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O R I G I N A L  A R T I C L E

Real-Time Ionosphere Prediction Based on IGS Rapid 
Products Using Long Short-Term Memory Deep Learning

Jianping Chen  Yang Gao

1  INTRODUCTION

The ionosphere is the layer of the Earth’s atmosphere at heights between 50 km 
to 1300 km that contains most of the free electrons (Perez, 2018). The ionospheric 
layer causes a group delay in code measurements and advances in carrier phase 
measurements. The GNSS error caused by the ionosphere is the most significant 
when compared to other errors. Precise ionospheric information and modeling 
will therefore be useful to mitigate its effects on single-frequency receiver users 
and improve the convergence time and performance of dual-frequency receivers 
(Aggrey & Bisnath, 2019; Liu et al., 2021). 

The International GNSS Service (IGS) has developed the Global Ionosphere 
Map (GIM) in the IONosphere EXchange (IONEX) format (Schaer & Gurtner, 
1998) with archived map data dating back to 1993. The typical spatial resolution 
of the GIMs is 2.5° in latitude and 5° in longitude, thus providing 71 x 73 grids 
globally (Schaer, 1997). Currently, there are three main types of IGS GIMs in 
terms of latencies, i.e., final, rapid, and predicted. The final GIM has an accuracy 
of 2–8 TECU and is thus a more accurate ionosphere map compared to the other 
two types (Products, 2020). Largely due to efforts and various approaches from 
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Abstract
High-precision ionospheric corrections are essential for precise positioning 
using low-cost single-frequency GNSS receivers. Although Real-Time Global 
Ionosphere Maps (RT-GIMs) are available from the International GNSS 
Service (IGS), their ionospheric predictions continue to rely on networks of 
globally-distributed GNSS stations and real-time data links. In this paper, we 
develop a regional real-time ionospheric prediction model based on a long 
short-term memory (LSTM) deep learning method. Because the GIMs from 
the IGS are used as prediction bases, the requirement for real-time GNSS data-
links is eliminated. A comparison of the ionospheric predictions generated 
over 24 hours by the proposed method and the IGS GIM revealed a prediction 
accuracy root mean square error of 0.8 TECU. These results suggest that the 
proposed model may be suitable for use in real-time applications.
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several IGS analysis centers, results from a recent analysis revealed improve-
ments in the quality of predicted ionosphere measurements generated by most 
IGS processing centers which are now close to those of the post-processed GIMs 
(Liu et al., 2021). The IGS real-time service (RTS) generates real-time products 
including satellite orbits, clocks, code/phase biases, and RT-GIMs (Liu et al., 
2021). The RT-GIM is described in the form of spherical harmonics with an order 
of 15 that saves broadcast bandwidth. This follows the RTCM-SSR (RTCM-SC, 
2014) and IGS-SSR (IGS, 2020) formats. The RT-GIMs from the Centre National 
d’Études Spatiales (CNES) upgraded the spherical harmonic degree from 6 to 
12 on June 22, 2017; at this time, the IGS RT-GIMs use a harmonic degree of 15 
(Liu et al., 2021). The CNES quality assessment revealed that the use of a spheri-
cal harmonic degree of 12 resulted in a lower bias of up to 3 TECU while the use 
of a degree of 6 resulted in a higher bias of 5 TECU (Nie et al., 2019). Additional 
analysis demonstrated that the use of spherical harmonic degrees of 17 or 20 
improved the precision by 3.19% and 6.06%, respectively, compared to the degree 
of 15 (Products, 2020). An annual comparison between CNES real-time products 
and IGS final GIMs revealed that the bias ranges from -4.36 to 0.86 TECU and 
root mean square (RMS) Es ranging from 0.8 to 7.04 TECU (Nie et al., 2019). 
Although the quality of the IGS rapid products has improved and they are now 
comparable with the IGS final products, the real-time broadcast ionosphere prod-
ucts that use spherical harmonic models still show considerable errors besides 
that of the original prediction products because they lose many details compared 
to rapid and final products. Additionally, the IGS prediction approaches require 
continuous GNSS data links which renders their services vulnerable to the reli-
ability of the Internet infrastructure.

Because ionosphere prediction is a highly non-linear and complex task, several 
alternative methods based on neural network (NN) models have been introduced, 
including convolutional neural networks (CNNs) and recurrent neural networks 
(RNNs) (Ferreira et al., 2017; Habarulema et al., 2011; Leandro & Santos, 2007; 
Mallika et al., 2019; Mallika et al, 2020; McKinnell & Poole, 2004; Uwamahoro 
et al., 2018). NN models have been in existence for several decades and have 
been widely used in many applications, including meteorological prediction 
and share market forecasts, among others (Haykin, 2009; Karevan & Suykens, 
2020). To improve their accuracy, researchers have applied different NN mod-
els for regional and global ionosphere prediction (Kaselimi et al, 2020; Leandro 
& Santos, 2007; McKinnell & Poole, 2004). For example, Ferreira et al. (2017) 
investigated several input parameter combinations and activation functions for 
regional ionosphere prediction. The results of their study revealed that the input 
parameter selection plays an important role in improving the accuracy of the 
NN model. Likewise, Kaselimi et al. (2020) attempted to use CNN to provide 
a receiver-side slant ionosphere prediction, while Hochreiter and Schmidhuber 
(1997) introduced Long-Short Term Memory (LSTM) units to address the gradi-
ent vanishing problem in the traditional RNNs. Following this, many research-
ers began to apply LSTM-based methods to ionosphere prediction. For example, 
Sun et al. (2017) compared the performance of total electron content (TEC) pre-
diction using LSTM models. Their results revealed that LSTM outperformed the 
existing methods. Similarly, Tang et al. (2020) performed an additional analy-
sis aimed at comparing the performance of autoregressive integrated moving 
average (ARIMA), LSTM, and seq2seq (sequence-to-sequence) methods during 
a geomagnetic storm; their results suggested that LSTM achieved the best per-
formance. Liu et al. (2020) attempted to use LSTM to forecast 256 spherical har-
monic coefficients; a two-hour ionospheric prediction was performed based on 
the forecasted parameters. Xiong et al. (2021) used information from 15 stations 
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to generate regional vertical total electron content (VTEC) over China and found 
that the Encoder-Decoder (ED)-LSTM outperforms the other three machine 
learning models. Ulukavak (2021) analyzed another regional ionosphere pre-
diction using the LSTM-based deep learning method and found that the iono-
sphere prediction from the deep learning method was accurate enough to meet 
the requirements for communication and navigation applications. Lluire and Lu 
(2022) used Gated Recurrent Unit (GRU) and LSTM to predict the ionosphere 
at a station in Kenya. The results revealed GRU outperforms the other models, 
including LSTM. GRU is the newest entrant to this field after RNN and LSTM. It 
was introduced by Chung et al. (2014). Stations in Kenya were used to generate 
the local VTEC which was then used to train the model. Training and 
validation RMSE plots were used to determine the number of neurons 
required for the research. Generally, GRU and LSTM are better than 
other models. Also, GRU performs better than LSTM during intense 
geomagnetic events. Han et al. (2022) used VTEC data derived from 
three stations from 2012 to 2014 for training and data collected in 
2015 for testing. The selected period exhibited the highest solar activity in 
the recent 12 years. 

Four machine learning models, including NN, LSTM, adaptive neuro-
fuzzy inference system (ANFIS), and gradient-boosted decision trees (GBDTs) 
were ana-lyzed for this research. Machine learning methods can achieve 2.9–4.7 
TECU pre-diction accuracy during periods of high solar activity period; the GBDT 
approach results in a 5.6% improvement compared to other machine learning 
methods. Xia et al. (2021) investigated the performance of encoder-decoder 
convolution long short-term memory (ED-ConvLSTM) for medium-term 
ionosphere prediction on a global scale based on IGS GIMs. In 2018, this 
approach achieved 2.04 TECU for a five-day model. Although LSTM has 
performed effectively and has provided accu-rate ionosphere predictions, 
existing research has employed only a single LSTM layer. Therefore, it will be 
worthwhile to investigate the impact of the number of LSTM layers on prediction 
accuracy and validate the prediction using GNSS posi-tioning techniques.

In this paper, we propose an ionosphere prediction approach based on 
a sequence-to-sequence LSTM deep learning method that can 
accommodate short-term regional ionosphere predictions to achieve improved 
prediction accu-racy. The proposed model uses multiple LSTM layers to capture 
both long-term and short-term ionosphere VTEC variations. The proposed model 
has been applied to predict regional ionosphere delays over a northwestern 
region of North America based on precise rapid products from IGS with one to 
two days latency. Rapid prod-ucts from the Center for Orbit Determination in 
Europe (CODE) generated over a period of 90 days were used to train the 
model. The evaluation of the prediction performance includes a comparison of 
the pseudorange-based positioning infor-mation derived from the proposed 
ionosphere model with the original rapid prod-ucts from CODE.

The main goal of this research is to improve the quality of rapid products so 
that they can be used in real-time applications without a significant loss of 
accuracy. The rapid products have at least one day of latency and the existing 
real-time spher-ical harmonics products have up to 5 TECU of degradation. This 
research suggests the possibility of using the precise ionosphere from the rapid 
products in real-time by applying a two-LSTM-layer deep learning method with 
continuous daily updat-ing of newly-available rapid products.

The paper is arranged as follows. The methodology of the LSTM deep learning 
method and the associated evaluation methods are discussed first. The next section 
includes test cases and results followed by an analysis of the performance of the 
ion-osphere. The paper ends with a set of conclusions and a discussion of future 
work.
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2  METHODOLOGY

The feed-forward (FF) NN is a straightforward model that includes one or more 
fully connected dense layers. The hidden layers contain neurons that simulate 
pathways in the human brain. Traditional NNs are effective at finding and mapping 
complex nonlinear relationships between sets of inputs and outputs. The training 
process uses a known set of inputs and outputs that adjusts and eventually identi-
fies a set of converged weights and biases associated with these neurons. The goal 
of the adjustment procedure is to minimize the differences between the NN output 
and the true output from the training dataset. Because the relationship between 
inputs and outputs is typically complicated and nonlinear, the adjustment needs 
to undergo multiple iterations to reach convergence. The converged weights and 
biases generate the best-fit model for the training inputs and outputs. The model 
then can be used to predict unknown outputs based on a new set of inputs. In 
this research, a fully-connected FFNN was first used to predict sequences of the 
ionosphere. The seasonal and diurnal parameters included in the input list are rep-
resented by the quadrature components, including the day of the year (DoY) and 
hour of the day (HoD). These components are described in Equations (1) and (2) as 
follows (McKinnel and Poole, 2004):

HC t HS t
�

��

�
�

�

�
� �

��

�
�

�

�
�cos , sin2

24
2
24

� � � (1)

DNC d DNS d
�

��

�
�

�

�
� �

��

�
�

�

�
�cos

.
,� sin

.
2
365 25

2
365 25

� � � (2)

The other inputs of the FFNN are latitude, longitude, and Kp-index. A two-layer 
setting is used with each hidden layer containing 10 neurons. Of note, the use of 
too many neurons can lead to problems associated with overfitting. To overcome 
this problem, 80% of the data was selected at random and used to train the model; 
the remaining 20% was used to perform the validation. The Levenberg-Marquardt 
algorithm was used to train the model. Figure 1 documents the schematic structure 
used in the research.

FFNNs are clearly unsuitable for sequence prediction as they typically do not 
have a feedback loop needed to support online learning. By contrast, an RNN 
can incorporate new information via its internal loops. The loops allow the tem-
poral information to be transferred between time frames. An easily-understood 

FIGURE 1 Architecture of the FFNN
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chain-like NN can be diagramed by “unrolling” an RNN cell. The LSTM network 
is a special form of RNN that can have the capacity to learn long-term dependency 
(Fang et al., 2020). Figure 2 shows the structure of a single LSTM block. The LSTM 
block has three gates, including the input gate it , forget gate ft , and output gate ot .  
Given the availability of a forget gate, an LSTM cell can add or subtract information 
regarding internal cell states.

Based on the data flow in the architecture, the mathematical model of LSTM can 
be summarized as described by Fang, et al. (2020) and shown in Equations (3)–(8).

	 f W h x bt f t t f� ��� ( , )[ ]1 � (3)

	 i W h x bt i t t i� ��� ( , )[ ]1 � (4)

	 1( ], )ˆ [t c t t cc tanh W h x b−= + � (5)

	 1 ˆo o
t t t t fc f c i c−= + � (6)

	 o W h x bt o t t o� ��� ( , )[ ]1 � (7)

	 h o tanh ct t
o

t= ( ) � (8)

In this research, LSTM was selected as the prediction model. A typical LSTM NN 
contains one sequence input layer that prepares the data for the following LSTM lay-
ers. This type of NN also has one or more LSTM layers, including one fully-connected 
dense layer and one output layer. The proposed NN is illustrated in Figures 3 and 4 
for training and prediction processes. Here, MAP represents ionosphere grid map. As 
shown, the original training dataset was used as input and the same dataset with a 
one-hour shift was used as output. Given the known inputs and outputs, the goal of 
the training process is to find the best fit for the internal parameters. By contrast, the 
prediction process uses one map as input. The output will be the predicted map one 
hour into the future. The prediction algorithm persists until new daily ionosphere 
maps, which are provided by new updated rapid product files in IONEX format, 
are available. The new file is updated by additional tuning of the model so that the 

FIGURE 2 LSTM architecture (Fang, et al., 2020)
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maximum prediction file will be generated within one day, given that the rapid prod-
uct update rate is 24 hours. The sequence layer can handle time dimensions of dif-
ferent sizes. The output from the sequence layer will be always equal to the so-called 
number of features which is equal to the flattened one-hour ionosphere map.

The number of hidden units in the LSTM layer is determined by a trial-and-error 
process. The use of too few units will lead to underfitting while the use of too many 
units will result in overfitting. To find the best-fit number of units to be used in this 
research, a variety of sets of numbers were evaluated. Using the October 9 dataset as an 
example, we divided the dataset into two groups, including one training dataset, and 
one test dataset; 90% of the data was used to train the LSTM model and the remaining 
10% was used to check the model accuracy. We evaluated 100, 200, 300, 400, and 500 
LSTM units using the same dataset. The histogram plots representing our findings are 
shown in Figure 5. This analysis indicated that 400 units were the best setting for our 
dataset; 120 events were below 0.4 TECU. 

The following analysis is based on the use of the same 400 LSTM units in the 
first layer. The same testing was performed for the second layer. Testing with 
100, 200, 300, and 400 hidden units resulted in average test RMSEs of 0.59, 0.60, 
0.62, and 0.59 TECU, respectively. Because the difference between 100 to 400 
units is minimal, we arbitrarily selected half of the number of the first layer  
(n = 200 units), because the use of fewer units typically results in a more rapid 
training process. With 400 and 200 units used for the first and second layers, 
respectively, the total training time for the 90-day dataset was approximately 
one hour using a Dell laptop.

The original NN input contained three-dimensional data for time (hourly), 
latitude, and longitude and an optional one-dimensional Kp-index (three-hour 

FIGURE 3 Temporal deep learning LSTM NN architecture for training

FIGURE 4 Temporal deep learning LSTM NN architecture for prediction
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interval). The one epoch map data is six grids (latitude) by 8 grids (longitude) or 
a total of 48 grid points. In the time domain, the training data covers 2160 epochs. 
Thus, the dimension of the training map data is 2160 x 6 x 8. The Kp-index 
data has a three-hour interval, which is lower than the ionosphere map time 
interval; thus, the previous value for the middle two hours is maintained. The 
training data were then flattened to two-dimensional input that included time, 
a one-dimensional ionosphere, and Kp-index values as needed. Thus, the NN 
contains one sequence layer, one LSTM layer with 400 hidden units, and two 
optional LSTM layers each with 200 hidden units, followed by a fully-connected 
dense layer. The fully-connected dense layer provides flexibility to the chosen 
number of the stacked LSTM hidden units as it transfers the number of hid-
den units to the number of features. The dense layer has the same dimension as 
the flattened training ionosphere map. The output of a one-dimensional map is 
then restored to a two-dimensional map for further analysis. Table 1 presents the 
parameters of the LSTM used in these experiments.

Figure 6 presents a flowchart of the proposed real-time ionosphere services. 
The entire system consists of two major parallel-running model-training and 
model-predicting threads. The former thread was used to train and update the 
LSTM model, and the latter thread was used for real-time ionosphere predictions. 
At the initialization stage, the 90-day rapid products are used in the initial train-
ing phase. During the days to follow, the thread checks periodically for new daily 
rapid products. Whenever a new map becomes available, it will be introduced and 
used to update the LSTM model. This means that the new maps will be used to 
tune an already-trained model so that only one-day prediction information will 
be needed going forward. At this point, the updated model, technically speaking, 
has been trained by the initial 90-day data together with data from various days 

TABLE 1
Parameters of the LSTM Model

Parameters Value

Activation Function Relu

Max Epochs 250

Number of LSTM Layers 2 or 1

1st LSTM Layer Hidden Units 400

2nd LSTM Layer Hidden Units 200

3rd LSTM Layer Hidden Units 200

Number of Dense Layers 1

Learning Rate 0.005

Optimizer Adam

Dropout 0.2

Loss function MSE

FIGURE 5 Test RMSE with different LSTM units
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that have been used to update the model. The trained model thus has an update 
interval of one day. With respect to ionosphere prediction, the thread checks the 
newly-updated trained model and tries to use the most recent model to generate 
a prediction. In other words, the prediction thread attempts to reduce the pre-
diction time to as small an interval as possible. The end-user could then use the 
pre-generated IONEX from the LSTM model as the real-time product. An alterna-
tive real-time application might include methods to generate ionosphere products 
directly from the trained model.

3  EXPERIMENTS AND RESULTS

3.1  Test Datasets

To test the ionosphere predictions with different geomagnetic activity strengths, 
two different target date ranges were selected: May 12–18 and October 9–15, 2021. 
On these dates, the daily peak Kp-indices were 7 and 2, respectively. Figure 7 shows 
the Kp index plots from National Oceanic and Atmospheric Administration / Space 
Weather Prediction Center (NOAA/SWPC).

A single region in the northwest of North America was selected as a target. The 
target region includes the entire northwest of the continental U. S. and the western 
region of Canada, with longitude ranging from 95° to 130° west, and latitude rang-
ing from 40° to 52.5° north. The ionosphere grid resolution is the same as that of 
the IGS GIM, which is 5° longitude by 2.5° latitude and provides 48 (eight by six) 
grid points per map epoch. Figure 8 shows the region selected for the experiment.

FIGURE 6 Flowchart of data processing
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The rapid products from CODE with the prefix “corg” were used in this analysis. 
The first time-window was between February 11 to May 12, 2021; the second was 
between July 11 and October 9, 2021. Kp-index data from the same time-windows as 
the ionosphere data were retrieved from NOAA/SWPC FTP site (ftp.swpc.noaa.gov). 
A total of four datasets were used; specific details are listed in Table 2. Datasets 1 and 
2 are from July to October 2021; datasets 3 and 4 are from February to May 2021. 
Datasets 1 and 3 do not include Kp-indices; datasets 2 and 4 do include Kp-indices.

Because each time window includes 90 days while the corg products are hourly 
maps, the data dimensions for datasets 1 and 3 are 2160 (time) x 8 (longitude) x 6 
(latitude) without the Kp-index. The two-dimensional maps are then flattened to 

FIGURE 8 The regional coverage

FIGURE 7 Kp-indices on May 12-18 and October 9-15 
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one dimension; thus, the final data dimensions for datasets 1 and 3 are 2160 x 48. 
For datasets 2 and 4 (with the Kp-index), the dimensions are changed to 2160 x 49.

As there are four kinds of datasets and three types of NN settings, including one 
model with one LSTM layer, one with two LSTM layers, and one with three LSTM 
layers, the experiment will include a total of 12 test cases as indicated in Table 3.

The input dimension was the time-axis by the number of features. For feature sets 
that do not include the Kp-index, this number is 48, and the cropped map is a 6 x 8 
grid. For feature sets that do include the Kp-index, this information is appended as a 
final value. For the NN, the first number of neurons of the sequence layer equals the 
number of input features and the final number equals the output map dimensions. 
The middle numbers represent the hidden units of the LSTM layers. 

3.2  Accuracy of Ionospheric Prediction

In this section, we consider both hourly errors and daily errors. The maximum 
absolute error (MAXAE), the mean absolute error (MAE), and the root-mean-square 
error (RMSE) were all analyzed on an hourly and daily basis. The absolute error is 
given in Equation (9) as:

	  � �VTEC VTECe r
� (9)

where   is the error between the estimate and known ionosphere values, VTECe  
is the estimated ionosphere, and VTECf  is the reference ionosphere. Thus, values 
for MAXAE, MAE, and RMSE can be calculated as shown in Equations (10)–(12):

TABLE 2
Dataset Details

Dataset Area Longitude Area Latitude Start Time End Time With Kp-index

1 -130° ~ -95° 40° ~ 52.5° Jul 11, 2021 Oct 9, 2021 No

2 -130° ~ -95° 40° ~ 52.5° Jul 11, 2021 Oct 9, 2021 Yes

3 -130° ~ -95° 40° ~ 52.5° Feb 11, 2021 May 12, 2021 No

4 -130° ~ -95° 40° ~ 52.5° Feb 11, 2021 May 12, 2021 Yes

TABLE 3
Test Case Description

Case Dataset Input Dimension Neural Network

1 1 2160 * 48 48–400–48

2 1 2160 * 48 48–400–200–48

3 2 2160 * 49 49–400–49

4 2 2160 * 49 49–400–200–49

5 3 2160 * 48 48–400–48

6 3 2160 * 48 48–400–200–48

7 4 2160 * 49 49–400–49

8 4 2160 * 49 49–400–200–49

9 1 2160 * 48 48–400–200–200–48

10 2 2160 * 49 49–400–200–200–49

11 3 2160 * 48 48–400–200–200–48

12 4 2160 * 49 49–400–200–200–49
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where the subscript i indicates each grid point and n is the total number of grids 
considered. For hourly statistics, the number is 48 (48 grids x 1 hour), and for daily 
statistics, this number should be 1152 (48 grids x 24 hours).

All four types of data were sent to the three types of predefined NNs, resulting in 
a total of 12 test cases. Table 4 documents the statistical results from all 12 test cases 
for the 24-hour prediction time.

As shown in Table 4, the test cases 1–4, 9, and 10 are from the lower Kp-index 
time-window datasets and 5–8, 10, and 11 are from the higher Kp-index 
time-window. Understandably, a lower Kp-index period will provide superior 
prediction performance. Also, we found that including an additional Kp-index 
as an extra feature (test cases 3, 4, 7, 8, 10, and 12) does not result in improved 
short-term predictions. This may be because the training period is relatively short 
compared to the solar activity period, which is 11 years. This also may be because 
the three-hour time resolution of the Kp-index data is somewhat too coarse for 
ionosphere prediction. Our findings also revealed that a single LSTM layer does 
not perform as well as two LSTM layers; however, adding additional LSTM lay-
ers after the first two also provided no better accuracy. The best cases are those 
that feature deep learning LSTM settings with a 400-LSTM-unit layer and a 
200-LSTM-unit layer. With this design, the RMSEs for quiet and active periods 
are 0.79 and 1.66, respectively. 

The findings shown in Figure 9 document the hourly statistical data for two 
datasets with one-layer and two-layer settings. On a day when the ionosphere 
was quiet (for example, October 9, 2021), although the results from a two-layer 
design are slightly better than one-layer, the overall difference is minimal.  

TABLE 4
Test Results

Test Case Neural Network MAXAE (TECU) MAE (TECU) RMSE (TECU)

1 48–400–48 2.90 0.74 0.96

2 48–400–200–48 3.01 0.60 0.79

3 49–400–49 3.64 0.93 1.22

4 49–400–200–49 3.66 1.03 1.30

5 48–400–48 5.32 1.27 1.84

6 48–400–200–48 5.40 1.30 1.66

7 49–400–49 5.99 1.32 1.66

8 49–400–200–49 7.10 1.77 2.20

9 48–400–200–200–48 4.37 0.78 1.17

10 49–400–200–200–49 6.88 1.36 2.12

11 48–400–200–200–48 5.16 1.97 2.37

12 49–400–200–200–49 6.44 1.43 1.85
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By contrast, on an active day (for example, May 12, 2021), the two-layer model 
shows greater stability over a longer prediction time, while performing sim-
ilarly for a shorter prediction time. The two-LSTM-layer deep learning setting 
is clearly better in terms of stability and accuracy. Based on the 48–400–200–48 
setting, Figure 10 documents the prediction performance of a typical geomag-
netically quiet day with a sampling time of 12 hours. These results indicate that 
the south-easternmost part of UTC 23 and the north-westernmost part of UTC17 
can achieve -3 and 2 TECU, respectively. Most of the day, the absolute errors are 
within ±1 TECU. Figure 11 documents the high ionosphere activity on May 12,  
2021. Our findings indicate that a prediction accuracy at ±2 TECU can be 
achieved under most circumstances, even when the ionosphere activity is high.

We observed only insignificant prediction accuracy (Figures 10 and 11); thus, 
the predicted ionosphere products can be used for real-time applications. Because 
the rapid products have at least one day of latency, while the proposed prediction 
does not, the use of this method can improve the accuracy of rapid products close 
to those of real-time measurements. The predicted products can be in the form of 
IONEX files or generated directly by the trained NN model. 

Results from an IGS broadcasting ionosphere stream (IONO00IGS1) in the form 
of spherical harmonics as shown. Figure 12 documents the comparison between 
IGS real-time and IONEX from CODE for 12 hours on Oct 9, 2021; Figure 13 docu-
ments the same comparison on May 12, 2021. A comparison of the predicted with 
the broadcast ionosphere revealed that the daily RMSE from October 9 improved 

FIGURE 9 Hourly MAXAE, MAE, and RMSE for October 9 and May 12, 2021: ionosphere 
prediction
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FIGURE 10 October 9, 2021: prediction error plots

FIGURE 11 May 12, 2021: prediction error plots
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from 1.25 TECU to 0.79 TECU and that the daily RMSE from May 12 improved 
from 1.88 TECU to 1.66 TECU. These results indicate that the proposed ionosphere 
prediction outperforms the broadcast IGS products on both days and in response to 
different geomagnetic activity strengths. 

To assess the VTEC for the covered area, the NN predicted products for the 
two-layer model, the one-layer model, the original rapid products, and the IGS 
broadcast spherical harmonic model were plotted for three NGS stations, i.e., 
mtcu, rkd1, and ptaa. These stations are also used in the subsequent GNSS ver-
ification process. From Figure 14, we can tell that for most of the 24-hour pre-
diction time, the NN model-generated ionosphere maps appear very close to 
the rapid products which are used as a reference point for this research. Of the 
two NN models, the two-layer model is somewhat better than the one-layer 
model because it is closer to our reference (Ionex); by contrast, the IGS broad-
cast spherical harmonic model has shown difficulties in identifying the varia-
tions of the other two models.

As a real-time ionosphere service, the trained model needs to be updated with 
the newly available rapid products. The model can be updated without the need 
for a re-training. Figure 15 documents the impact of updating the model with the 
newly-available daily ionosphere map. The model is trained by 90-day data before 
hour 0. For the first 24 hours, the lines demarcating no update and hourly updates 
were aligned. After the first 24 hours, because the daily ionosphere information was 
used to update the model, divergence began to appear. During the first one-week 

FIGURE 12 October 9, 2021: comparison between the broadcasting ionosphere and CODE 
rapid products
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period, the ionosphere is updated at 24, 48, 72, 96, 120, and 144 hours. The results 
show that, even with data outage persisting for as long as one week, the neural net-
work model is capable of predicting the ionosphere map with reasonable accuracy, 
except UTC 18–20 of day 3 which underwent degradation up to 7.5 TECU RMSE. 
The use of a daily update model leads to significant reductions in RMSE. This was 
most notable on day 3, when the RMSE improved from up to 7.5 to values mostly 
below 1 TECU. Our result revealed that the daily updated model outperforms the 
long-time prediction model that has not undergone updating. As mentioned ear-
lier, the real-time system has a detailed flow chart as described in Figure 6. 

As we discussed above, the NN model is updated whenever there is a new daily 
rapid file is available. As a comparison, seven days of prediction are made with 
or without daily rapid product updates. The trained model that did not undergo 
daily rapid product updates was used to generate predictions for all seven days. By 
contrast, the one with daily rapid product updates uses true data to train the model 
by adding the additional true data information to the trained model. Figure 15 doc-
uments the performance of this method for seven days starting from May 12 and 
seven days starting from Oct 9, 2021. The results of our experiments reveal that 
daily updates demonstrate improved performance with better training with the lat-
est rapid products. This is most apparent for the ionosphere active days. Table 5 
shows the daily average RMSE for the seven days in May and seven days in October 
with daily rapid product updating.

FIGURE 13 May 12, 2021: a comparison between the broadcasting ionosphere and CODE 
rapid products
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To assess the performance of a fully-connected FFNN and the proposed LSTM 
real-time model, the predicted models are analyzed in the three evaluation sta-
tions described above. The original rapid products are also shown in comparison 
plots. Predictions from one-week intervals (May 12–18 and October 9–15) were 
used to document these differences. The plots show that the proposed LSTM 

FIGURE 14 Three-Station (mtcu, rkd1, and ptaa) VTEC comparison of model prediction, 
rapid IONEX, and IGS broadcast spherical harmonics for the October 9 and May 12 datasets

FIGURE 15 One-week prediction comparisons: with and without daily updates 
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model can identify variations in the rapid products. By contrast, the FFNN model 
shows some difficulties in processing the data from May 2021. The FFN model 
was generally good for predictions using the October 2021 data except for the 
fourth day of prediction, which had relatively large errors. The same behaviors 
were observed on the right side of Figure 15. Table 6 compiles the statistical 
results from the processing and verifies that the proposed LSTM model outper-
forms the traditional FFNN model.

TABLE 5
One Week Prediction RMSE

Dates RMSE (TECU) Dates RMSE (TECU)

May 12 1.66 Oct 9 0.79

May 13 1.96 Oct 10 1.37

May 14 1.21 Oct 11 1.22

May 15 0.63 Oct 12 1.20

May 16 0.53 Oct 13 1.76

May 17 0.57 Oct 14 1.18

May 18 0.92 Oct 15 1.42

FIGURE 16 One-week comparisons (May 12–18 and October 9–15) between predictions 
made by Ionex, FFNN, and LSTM models
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4  EVALUATION OF PROPOSED IONOSPHERE MODEL 
IN SINGLE-FREQUENCY STANDARD POINT POSITIONING 
(SPP)

In this section, the performance of the proposed ionosphere model will be evalu-
ated by applying it to a single-frequency SPP. A comparison will be presented between 
the rapid products, machine learning prediction products, and the IGS RT-GIM. The 
functional model for single-frequency SPP is shown in Equation (13) as follows.

	 P dt dT m T I b Bj j
r

j j j
P P

j� � � � � � �� � (13)

where j represents the satellite index, P is the pseudorange in meters, ρ  is the 
geometric range, dtr  is receiver clock in meters, dT j  is satellite j clock, m Tj  is 
slant troposphere delay, I j  is satellite j ionosphere delay on the first frequency, bP  
is receiver clock bias for the pseudorange, and B j

P  is satellite j clock bias for the 
pseudorange. 

The receiver clock bias can be absorbed by the receiver clock; orbit error, clock 
error, receiver clock error, troposphere, ionosphere, and satellite bias need to be 
solved. To evaluate the impact of ionosphere errors, and CNES, post-processed 
products are used to compensate for orbit error, clock error, and satellite bias. 
Applying different ionosphere products used to mitigate ionosphere error will per-
mit us to determine the impact of the accuracy of the ionosphere on the code-based 
positioning results. The troposphere, receiver clock, and position are the only 
parameters that will need to be estimated from the filter. 

The ionosphere products are generated as vertical TECU. Equation (14) can be 
applied to obtain the slant ionosphere delays in meters.

	 I
f

Ivtec
j

TECU�
�40 3 1016

2

.
� (14)

I m Ij
I
j
vtec
j=

where ITECU  is the vertical ionosphere in TECU, Ivtec
j  is the vertical delay in 

meters, and mI
j  is the ionosphere mapping function of satellite j. Both the vertical 

ionosphere delays are at the ionosphere pierce point (IPP). The vertical delay is 
based on rotated TEC maps and the four-point formula (Schaer & Gurtner, 1998).

As the test region covers an extensive area of northwestern continental U.S. and 
part of western Canada, three stations within this area from the NGS CORS net-
work were selected to verify the predicted ionosphere performance. The stations 
selected are located along the U.S.-Canada border, including, mtcu in Montana 

TABLE 6
One-Week VTEC Prediction RMSE in TECU

Period Station FFNN LSTM

May 12–18

mtcu 4.17 0.75

rkd1 4.02 0.72

ptaa 3.86 0.74

October 9–15

mtcu 2.60 1.02

rkd1 2.53 1.02

ptaa 2.60 1.02
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and rkd1 and ptaa in Washington. To verify the quality of the predicted ionosphere 
compared to that generated based on rapid products from IGS, both dual-frequency 
float PPP and single-frequency accuracy were analyzed. Only GPS and GLONASS 
systems were used in the analysis. The predicted ionosphere products were used in 
uncombined PPP processing.

The rapid ionosphere from CODE, the machine learning predicted ionosphere, 
and the IGS-RT-GIM in spherical harmonics were used to run the single-frequency 
positioning engine. The 24-hour dual-frequency PPP results were used as refer-
ences to compute the position RMSE. The position RMSEs for the three stations 
and 24 hours are shown in Table 7 and Table 8. Table 7 shows the results from the 
May 12, 2021 dataset which was considered an ionosphere-active day. As shown in 
Table 7, when the ionosphere is active, the position accuracy from machine learn-
ing is very close to that of the rapid products; the accuracy from IGS-RT-GIM is 
somewhat worse than the other two when tested under these conditions. By con-
trast, Table 8 shows the ionosphere on a quiet day. Under these conditions, there 
were no obvious differences between the three types of ionosphere products. 

5  CONCLUSION

In this paper, we propose an LSTM-based deep learning NN that provides 
real-time regional ionosphere predictions. Various deep-learning settings were 
tested. Our results indicate that a two-LSTM-layer setting with 400 and 200 hidden 
units, respectively, results in the best overall performance. The LSTM deep learn-
ing approach can achieve higher accuracy than the broadcast model. Our research 
revealed that, on quiet ionosphere days, a daily RMSE of 0.8 TECU was observed. 
This value is more accurate than the RMSE of 1.25 TECU generated by the broad-
cast model. On active ionosphere days, improvements from 1.88 to 1.66 TECU  
were achieved. Thus, we can conclude that the proposed ionosphere prediction 
approach outperforms the broadcast IGS products in environments with different 
geomagnetic activity strengths. Compared to the traditional methods currently in 
use at IGS processing centers, this method has a simpler structure as it does not 
require continuous data links for GNSS observations. Verification of our results 
revealed that the deep learning predicted ionosphere method provides displays 
similar performance to IGS rapid products and improved performance com-
pared to IGS RT-GIMs; this method also outperforms traditional FFNN models. 

TABLE 7
May 12, 2021: Single-Frequency Positioning RMSE in Meters

Station Rapid Ionosphere ML Predicted Ionosphere IGS RT-GIM

mtcu 0.743 0.805 0.938

ptaa 0.854 0.842 0.984

rkd1 0.846 0.883 1.014

TABLE 8
October 9, 2021: Single-Frequency Positioning RMSE in Meters

Station Rapid Ionosphere ML Predicted Ionosphere IGS RT-GIM

mtcu 0.664 0.665 0.696

ptaa 0.946 0.941 0.927

rkd1 0.857 0.871 0.859
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Therefore, the use of this method may improve the accuracy of the rapid products 
for real-time applications. Future work will include NN training with additional 
critical information, including standard deviation values from rapid products.
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