� �[ . , ]0 75 1  and x < 0 1. :  

	 k L x x� � � �� � �1 2 1 2 2 � (53)

The benefit is that the coefficient L −1  can be precalculated, making it prac-
tical. Figure 13 shows the approximation (Equation [53]) compared with the the-
oretical value (Equation [52]) for a 20-MHz sampled notch filter. The difference is 
not visible, and Figure 14 shows the error. The approximation error is below 0.1% 
for the entire range, proving that it is an accurate approximation. 

Finally, through back substitution: 
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FIGURE 13 Pole-contraction factor estimation for a 20-MHz sampled notch filter

FIGURE 14 Pole-contraction factor estimation error for a 20-MHz sampled notch filter
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5.2  Notch Width Transient Effects

When two successive kα values are not the same, the transfer is different (See 
Appendix D): 
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where it is assumed that the notch frequency (i.e., 0ẑ ) is constant, the current 
pole-contraction factor, kα1, and the previous one, kα 0 , are static. It makes several 
assumptions but still facilitates an analysis of how the notch filter behaves with an 
instantaneous change.

Figure 15 shows the zero-pole plot for Equation (56), assuming 0ˆ 1z = . It consid-
ers four cases: 

•	 Static wide notch with k k� �1 0 0 7� � .  (red) 
•	 Static narrow notch with k k� �1 0 0 95� � .  (blue) 
•	 Notch closing from wide k� 0 0 7� .  to narrow k�1 0 95� .  (green) 
•	 Notch opening from narrow k� 0 0 95� .  to wide k�1 0 95� .  (yellow) 

As expected, the two static settings only have a single null and pole on the right 
side of the complex plane (note that all nulls at +1  overlap). However, the tran-
sitioning filter has an additional null and pole on the plane’s left side. Further, 
both transitioning filters have poles, p1  and p2 ,  that are mirrored and between the 
other two pole-contraction settings: 

	 p p k k1 2 1 0 0 95 0 7 0 815� � � � � �� � . . . � (57)

However, where the two transitioning filters differ is the null placement. 
When the notch is closing ( kα  increases), the null is on the outside of the pole. 
It causes a temporary second notch to form on the opposite side of the spectrum. 
Therefore, it potentially filters more of the signal out, but as it is a relatively 
narrow bandwidth, the impact on the gain is not as severe. When the notch is 

FIGURE 15 Zero-pole plot on the complex plane for different pole-contraction factor 
changes from k0  to k1  with a = 1
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opening ( kα  decreases), the null is on the inside of the pole. It causes a band-pass 
filter response on the opposite side of the filter, potentially resulting in instabil-
ities. While testing the notch width steering, it was determined that this effect 
resulted in spikes in the output signal that caused severe degradation. Figure 16 
confirms these effects with a magnitude spectral plot. Further, Figure 17 indi-
cates that adverse phase effects also occur at the opposite points. 

This analysis shows that several adverse effects occur when the pole-contraction 
factor, kα , is changed. These effects are more problematic when the notch opens 
(i.e., kα  decreases) and need to be addressed in algorithm design. However, 
when the notch closes (i.e., kα  increases), the effects are negligible. Therefore, a 
strategy would be to dynamically close the notch but reset the notch filter when 
it is increased.

FIGURE 16 Magnitude of the transfer function for different pole-contraction factor changes 
from k0 to k1 with a = 1

FIGURE 17 Phase of the transfer function for different pole-contraction factor changes from 
k0 to k1 with a = 1
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5.3  Notch Width Steering

Altering the notch width could provide some benefits to a notch filter. Ideally, 
the notch should be as wide as possible to ensure that the interference signal is 
completely removed but as narrow as possible to limit the spectral loss of the GNSS 
signals. Therefore, the required instantaneous interference bandwidth is needed 
for design. There are two factors to consider regarding the interference bandwidth. 
The first factor is the purity of the sine wave: Theoretically, the FMCW has an 
instantaneous frequency spectrum of a Dirac function. However, the frequency and 
amplitude variations change result in a broader impure instantaneous bandwidth. 
It can be characterized by tremendous effort, but a simple answer is to assume that 
suitable notch width is not available. It is considered outside the scope of the article 
and is a potential avenue for future research. The second factor is the estimation 
accuracy, which is the error between the estimated instantaneous frequency and 
the actual instantaneous frequency. The estimation accuracy, σ , ,s  is the accuracy 
of the NCO estimate and relates to the standard deviation, σ , ,2u  of the secondary 
ANF (See Figure 2) discriminator output from the FLL (Betz & Kolodziejski, 2009). 
As the standard deviation, σ , ,2u  of the discriminator output is already determined 
by the secondary LBCA, the value is reused: 
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where the B n f[ ]/ s  factor scales the noise to the output of the NCO, and the factor 
two translates the single-sided loop bandwidth, B n[ ],  to the two-sided bandwidth. 
An additional factor two is added as a safety margin that is empirically determined, 
and it compensates for the sine wave impurity: 

	 � � , ,b s
2 22� � (59)

The final estimation accuracy, σ , ,b
2  determines the theoretical approximated 

pole-contraction factor, �k� ,  from Equation (54): 
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An excellent operational choice for the suppression is L = 4  (i.e., 6 dB), and with 
the 20-MHz sample rate, it simplifies to: 

	 � � � � � � � �� �k n nb b� � �1 5 44 10 4 93 107 14 2. .[ ] [ ], ,  � (61)

If the pole-contraction factor, kα ,  is too high, the filter can become unstable 
with numerical approximations as a pole is too close to the unit circle (e.g., see 
Figure 15). If it is too low, the notch is too wide, resulting in significant spectral 
distortion. Therefore, a limiter is added to ensure a lower bound for notch width 
and an upper bound for numerical stability: 
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where �k�  is the theoretical value and k ne� , �� ��  is the practical value. Excessive switch-
ing has some adverse effects as shown in Figures 16 and 17. Therefore, an asymmetric 
Schmitt trigger is included in determining the final pole-contraction factor: 
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where the step-up threshold is selected as �k u, .� 0 005, and the step-down 
threshold is selected as �k d, .� 0 1. Further, to limit the instabilities highlighted 
in Figure 15, the tertiary notch filter is reset when the pole-contraction factor, 
k nα [ ],  decreases: 
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It creates a temporary zero in the output, but this relatively small price ensures 
filter stability. Further, the asymmetric Schmitt trigger limits excessive resets. 
Therefore, this approach is useful to alter the notch, despite several additional steps 
to ensure operational stability.

6  CASE STUDIES

Two case studies are presented to demonstrate the behavior of the MPANF.  
A linear chirp signal with a 15-MHz chirp bandwidth and 20-us repetition rate is 
simulated at a 15-dB INR and 20-MHz sample rate. The chirp has the first jump 
discontinuity at timestamp 0 us, and the MPANF is initialized 1 ms prior. Figure 18 
shows the spectrogram of the continuous chirp signal. 

Figure 19 shows the notch frequency estimated from the primary FLL, the sec-
ondary FLL, and the actual instantaneous frequency simulated. Between –1 us and 
0 us, both FLLs have precise tracking. The secondary FLL immediately responds to 
the jump discontinuity, as it uses the jump detector of the primary. It demonstrates 
the improved response time of the secondary FLL in the MPANF. After the jump 

FIGURE 18 Spectrogram of a continuous chirp with 12-MHz bandwidth and 20-us 
repetition rate
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from 1 us to 4 us, both FLLs are near the correct frequency but noisier than before 
the discontinuity. It indicates that loop bandwidths are increased to facilitate a fast 
response but are not yet decreased for accurate tracking. 

Figure 20 shows the loop bandwidths set by the primary and secondary LBCA. 
The secondary LBCA immediately increases to the maximum set bandwidth when 
the chirp jumps, whereas the primary is delayed with one sample. The jump detec-
tor and loop-bandwidth estimation predict the loop bandwidth for the following 
loop filter closure, causing one sample delay. Furthermore, as the secondary LBCA 
responds more quickly, the unsmoothed frequency error u[ ]n  is reduced, result-
ing in a faster settling time. It is visible between 1 us to 8 us. The jump detector 
demonstrates that the early trigger from the primary to secondary LBCA signifi-
cantly enhances overall tracking capability. 

Figure 21 shows the notch depth (i.e., amplitude a) and notch width (i.e., 
pole-contraction factor kα) steering. The notch depth is constantly and correctly 
set to the maximum value of a = 1. The notch width sets to the minimum value 
of k� � 0 75.  each time the chirp has a jump discontinuity (0 us, 20 us, and 40 us). 
The wider notch is more effective when the frequency estimate is less precise and 
allows for a faster pull-in. The notch width decreases as the FLL pulls in and locks 

FIGURE 19 Frequency estimate of the primary and secondary FLLs compared with the 
instantaneous frequency for a continuous chirp

FIGURE 20 Loop bandwidth estimate for the primary and secondary LBCA with a 
continuous chirp
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onto the correct frequency and finally settles at a high value of k� � 0 94. . In this 
example, the minimum notch width for k� � 0 99.  is not achieved, showing that 
the notch width is noise limited by the FLL tracking. It demonstrates the notch 
filter ability to adapt to the current tracking precision. 

The first case study illustrated the performance when a chirp is constantly pres-
ent. Hence, the roles of the loop bandwidth and the notch width are clear, but the 
role of the notch depth is not. In the second case study, the chirp is pulsed. Pulsed 
chirp signals represent signals commonly used for radar systems (Bernfeld, 1984). 
However, such signals also represent cases when the chirp bandwidth exceeds the 
bandwidth of a front-end filter (Borio, 2018). The generated signal transmits a sin-
gle chirp cycle of 20 us, then switched off for 20 us. Figure 22 shows the spectro-
gram of the pulsed chirp signal. 

Figure 23 shows the frequency estimates for the primary and secondary FLLs. 
Between 0 us and 20 us, both accurately track the chirp signal. However, when the 
interference signal is switched off between 20 us and 40 us, both lose lock and have 
random estimates. Initially, both FLLs seem to track a signal between 20 us and 23 
us, but it is caused by the delays of the internal IIR estimates and the current low 

FIGURE 21 Amplitude and pole-contraction factor estimated with a continuous chirp

FIGURE 22 Spectrogram of a pulsed chirp with a 15-MHz bandwidth and 20-us repetition rate
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loop bandwidth. However, at 23 us, the LBCA resets and forces the loop bandwidth 
to the highest value. Between 23 us and 40 us, there is no signal to track, and the 
FLL is aimlessly tracking noise, resulting in random frequency estimates. 

Figure 24 presents the loop bandwidth estimates of the primary and second-
ary LBCAs. When the chirp is present (0 us to 20 us), both estimates start at the 
maximum bandwidth and decrease to the minimum bandwidth. Both have high 
bandwidths near the maximum when the chirp is absent (20 us to 40 us). There is 
a delay in response between 20 us to 23 us, as was observed with the frequency esti-
mates. In the pulsed chirp case, the difference between the primary and secondary 
LBCAs estimates is negligible compared with the continuous chirp case. 

Figure 25 shows the notch depth (i.e., amplitude a) and notch width (i.e., 
pole-contraction factor kα) steering. It demonstrates detecting the interference and 
switching on and off automatically. The notch depth is at a maximum ( a = 1 ) when 
the chirp is present and switched off ( a = 0 ) when the interference is absent. The 
transition delay of switching the notch filter off is visible between 20 us and 23 us. 
The notch width follows a similar pattern to the continuous case when the chirp 
is present, but it is forced to the maximum width ( k� � 0 75. ) when interference is 
not present. 

FIGURE 23 Frequency estimate of the primary and secondary FLLs compared with the 
actual instantaneous frequency for a pulsed chirp of Figure 22

FIGURE 24 Loop bandwidth estimate for the primary and secondary LBCA with a pulsed chirp
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7  MONTE-CARLO SIMULATION

7.1  Simulation Setup and Design

The results focus on the impact on GNSS signal processing. In a previous study, 
the frequency estimation capabilities of the AFLL-ANF were investigated (van 
der Merwe et al., 2021) but will be omitted for the MPANF as similar results are 
expected. Figure 26 provides an overview of the simulation setup, consisting of 
three parts. First, the signal generation creates a GNSS signal, noise, and chirp 
interference at a sample rate of 20 MHz. The GNSS signal generator creates six 
GPS L1-C/A signals, and the noise generator ensures a carrier-to-noise density 
ratio (C/N0) of 48 dBHz for all satellites. The gain of the chirp FMCW signal 
is scaled to achieve different INRs to facilitate comparison for different inter-
ference powers. The chirp signals are selected to have a bandwidth of 5 MHZ, 
which relates to a high interference impact with a jamming restive quality factor 
of Q j = 5 05.  (Kaplan & Hegarty, 2017; van der Merwe et al., 2018) and has a 
high impact on the GNSS signals. The chirp rates, T,  are varied for the tests and 
include: 

	 T ∈[ , , , , , ]�10 20 50 100 200 1000 us � (65)

Second, the interference mitigation stage removes the chirp interference. It con-
sists of an ANF to remove most of the signal and is followed by a pulse blanker to 
remove any vestigial interference components. Several ANFs filters are evaluated: 
the proposed MPANF (see Figure 2), the AFLL-ANF (van der Merwe et al., 2021; 
see Figure 1), and various static FLL-based ANFs with fixed loop bandwidth settings 
(see Figure 3). It facilitates a direct comparison of the adaptive FLL to fixed settings. 

The fixed loop bandwidth settings are: 

	 B ∈[ , , , , , , ]�10 100 500 800 1000 1500 2000 kHz � (66)

A pole-contraction factor of k� � 0 9.  is selected for static ANFs and the 
AFLL-ANF. The pulse blanker is implemented as a memory-less pulse blanker 
with a conservative threshold related to the known variance of the noise generator: 
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FIGURE 25 Amplitude and pole-contraction factor estimated with a continuous chirp
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where x[n] is the input signal, y[n] is the output signal, and σn  is the standard 
deviation of the noise generator signal.

Third, the results are analyzed and presented. The alpha mean, αmean ,  from 
GNSS acquisition processing provides superior insight into GNSS performance 
with mitigation (Dovis, 2015). The acquisition engine uses 1 ms coherent integra-
tion and incoherently accumulates 10 epochs, resulting in 10 ms of integration 
gain. A Doppler search space of ±5 kHz with a Doppler resolution of 455 Hz 
is selected. The alpha mean, αmean ,  is the ratio between the correlation power 
for the correct code offset and Doppler to the mean correlation power from the 
acquisition engine: 
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where xc2  is the correlation power at the correct value and x n m2[ ],  is the cor-
relation power for the n-th code-phase and m-th Doppler bin, N is the number of 
code phases tested, and M is the number of Doppler bins. The alpha mean, αmean ,  
provides a prediction of the GNSS processing capability of the signal. The higher 
the value, the more reliable acquisition is, as the probability of detection increases 
while that of false detection decreases. Negative values indicate that correct acqui-
sition is not possible.

Other methods to evaluate the performance include the C/N0 (van der Merwe 
et al., 2018) or the position accuracy (Borio & Gioia, 2021). However, these require 
longer data sets and more processing, making them more processing intensive. 
Such approaches are planned for future research.

A Monte-Carlo simulation evaluates the MPANF and AFLL-ANF to static ANFs. 
The simulation consists of 90 runs (relatively small for statistical analysis) for each 
INR setting. Each run does full acquisition processing for each of the six satellites, 
resulting in 540 αmean  measurements per INR setting.

A limitation of presenting all the results is that the plots quickly become clut-
tered. Therefore, secondary statistical analysis is performed. The maximum and 
the median for the static ANFs are determined: 

	 � �mean
max

meanINR max INR( )( ) ( ),�
B

B � (69)

	 � �mean
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meanINR INR( )( ) ( ),�median
B

B � (70)

where α mean
max INR( )( )  is the maximum alpha mean for all static ANFs for a given INR 

and represents the best performance, α mean
median INR( )( )  is the median and represents 

FIGURE 26 Flow diagram of the test setup
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the average performance for a poorly tuned FLL bandwidth, and B is the fixed loop 
bandwidth of the static FLLs (see Equation [66]). Next, the best-tuned static ANF 
is determined as the one with the smallest square loss relative to the maximum: 

	 �� � �mean mean mean
maxINR INR INR( ) ( ) ( ), , ( )B B� � � (71)

	 B B
B

opt
INR

mean INR� � ��arg min ( ,�� ) 2 � (72)

where ��mean INR( ),B  is the delta in decibels to the maximum value, and Bopt is 
the optimal bandwidth from the finite selection of static bandwidths. The max-
imum, α mean

max (INR;( )  absolute best), median �mean
median (INR;� �  average), best static 

ANF αmean opt INR;( ,B  best tuned), and no mitigation (worst performance) values 
are plotted to give a comparison for the MPANF.

7.2  Results

7.2.1  Selected Cases

Figure 27 shows the results for a continuous chirp with 50 us repetitions with-
out a trailing pulse blanker. The ANFs have a peak at 10 dB but then degrade. 
This is contributed to the bleed-through after the chirp discontinuity, as shown 
by Wendel et al. (2016).

Figure 28 shows the same chirp but includes a trailing pulse blanker this time. 
In this case, the mitigation is significantly improved as it suppresses the signal 
bleed-through at the jump discontinuity and shows the remarkable synergy 
between an ANF and pulse blanker (PB). The MPANF has superior performance 
above 10 dB INR for this interference signal. The AFLL-ANF is second best 
and is better than static ANFs. It shows the benefit of the adaptive loop band-
width approaches for such interference signals. All mitigation methods have a 
dip between –5 and 10 dB INR, which is the switch-on effect. Below these INRs, 
the chirp is too low-power to be tracked, and the ANFs only respond to noise; 
above, the chirp is high-power and clear to detect and track; but in-between, 
the ANFs struggle to detect and track the interference, resulting in performance 

FIGURE 27 Alpha mean αmean  for a 50-us continuous chirp without pulse blanker
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degradation. The switch-on effect is most extreme for the MPANF and AFLL-ANF 
and is contributed to by the estimation complexity of these algorithms resulting 
in more susceptibility in partial tracking.

Figure 29 shows a much slower chirp with a repetition rate of 1 ms. Only the 
MPANF is superior in this scenario, and the AFLL-ANF performs similarly to the best 
static ANF. The best static setting is 100 kHz compared with 800 kHz in Figure 28, 
illustrating that the optimal performance depends on the scenario. It emphasizes the 
benefit of adaptive loop bandwidth methods to acclimate to diverse scenarios and 
alleviate tuning requirements. The switch-on effect is less severe for the slower chirp.

Figures 28 and 29 show that, for continuous chirps, the MPANF improves the 
AFLL-ANF, but only marginally. Hence, the benefit of the additional complexity 
for the MPANF is not evident for such signals.

Figure 30 shows the results for a pulsed chirp with 50-us repetitions with a pulse 
blanker. The MPANF shows superior performance, including a shallow dip during 
the switch-on stage. However, the AFLL-ANF has significantly reduced perfor-
mance and is comparable to the median static ANF. It shows the limitation of the 
AFLL-ANF to a pulsed signal.

FIGURE 28 Alpha mean αmean  for a 50-us continuous chirp with pulse blanker

FIGURE 29 Alpha mean αmean  for a 1-ms continuous chirp with pulse blanker
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Figure 31 shows the results for a pulsed chirp with 1-ms repetition with a pulse 
blanker. Similar to Figure 30, the MPANF shows superior performance, and the 
AFLL-ANF severely degrades. Further, the difference between the best-tuned static 
ANF and the MPANF is smaller, as observed in Figures 28 and 29. 

Additional results are available in Appendix E for the interested reader.

7.2.2  MPANF Compared With Maximum Static

Figures 27 to 30 only show selected cases. However, performance analysis over a 
larger range of chirp repetitions is required.

Figure 32 shows the difference between the MPANF to the maximum static ANF 
for continuous chirps. In the legend, the mean, µ,  in decibels also determines the 
average difference with the static max ANF for INRs ≥ 10 dB. The loss during the 
switch-on phase is below 5 dB. Most chirps improve for INR values above 10 dB; 
the only exception is the 20-us chirp. A hypothesis is that the LBCA adaption 
rate may oscillate, resulting in reduced performance. Fine tuning the weighting 
function, g n B[ , ],N  may solve this issue and is suggested as a future investigation. 

FIGURE 30 Alpha mean αmean  for a 50-us-pulsed chirp with pulse blanker

FIGURE 31 Alpha mean αmean  for 1-ms-pulsed chirp with pulse blanker
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The average delta alpha mean, µ,  ranges from –0.3 to 1.5 dB, indicating that the 
MPANF provides superior performance for most chirps compared with the maxi-
mum achievable performance with static ANFs.

Figure 33 shows the difference between the MPANF and the maximum static 
ANF for pulsed chirps. Similar observations to Figure 32 are made. However, the 
delta alpha mean, ��mean ,  has a smaller absolute range and mean range. 

7.2.3  Summarized Performance

Table 1 summarizes the mean performance of the MPANF, AFLL-ANF, median 
static ANF, and the best static ANF for every continuous chirp evaluated. These 
values are determined through the same process as Figures 32 and 33. The last 
row shows the average over all chirps. Similarly, Table 2 shows the performance 
of the pulsed chirps. In both tables, the MPANF has an average increase exceeding 
0.3 dB compared with the maximum. As it is the only ANF that increases in both 
scenarios, it emphasizes its performance benefit to various chirp types and condi-
tions. The AFLL-ANF increases with 0.22 dB for continuous chirps but decreases 

FIGURE 32 Delta alpha mean, ��mean , for continuous chirps with pulse blanker for the MPANF

FIGURE 33 Delta alpha mean, ��mean , for pulsed chirps with pulse blanker for the MPANF
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with 1.03 dB for pulsed chirps, reaffirming the benefit only to certain interference 
signal types. All other ANFs have average losses, emphasizing the performance of 
the adaptive loop bandwidth techniques. 

Tables 1 and 2 show that the MPANF is the superior ANF notch filter, even outper-
forming all static notch filters. However, the improvement over the maximum alpha 
mean is less than 1.5 dB for all cases. After that, the performance-to-complexity 
trade-off is questionable: Significant complexity is added for marginal benefits. 
However, the best-tuned static ANF does not always yield optimal performance, 
indicating that circumventing manual fine tuning already justifies the additional 
complexity. Nevertheless, practical application and hardware implementation of 
the MPANF are cardinal for future research.

Further, when comparing the results of Figures 27 and 28, it is clear that the 
best value for performance is the inclusion of a pulse blanker after the notch filter. 
Thereafter, design considerations between static ANF, AFLL-ANF, and MPANF 
architectures can be considered, with the MPANF exhibiting the best performance. 
However, these architectures are still significantly simpler than a Kalman filter 
(Kang et al., 2018; Panchalard et al., 2006) or CPHD approaches (Kim et al., 2019).

8  CONCLUSION

An MPANF architecture was presented in this article that adapts the notch loop 
bandwidth, notch width, and notch depth of an ANF. It uses three consecutive 
notch filters to estimate the parameters.

In Monte-Carlo simulations, the MPANF and other ANFs were evaluated against 
continuous and pulsed chirps with different chirp repetition rates. The results show 

TABLE 1
Performance Summary and Comparison With Continuous Chirps With Pulse Blanker

Rep. 
T [us] 

MPANF 
µµ  [dB] 

AFLL 
µµ  [dB] 

median 
µµ  [dB] 

Best 
µµ  [dB] 

Bopt  
[kHz] 

10 +1.5 +0.9 –5.1 –0.3 2000

20 –0.3 –1.4 –0.8 –0.0 1500

50 +1.1 +0.8 –0.4 –0.0 800

100 +0.8 +0.6 –0.5 –0.0 500

200 +0.8 +0.4 –0.7 –0.0 500

1000 –0.5 –0.0 –0.8 –0.0 100

Av. +0.73 +0.22 –1.38 –0.05 — 

TABLE 2
Performance Summary and Comparison With Pulsed Chirps With Pulse Blanker

Rep. MPANF AFLL median Best Bopt  

T [us] µµ  [dB] µµ  [dB] µµ  [dB] µµ  [dB] [kHz] 

10 +0.7 –0.4 –1.3 –0.4 2000

20 –0.1 –0.3 –0.6 –0.1 1000

50 +0.4 –0.8 –0.8 –0.1 500

100 +0.3 –1.6 –0.9 –0.0 500

200 +0.4 –1.5 –1.1 –0.0 500

1000 +0.2 –1.6 –0.9 –0.0 100

Av. +0.32 –1.03 –0.93 –0.1 — 
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that the MPANF outperforms the best-tuned static ANFs, the best combination of 
static ANFs, and the AFLL-ANF. Furthermore, it also performs well against pulsed 
chirps, compared with the degradation in the AFLL-ANF.

This article presented the first design and software implementation of the 
MPANF. Future research includes investigating practical application and hard-
ware implementation capabilities. Furthermore, evaluation against other types of 
FMCW signals is also proposed to determine the limits of this architecture. Lastly, 
several optimizations of the architecture can also be considered, e.g., improving the 
degradation during the switch-on stage.
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APPENDIX

A  Transfer Function

Let: 
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B  CUTOFF FREQUENCY

The suppression on a power scale is: 
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Through simplification, the final notch width can be determined: 
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C  POLE-CONTRACTION FACTOR

Using (B1): 
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Only the negative sign results in a value for k� � 1, therefore:
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D  NOTCH WIDTH STEP

Starting from the base transfer function: 
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Rewrite in the time domain: 

	 0 0[ ] [ 1] [ ] [ˆ ˆ 1]y n k z y n x n z x nα= − + − − � (D2)

Assume that the notch frequency (i.e., 0ẑ ) is constant and that the pole-contraction 
factors change. The current pole-contraction factor, 1,kα  and the previous 0kα  can 
be written as separate equations: 

	 1 0 0[ ] [ 1] [ ] [ˆ ˆ 1]y n k z y n x n z x nα= − + − − � (D3)

	 0 0 0[ 1]   [ 2] [ 1] [ˆ 2ˆ ]y n k z y n x n z x nα− = − + − − − � (D4)

Combining these two functions: 

	 2 2
0 1 0 1 0 1 0[ ] [ 2] [ ]ˆ ˆ ˆ( 1) [ 1] [ 2]y n k k z y n x n k z x n k z x nα α α α= − + + − − − − � (D5)

Finally, the new transfer function can be determined: 

	
1 2 2

1 0 1 0
0 2 2

1 0 0

1 ˆ ˆ( 1)

1
( )

ˆ
k z z k z z

H z
k k z z

α α

α α

− −

−

+ − −
=

−
� (D6)

	
( )( )

1 1
0 1 0

1 1
1 0 0 1 0 0

ˆ ˆ(1   ) (1   )

1   1  ˆ ˆ

z z k z z

k k z z k k z z
α

α α α α

− −

− −

− +
=

− +
� (D7)

E  SUPPLEMENTAL RESULTS

This section presents supplemental results for 10-us and 20-us chirp repetition 
intervals.
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FIGURE E1 10-us continuous chirp without pulse blanker

FIGURE E2 10-us continuous chirp with pulse blanker

FIGURE E3 10-us-pulsed chirp with pulse blanker
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FIGURE E5 20-us continuous chirp with pulse blanker

FIGURE E6 20-us-pulsed chirp with pulse blanker

FIGURE E4 20-us continuous chirp without pulse blanker
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