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O R I G I N A L  A R T I C L E

Conservative Estimation of Inertial Sensor Errors Using 
Allan Variance Data

Kyle A. Lethander1  Clark N. Taylor2

1  INTRODUCTION

Inertial navigation systems (INSs) provide important information about the atti-
tude and kinematics of objects, including land, sea, air, and space vehicles. The 
shift toward greater vehicle autonomy and the need for accurate estimates of sen-
sor uncertainty for sensor fusion relies on the accurate characterization of sensor 
errors (Hidalgo-Carrió et al., 2016; Song et al., 2011; Yuan et al., 2012). Sensor noise 
consists of many superposed stochastic processes that distort the measured sensor 
output. It is critical to measure inertial sensor noise a priori (and in some appli-
cations, online; (e.g., Song et al. [2011] and Yuan et al. [2012]) for a working INS 
solution due to the need to fuse inertial measurement unit (IMU) information with 
sensors to improve knowledge of system state. An accurate, practical, and robust 
characterization process is a prerequsite for optimal solutions.

Relying on manufacturer datasheets can be problematic due to faulty or incom-
plete noise characteristic descriptions. In addition, a datasheet can only pro-
vide approximations for a type of sensor, but not for a specific sensor. Therefore, 
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Abstract
To understand the error sources present in inertial sensors, both the white 
(time-invariant) and correlated noise sources must be properly character-
ized. To understand both sources, the standard approach (IEEE standards 
647-2006, 952-2020) is to compute the Allan variance of the noise and then 
use human-based interpretation of linear trends to estimate the separate noise 
sources present in a sensor. Recent work has sought to overcome the graphical 
nature and visual-inspection basis of this approach leading to more accurate 
noise estimates. However, when using noise characterization in a filter, it is 
important that the noise estimates be not only accurate but also conservative, 
i.e., that the estimated noise parameters overbound truth. In this paper, we pro-
pose a novel method for automatically estimating conservative noise parameters 
using the Allan variance. Results of using this method to characterize a low-cost 
MEMS IMU (Analog Devices ADIS16470) are presented, demonstrating the effi-
cacy of the proposed approach.
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methods that characterize a specific sensor should be utilized for more accurate 
covariance estimates.

Furthermore, for many navigation applications, the covariance estimate output 
by a Bayesian estimator may be used to determine safety-of-life or other critical 
navigation decisions. In these cases, the uncertainty output of the estimator must 
overbound or be conservative compared to the true uncertainty of the estimate. 
Otherwise, critical decisions about safety (e.g., can two aircraft fly next to each other 
with a less than 1E-6 probability of intersection) may be incorrectly decided. One 
way to ensure conservative output covariance is by overbounding the covariance 
of all input distributions (e.g., Langel et al. [2020]). In particular, the covariance 
estimates should overbound the true covariance for all timescales/frequencies.

Current characterization methods, however, are designed to generate noise coef-
ficient estimates as close as possible to truth without distinguishing positive versus 
negative error, which disregards the risk of underestimation. This paper is moti-
vated by the need for a calibration process that is both accurate and conservative.

Many methods have been applied for sensor noise characterization. Most ubiqui-
tous in the navigation community are Allan variance-based methods (Allan, 1966; 
El-Sheimy et al., 2007; Hou, 2004; Jurado et al., 2019; Song et al., 2011; Yuan et al., 
2012) including adoption as the IEEE standard for sensor characterization (IEEE, 
1998, 2006, 2021). These standards describe what is referred to in the literature as 
the Allan Variance Slope Method (AVSM). However, because the different types 
of noise are additive, Allan variance plots often obscure weaker noise sources that 
cannot be properly estimated by the AVSM. Furthermore, as shown in Guerrier 
et al. (2016a), the AVSM is not a consistent estimator except in very simplistic sce-
narios. Therefore, recent research has suggested autonomous methods for identify-
ing noise coefficients that do not rely solely on slope-matching. The Autonomous 
Regression Method for Allan Variance (ARMAV; Jurado et al., 2019) overcomes 
issues with the AVSM by performing a nonlinear regression in the log domain. In 
a more general approach, the Generalized Method of Wavelet Moments (GMWM), 
published in Guerrier et al. (2013) and Stebler et al. (2014) and further analyzed 
in Guerrier et al. (2020), suggests that optimizing in the linear, rather than log 
domain, leads to more accurate results.

While both ARMAV and GMWM use a least-squares optimization procedure 
to generate the best point estimate of Allan variance noise coefficients, to our 
knowledge, this paper is the first to address the estimation of conservative noise 
parameters from an Allan variance. The primary contribution of this paper is a 
modification to prior least-squares optimization procedures to ensure they produce 
conservative estimates of noise coefficients for a particular sensor. For this paper, 
we define the estimates as conservative if they are greater than or equal to the true 
Allan variance at all timescales. The proposed modifications are a combination of 
Equation (1), using the χ 2-distribution to generate a 95% confidence Allan variance 
upper bound, and Equation (2), applying a constraint to the optimization to ensure 
the resultant statistics are a conservative estimate (overbound) of the additive noise 
sources.

The remainder of this paper is organized as follows. Section  2 provides back-
ground on the Allan variance and prior methods used for sensor characterization, 
namely the AVSM, ARMAV, and GMWM. Section  3 describes the approach we 
suggest to produce conservative noise estimates and overbound true Allan vari-
ance values. Section 4 uses the results of a Monte-Carlo simulation to compare the 
ability of modified and unmodified ARMAV and GMWM to tightly bound mea-
sured noise coefficients over prior methods. Furthermore, results from repeatedly 
characterizing an Analog Devices ADIS16470 IMU further demonstrate the need 
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for conservative estimates. Finally, concluding remarks and a discussion of future 
work are given in Section 5.

2  BACKGROUND

To provide the necessary background for our proposed method, in the follow-
ing subsections, we briefly review: (1) how an Allan variance is computed and 
the error models used to represent the sampled variance, and (2) three different 
techniques that can be used to estimate the error model for a given Allan variance 
estimate.

2.1  Error Modeling

Because the output of inertial sensors are usually fused with other sensor mea-
surements to create a complete navigation system, characterizing the uncertainty 
associated with an inertial measurement is critical to the proper functioning of 
the fusion algorithm. Manufacturer specifications are often incomplete with 
only white and bias instability noise coefficient estimates (Analog Devices, n.d.; 
Hidalgo-Carrió et al., 2016) and inaccurate due to manufacturing tolerances and 
varying test conditions (El-Sheimy et al., 2007). This creates the need for an easy, 
reliable sensor calibration procedure.

For a general system of true state, x, and sensor measurements, z, the relation-
ship between the actual and observed state is given by:

 z = +Hx   (1)

where H  is the observation model matrix with additive noise .  In this paper, we 
are specifically interested in characterizing .

Several methods have been proposed for characterizing inertial sensor errors 
Guerrier et al., 2020; Miao et al., 2015; Song et al., 2011; Stebler et al., 2014). The 
use of the Allan variance has remained the active IEEE standard for calibration 
of both ring laser gyroscopes (IEEE, 1996, 2006), and interferometric fiber optic 
gyroscopes (IEEE, 1998, 2021) for several decades. The Allan variance was orig-
inally developed to characterize atomic clock stability (Allan, 1966), but since 
then, has found applications in a variety of contexts involving the estimation 
of signal noise. It is now often applied to gyroscopes and accelerometer data 
to estimate noise terms for modeling sensor error, providing critical informa-
tion for INS solutions. The theory behind the Allan variance and methods for its 
computation are plentiful throughout current literature (El-Sheimy et al., 2007; 
Hidalgo-Carrió et al., 2016; Hou, 2004; Howe et al. 1981; Jurado et al., 2019; 
Vagner et al., 2012), so the discussion here will include only a short description 
of the connection between the Allan variance and the autocorrelation function, 
the essentials for computation, and brief descriptions of each noise source.

2.1.1  Allan Variance

The Allan variance uses a two-sample variance, cluster sample technique to 
assess the long-term performance of rate signals (Howe et al., 1981; Tehrani, 1983). 
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The autocorrelation of a discrete signal represents the statistical dependency of a 
signal, x k[ ],  with a time-shifted copy of itself. Assign the quantity:

 r Cov x k x k n( ) ( [ ], [ ])τ = +  (2)

where n  is any integer and Cov  computes the covariance between the two signals. 
The autocorrelation of the signal x k[ ]  will be:

 ρ( ) ( )
( )

n r n
r

=
0

 (3)

while the power spectral density (PSD) of the signal will be the discrete time 
Fourier transform of the autocorrelation function.

To understand the Allan variance, we first define the average of a set of 
samples as:

 Y K
n

X K n in
i

n
( ) [( ) ]= − +

=
∑

1 1
1

 (4)

where n  is the size of the set of samples to be averaged.
The Allan variance ( )sa

2  can be obtained as a function of the auto-correlation 
function using the formula (from Zhang [2008]):
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where ρ  is defined in Equation (3), n  is the size of clusters being analyzed, and 
σ X r2 0= ( ).

If the autocorrelation values, ρ τ( ),  are unknown, the Allan variance of a time 
series with N  samples can also be directly estimated as:

 22
1

2( 1)

( ) ( )
ˆ ( )

m
n ni

a

Y i Y i
n

m
σ =

− −
=

−
∑  (6)

where m N n= [ / ].
Typically, the Allan variance is plotted against t ,  where τ = n t∆  and Dt is the 

sampling time of the discrete signal (i.e., ∆t fs
= 1  where fs  is the sampling fre-

quency). Note, that if N  samples were collected, then { | , }n n n N∈ ≤ ≤ 1 2 .

2.1.2  Error Models

Once the estimated Allan variance is computed from samples, an explanatory 
model of the Allan variance data must be created. The sensor is characterized 
when an explanatory model that matches the errors in the collected samples is 
developed.

Different models have been proposed to model the error characteristics of iner-
tial units. One model, proposed in Xing and Gebre-Egziabher (2008), models all 
noise as either white or non-white, where the non-white portion is modeled by 
a first-order Gauss-Markov process. Generally, however, more detailed structures 
have been used to model noise (e.g., Titterton et al. [2004]).
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The more standard approach models the Allan variance as a combination of five 
different noise sources: quantization noise (nq ),  random walk noise (nrw ),  bias 
instability noise (nb ),  rate random walk noise (nrrw ),  and rate ramp noise (nrr ).  
Because the sources are assumed to be independent, the total Allan variance is 
defined as the sum of variances due to these five error mechanisms (IEEE, 1996, 
1998, 2006, 2021),

 σ τ σ τ σ τ σ τ σ τ σ τa q rw b rrw rr
2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ),= + + + +  (7)

Each individual noise source has a different relationship with the Allan variance 
as shown in Table 1.

To create the error model from an Allan variance plot, we describe three main 
techniques that have been used in the past in the following subsections. These are 
(a) the Allan Variance Slope Method (AVSM), (b) the Autonomous Regression 
Method for Allan Variance (ARMAV), and (c) the Generalized Method of Wavelet 
Moments (GMWM).

2.2  Allan Variance Slope Method

Until recently, the AVSM was the sole method of evaluating the strength of noise 
mechanisms using Allan variance data. Despite its shortcomings (Vagner et al., 
2012; Hidalgo-Carrió et al., 2016) and the introduction of alternative approaches 
(Guerrier et al., 2020; Jurado et al., 2019; Miao et al., 2015; Song et al., 2011; Stebler 
et al., 2014; Yuan et al., 2012), the AVSM has maintained a continual presence in 
research and must be well understood before considering alternate methods.

Plotting σ τa
2 ( )  versus t  on logarithmic axes, each of the error mechanisms in 

Table 1 give rise to a particular slope. The basic concept behind the AVSM is to 
find a portion of the Allan variance chart that is predominately one of the slopes 
in Table 1. That line is then extended to a specific point (the tread  in Table 1) in the 
chart where the value associated with that noise source can be read.

In Figure 1, we show a typical result using the AVSM. The blue (lower) plot is the 
estimated Allan variance computed from samples of an Analog Devices ADIS16470 
IMU. While the AVSM seems to perform well when each respective error mech-
anism slope appears in the plot, it tends to overestimate coefficients when those 
slopes are not present. (For example, in Figure 1 note the exceptionally steep slopes 
for small and large t  where the slope method overbounds the truth. This exhibits 
an over-estimation of quantization and rate ramp noise.) Furthermore, as shown in 
Guerrier et al. (2016a), the AVSM is not a consistent estimator except in very simplistic 
scenarios. The AVSM is also undesirable in modern applications due to inconsistent 
slope matching and lack of autonomy, especially when there is limited data available.

TABLE 1
Sources of Noise With Associated Allan Variance (AV) Slopes

Error Mechanism AV effect σ τa
2 ( )  slope Units 

(gyro.)
Units 

(accel.)
tread

Quantization β τq 3 1− –2 deg2 m2 s–2 3

Random walk β τrw
−1 2/ –1 deg2 s–1 m2 s–3 1

Bias instability β
πb

log2 2( ) 0 deg2 s–2 m2 s–4 argminsa
2

Rate random walk β τrrw
1
3

1 2/ +1 deg2 s–3 m2 s–5 3

Rate ramp β τrr
1
2

+2 deg2 s–4 m2 s–6 2
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2.3  Autonomous Regression Method for Allan Variance

Recent autonomous methods have been developed to increase estimation accu-
racy, reduce computational cost, and remove the potential need for human inter-
vention when computing an error model for an IMU. Instead of force-fitting lines 
to potentially erratic Allan variance curves, ARMAV utilizes least-squares nonlin-
ear regression to iteratively converge on an accurate overall noise characterization 
(Jurado, n.d.a; Jurado et al., 2019).

Let the Allan variance, σσa
2 ( )τ ,  and its associated clustering times, tt ,  be 

denoted by:

 σσa N
N2

1
2

2
2 2=   ∈σ σ σ


  (8)

 ττ =   ∈τ τ τ1 2  N
N

  (9)

where N  is the number of points in the Allan variance data set. The goal of 
ARMAV is to find the set of squared noise coefficients:

 ββ =   ∈β β β β βq rw b rrw rr


5  (10)

such that the five-element noise model closely matches the estimated Allan vari-
ance for the sensor.

More specifically, the ARMAV uses a non-linear regression technique to mini-
mize the quantity:

 2 2lg( ) lg( )ˆ|| ||a − Xσ β  (11)

where X  is linear regressor matrix X ∈ ×N 5  using elements from the vector tt :  

 X =

 − −

− −

3

3

1
2

1
1 2 2 1

3 1
1
2 1

2

2 1 2 2 1
3

1
2

2

τ τ τ τ

τ τ τ τ

π

π

ln

ln

( )

( )

    

N N N N















 (12)

FIGURE 1 AVSM model fitted to Allan variance data. The estimated noise coefficients 
(generally) bound truth, but the overestimation is not a tight overbound. 
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and lg( )⋅  is the base-10 logarithm:

FIGURE 2 ARMAV model fitted to Allan variance data: This fit was generated using an 
unconstrained nonlinear regression (Equation [11]) using scipy.optimize.

In Figure 2, the results of using the ARMAV are shown. Comparing Figure 1 with 
Figure 2, it is clear that the ARMAV much more closely matches the measured Allan 
variance curve than models using the AVSM. This translates to more consistent 
and accurate noise coefficient estimates and prevents overestimation of weak noise 
sources, substantiated by simulation results in prior work (Jurado et al., 2019), which 
makes the ARMAV more accurate, robust, and autonomous than the AVSM.

Further improvements to the ARMAV can be made by including a weighting 
matrix in the cost function (Equation [11]). The weighting matrix is derived from 
the estimated standard deviation of the percentage error as introduced in (Jurado 
(2019); Equation [13]) This term is squared and inverted for each Allan variance 
entry to create the weighting matrix.

2.4  Generalized Method of Wavelet Moments

In Guerrier et al. (2016a, 2016b) a more general method—the Generalized 
Method of Wavelet Moments (GMWM)—for computing the error models from 
a time series of samples is introduced. The first generalization stems from the 
realization that the computation of the Allan variance (Equation (6)) can be 
represented as the computation of variance for the Haar wavelet at different 
timescales. The GMWM method introduces the idea of computing the variance 
of other wavelets to allow for alternative intermediate representations of the 
time-series signal. Once the intermediate representation is selected (e.g., the 
Allan variance or the variance of some other wavelet), a second generalization is 
introduced in the optimization function that maps error models to the interme-
diate representation. Both the AVSM and the ARMAV optimize over a function 
(lg )( )⋅  of the intermediate representation, but any function can be used (includ-
ing the identity function).

In later work (Guerrier et al., 2020), the ARMAV and GMWM were compared 
but the GMWM was limited to (a) assuming the Haar wavelet (i.e., Allan variance) 
and (b) using the identity function in the optimization procedure. More formally, 
the GMWM cost function (Equation [11]) was: 
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 2 2ˆ|| ( ) ||a Ω− Xσ τ β  (13)

with X  as defined in Equation (12) and Ω is a weighting matrix for the different 
entries of Allan variance. For this paper, we use the weighting matrix defined in 
Jurado et al. (2019). In Guerrier et al. (2020), results were presented showing this 
version of the GMWM was not only at least as accurate as the ARMAV and the 
AVSM, but had significantly less variance in its results as well.

3  METHODOLOGY

While the GMWM and the ARMAV (best fit methods) provide significant advan-
tages over the standards-based AVSM technique, they both have some weaknesses 
that we seek to overcome. First, best fit techniques do not constrain the optimiza-
tion problem, so there is no guarantee of an overbound of the Allan variance for 
all clustering times. For example, consider the fit derived by the ARMAV shown 
in Figure 2. At τ ≈ 102 ,  the Allan variance from sample data is higher than the 
model derived by the ARMAV. In fact, for any least-squares fit, there will always 
exist observation times where the modeled Allan variance falls the below measured 
Allan variance. This leads to estimates of the noise in inertial sensors that is less 
than the truth (i.e., not conservative). For safety-of-life navigation tasks or when a 
conservative noise estimate is otherwise desirable, the previous best fit methods are 
limited in their ability to provide users with confidence in the fidelity of calculated 
coefficients.

Second, best fit methods attempt to fit an Allan variance curve derived from a 
single (hopefully large) sample set. Unfortunately, there is no guarantee that, if 
the same sensor were used to collect another set of sensor data, the curve would 
not vary and be higher in some places than the current sample data. Therefore, if a 
conservative estimate of noise terms is desired, the probabilistic characteristics of 
the estimated Allan variance must be considered. We address both these issues in 
the following subsections (in reverse order).

3.1  Bounding Allan Variance Using the χ2-Distribution

To establish statistical bounds on the estimated Allan variance data, note that 
each point in the Allan variance curve is a variance computed from k  samples, 
where k  is dependent on the clustering time, t .  Therefore, we can use properties 
of the χ 2  distribution to generate an upper bound that is guaranteed (to some 
probability level 1−α ,  assuming the samples from which the Allan variances are 
estimated are normally distributed) to bound the true Allan variance. To avoid 
confusion between the estimated Allan variance, 2ˆ ,aσ  and the true population 
variance, sa

2 ,  here we adopt the convention of 2 2ˆ: as σ=  as the calculated Allan 
variance (i.e., sample variance) with truth s 2 .

Given a distribution of sample variance, s2 ,  population variance, s 2 ,  and k −1  
degrees of freedom, the chi-square statistic is given by:

 χ
σ

2
2

2
1

=
−( )k s  (14)

The number of degrees of freedom, k −1,  for an Allan variance data set equals 
the number of clusters minus one, or k N

n− = −1 1  for n t= τ
∆

.
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Using the probability: 

 P k s
χ

σ
χ αα α/ /

( )
2

2
2

2 1 2
21 1≤

−
≤









 = −−  (15)

we have:

 P
k s

1
1

1 1
2

2

2

2
1 2
2χ

σ
χ

α
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≥
−
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 = −

−

 (16)

or equivalently: 

 P k s k s( ) ( )
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−
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2

2
2

1 2
2χ

σ
χ
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α α

 (17)

For our proposed technique, we seek to find an overbound of the additive noise. 
Thus, a lower one-sided ( )1 100− ×α %  confidence interval according to:

 0 1 2

2
, ( )k s−








χα

 (18)

is applied. Therefore, for a 95% confidence interval ( .α = 0 05),  the least upper 
bound of:

 0 1 2

0 05
2

, ( )

.

k s−








χ

 (19)

is used in place of the Allan variance point estimate, s2 .  In Section 4, models will be 
generated against this upper bound with and without an optimization constraint.

A Monte-Carlo simulation was performed to show the calculation described 
above, indeed, results in bounding 95% of truth Allan variance. True noise coeffi-
cients were selected to approximate a low-quality IMU and synthetic sensor data 
was generated (Jurado, n.d.b; Jurado & Raquet, 2017). The Allan variance for each 
set of simulated data was computed. For each trial, the proposed 95% confidence 
upper bound was also computed by taking each element of the Allan variance, 
σ τa
2 ( ),  and multiplying by the factor k−1

0 05
2χ .
,  where k N t= ∆

τ
.

Six simulations were executed, ranging from 100 to 10,000 trials of simulated 
sensor data. For each trial, the discrete Allan variance points at the respective 
observation times were compared to the Allan variance generated from the true 
coefficients. The number of points that overbound the truth and the total number 
of points considered were added separately, and this process was repeated for every 
trial. Therefore, the total number of points considered for each simulation was the 
number of trials times the number of Allan variance points per trial of data collec-
tion (Table 2).

As the number of trials increased to 10,000 (i.e., additional available sensor data), 
it was observed that the percent overbound of simulated Allan variance points 
converged to within 0.03% of the expected value. In the Figure 3(a), we show the 
results of 100 simulations. In the chart, the black dashed line denotes truth, and 
each colored line corresponds with one trial of simulated data. Approximately 50% 
of the data points fall below the truth value. In the second plot, the same chart 
is shown, but with the chi-square factor applied to each Allan variance sample. 
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Notice that these upper bounds consistently (to ≈ 95% confidence) overbound the 
truth. Using this overbounding technique, we can modify the estimated Allan vari-
ance to ensure conservative uncertainty results are used by downstream fusion 
algorithms to weight the inertial data.

3.2  Constrained Regression Methods

The best fit techniques the ARMAV and GMWM, apply numerical methods to 
solve for coefficient values subject to an error minimization objective function. To 
generate tight but conservative estimates of total noise, we propose to modify the 
ARMAV and the GMWM by adding a nonlinear constraint to the optimization to 
ensure the modeled Allan variance always bounds the estimated Allan variance data.

Let ( )Xββ i  denote the i-th element of the modeled Allan variance:

 ( )
( )

,Xββ i
q

i

rw

i

b i rrw i rr= + + + +
3 2 2

3 22

2β

τ
β
τ

β
π

τ β τ βln
 (20)

and si2  denote the ith element of the estimated Allan variance, s2 .  Here, the objec-
tive is to solve the optimization problem:

 
argmin ( )

. . ( )
ββ

ββ

ββ

f

s t si i
2 ≤ X

 (21)

where f ( )ββ  is defined by either Equation (11) or (13), depending on if we are 
constraining the ARMAV or GMWM, respectively. Solving this constrained 

TABLE 2
χ 2  Simulation Results

Number of trials 100 100 1,000 1,000 10,000 10,000

Percent overbound 94.62 94.34 94.59 94.86 94.97 94.97

FIGURE 3 (a) Allan variance plots of simulated data against truth (b) 95% confidence upper 
bound of simulated data Allan variance against truth
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optimization problem results in a five-element noise model that overbounds the 
estimated Allan variance for all clustering times (e.g., Figure 4) and has high con-
fidence of overbounding the Allan variance computed by another collection of the 
same sensor.

For the unconstrained problem, convergence can vary with the chosen numer-
ical method to solve the minimization. In most cases, zeroth-order methods 
(e.g., Nelder Mead, Powell methods) are sufficient, typically resulting in fast 
solve times using only function evaluations. First-order methods, such as the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, were found to require more 
iterations but fewer function and gradient evaluations, resulting in faster conver-
gence time. These require the gradient of the objective function f. For the ARMAV, 
the derivatives of f (Equation [11]) are derived as:

 ∂
∂

=










⋅
∂
∂=

∑
f
x

s
xj i

n

i i

i

i

i

i

j

2
10 1

2

ln

lg
Ω ,

( )

( )
( )

X

X
X

ββ

ββ
ββ

 (22)

for x xq rr1 5= … =β β,� ,� , and assuming Ω (the weighting matrix) is a diagonal matrix.
For the GMWM, the derivatives of f  (Equation (13)) are derived as: 

 ∂
∂

= −( )f
x

s
j

i i j2 2Ω ( )X Xββ  (23)

where X j  is the j-th column of the matrix X .
In Figure 4, we show an example of using the constrained optimization routine. 

While the generated Allan variance model closely matches the estimated Allan 
variance, it always overbounds the collected (blue) curve. In the following section, 
we compare the results of methods considered in this paper to demonstrate the 
efficacy of the constrained fit methods in generating overestimates of each noise 
coefficient and the total Allan variance.

FIGURE 4 An example of constrained optimization using the ARMAV cost function: This 
model maintains a least-squares minimization, but at every observation time t ,  the modeled 
Allan variance is greater than or equal to the measured Allan variance.
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4  RESULTS AND DISCUSSION

4.1  Simulation

To demonstrate the effects of the constrained optimization and chi-square over-
bounding techniques, a Monte-Carlo simulation of an inertial sensor with the noise 
characteristics outlined in Table 3 was used. The coefficients used were selected 
to be of comparable magnitude to an Analog Devices ADIS16470 IMU (Analog 
Devices, n.d.). To simplify notation, let the noise coefficients, σ σq rr, ,… ,  be given 
by the positive square roots of the ββ  vector elements, namely:

 
σ β σ β σ β

σ β σ β
q q rw rw b b

rrw rrw rr rr

= = =

= =

,� ,�

,� .
 (24)

To evaluate the effectiveness of each estimation technique, we utilized the pro-
cess illustrated in Figure 5. Each Monte-Carlo run consists of using the values 
shown in Table 3 to generate some artificial noise data with the given character-
istics (the sample creation block). This was performed using a MATLAB function 
designed in prior work (Jurado, n.d.b) and publicly available on the Internet. Using 
Equation (6), the noise samples are converted into estimated Allan variance values 

2( ˆ ).aσ  The estimation routine being tested was then run to generate some predicted 
noise values, ˆ.β  Using Equation (12), both the true and predicted noise values can 
be converted into truth Allan variance values ( )sa

2  and predicted Allan variance 
values (sa

2 ).  The comparison of these values constitutes the rest of this section.
To begin, we investigate the effect of applying the weighting function to unmodi-

fied ARMAV and GMWM estimation routines. 600 different sets of data represent-
ing 1 hour of samples were generated at a 50-Hz sampling frequency. In Figure 6, 
we show the result of optimization for four different t  values for both unweighted 
and weighted versions of the ARMAV and GMWM. A violin plot of the 600 errors 

TABLE 3
Noise Coefficients Selected for Monte-Carlo Simulation

Error Mechanism Magnitude Units

Quantization, sq 1.0 × 10−7 deg

Random walk, s rw 4.0 × 10−3 deg s−1∕2

Bias instability, sb 1.0 × 10−3 deg s−1

Rate random walk, s rrw 2.0 × 10−4 deg s−3∕2

Rate ramp, s rr 1.0 × 10−8 deg s−2

FIGURE 5 This figure illustrates the technique used for evaluating each estimation 
technique; detailed explanations of the different transitions and circles can be found in the text.
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between the true Allan variance value and the estimated values are shown for each 
t  value. The t  values were chosen to be evenly spread and include the largest and 
smallest t  values for the simulated 1 hour of data collection.1 As shown in these 
figures, the weighted versions of the ARMAV and GMWM routines lead to smaller 
errors at all t  values, but especially the larger t  values. Therefore, all results in 
the remainder of this paper will be derived using weighted versions of the estima-
tion routines.

In Figures 7 and 8, we demonstrate the effect of adding the constraint and χ 2  
overbounding to the ARMAV and GMWM estimation technique, respectively. So 
the magnitude of the Allan variance does not change the results, we plot the log of 
the ratio between the predicted and truth Allan variance values, i.e. log .10

2

2

s

s
a

a
 Both 

figures show very similar results, including:

• For all charts, the errors are smallest for the small t  values and increase as the 
t  values increase. This is expected as there are significantly more samples for 
small t  values. 

• Note that the traditional (weighted) routines significantly underestimate the 
true Allan variance, especially for larger t  values. 

• Using constrained optimization significantly increases the probability of the 
Allan variances being conservative. Unfortunately, there are still a significant 
number of values that are below the true Allan variance values. 

1  For estimating the Allan variance, t values were chosen to range such that t = {dt ⋅ 2 j | j ∈ [1, 2, …, floor (log2(N) − 3)]}, 
where N is the total number of samples in the data set. The –3 is used so that the largest t values will find the variance 
of at least eight samples (i.e., 2 j ≤ N ∕ 8).

FIGURE 6 A comparison of ARMAV and GMWM, both with and without weighting, at four 
different t  values: The top-left and bottom-right plots correspond with the smallest and largest 
t  values
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• After adding the χ 2  constraint, the Allan variance values overbound the truth 
the majority of the time for all timescales. (More precise numbers follow.)

In Table 4, we show the effect of the different estimation routines from data sets 
representing 1, 3, and 5 hours of samples. Note that the 1-hour data is the same 
data used to generate Figures 7 and 8. In this table, we show two different met-
rics for each estimation routine and set of data. The first metric (% below) is the 

TABLE 4
A Quantitative Comparison Between ARMAV and GMWM

1 hour 3 hours 5 hours

Method % below RMSE log % below RMSE log % below RMSE log

ARMAV weighted 74.34 % 0.09 82.38 % 0.09 83.88 % 0.08

Constrained ARMAV 15.02 % 0.35 17.66 % 0.29 18.91 % 0.28

C-ARMAV w/ χ 2 0.39 % 0.39 0.51 % 0.52 0.42 % 0.44

GMWM weighted 75.98 % 0.10 83.14 % 0.10 84.37 % 0.09

Constrained GMWM 16.34 % 0.17 16.78 % 0.11 17.01 % 0.13

C-GMWM w/ χ 2 0.58 % 0.28 0.38 % 0.27 0.43 % 0.19

FIGURE 7 A comparison of the ARMAV-based weighted, constrained, and constrained with 

χ 2 overbounding estimation techniques; the y-axis represents the values log10
2

2

s
s

a

a
 for each given 

tau value (x-axis).
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percentage of predicted Allan variance values that are below the truth values. This 
metric demonstrates how effectively these routines are generating conservative 
predictions for the Allan variance—a fully conservative estimation routine would 
have 0% below. The second metric (RMSE log) returns the root-mean-squared error 
(RMSE), but where error is expressed as the log ratio values that were also shown 
in Figures 7 and 8:

 RMSE�log log=
=
∑

1

1
10

2

2N i

N
a i

a i

σ

σ
,

,
 (25)

where N  is the total number of Allan variance samples (a product of the number 
of t  values for the number of hours simulated and the number of Monte-Carlo 
runs).

Note that many of the same lessons observed in Figures 7 and 8 can be seen 
again, including the necessity for both constraining the optimization and using 
the χ 2  overbounding technique to get conservative estimates. Furthermore, we 
can see that less than 1% of the predicted Allan variance values will be below the 
truth when both of our proposed techniques are applied. One new conclusion 
learned from the data in Table 4 is that, after applying both modifications, the 
GMWM-based technique appears to have less error (its RMSE log is consistently 
lower than the ARMAV-based techique). Therefore, we will use the constrained 

FIGURE 8 A comparison of the GMWM-based weighted, constrained, and constrained with 

χ 2 overbounding estimation techniques. The y-axis represents the values log10
2

2

s

s
a

a
 for each given 

tau value (x-axis).



LETHANDER and TAYLOR    

GMWM with χ 2  overbounding to obtain results with real data in the following 
subsection.

4.2  Application to Analog Devices ADIS16470 IMUs

4.2.1  Allan Variance vs. Datasheet Values

The primary motivation for this work was the need for an accurate, robust, and 
simple characterization process for IMUs that yield conservative estimates of sen-
sor errors. Sensor datasheets often lack completeness of characterization and can-
not be relied upon for information about different sensors, even those of the same 
model. In some cases, the datasheet can significantly overestimate sensor error, 
and in other cases, it can give underestimates, both of which are suboptimal or 
even dangerous in INS solutions.

To demonstrate, consider the Analog Devices ADIS16470IMU (Analog Devices, 
n.d.; see Figure 9). The manufacturer datasheet for this device specifies two noise 
parameters (excluding those that describe temperature errors and gyroscope error 
due to linear accelerations and vibrations): a gyro bias instability of σb = 8 / hr  
( . /��2 22 10 3× −  s)  and random walk error of σ rw = 0 34. / hr  ( . /��5 67 10 3× −  s).  
The rate noise coefficient is only specified as a noise density and is restricted to 
a small range of frequencies (10–40 Hz). Because of this, for the datasheet Allan 
variance, a rate coefficient is not used in the plots that follow.

To determine the accuracy of the datasheet noise values, 20 separate 5-hour 
data collections were collected from a single IMU. The Allan variance for the 
x-axis, y-axis, and z-axis gyros for each of the 20 static data collections were plot-
ted against the Allan variance predicted by the datasheet values for s rw  and sb  
in Figure 10. It was found that the datasheet values for the random walk were 
significant overestimates of the measured values in every case (4x variance over-
estimates), especially considering the strong consistency of Allan variance values 
at small clustering times for a given sensor axis. While it is prudent to overbound 
the errors to obtain conservative uncertainty estimates, this is a poor bound since 
it limits the usefulness of the sensor in the INS (i.e., it assumes far more uncer-
tainty than actually exists). In addition, the lack of a random walk noise value 
in the datasheet leads to significant underbounding of the noise effects for times 
longer than about 100 seconds.

We also show that the variation between sensors is even more significant than 
differences among data collection trials of the same sensor. Consider the measured 
Allan variances for the x-axis gyros of 12 different ADIS16470 IMUs (Figure 11). 

FIGURE 9 Analog Devices ADIS16470 MEMS IMU: The device footprint measures 
approximately 1.25" ×  1.35". 
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While the general trend of these data plots is roughly the same, there is signifi-
cantly more deviation between sensors than there is between data corrected from 
a single sensor (Figure 10). Overall, this demonstrates the unreliability of using 
datasheet values to generally characterize a sensor model.

4.2.2  Noise Estimation Results With a Real Sensor

Using the 20 datasets collected from a single sensor, we apply the methods 
outlined in Section  3 to generate conservative noise coefficient estimates for 
a single sensor. First, we demonstrate the efficacy of applying constrained 
GMWM (CGMWM) with a chi-squared upper bound to improve confidence in 
an Allan variance overbound. As shown by Figure 10, there is a noticeable 
variation in the measured Allan variance between data sets, so it is 
important to consider whether the calculated coefficients for an error model 
also bound the results from other trials.

FIGURE 10 ADIS16470 comparison of datasheet (black dashed line) with measured Allan 
variance for x, y, and z axes: 20 runs (same sensor) of measured Allan variance are given by the 
thin lines.



LETHANDER and TAYLOR    

For every gyro axis of each data set, the original GMWM and the CGMWM 
against a chi-square upper bound were applied. Every predicted Allan variance 
point of these two models were separately compared to every estimated Allan vari-
ance point from all the other data sets from this sensor, and the fraction of model 
overbound points was computed for both methods. These results are shown in 
Table 6. Consistent with expectations, the GMWM, which is a least-squares non-
linear regression technique, achieved close to 50% overbound, while the CGMWM 
with chi-squared technique was conservative greater than 90%  of the time. Note 
that this process used only the random walk, bias instability, and rate random walk 
noise coefficients to model the Allan variance; the quantization and rate ramp coef-
ficients contributed little to the overall model. Sample statistics for all noise coef-
ficients are given for all optimization methods (Table 5), including the chi-square 
CGMWM.

TABLE 5
ADIS16470 Calculated Noise Coefficient Statistics: Random Walk, Bias Instability, and Rate 
Random Walk

GMWM CGMWM CGMWM w/ χ 2 upper 
bound 

Measured 
Signal 

Noise 
Coefficient 

Datasheet x  s x  s x  s

x-axis gyro srw (deg s−1∕2) 5.67 × 10−3 3.66 × 10−3 1.30 × 10−5 3.77 × 10−3 2.97 × 10−5 3.77 × 10−3 5.96 × 10−5

sb (deg s−1) 2.22 × 10−3 5.03 × 10−4 1.64 × 10−4 2.11 × 10−4 2.05 × 10−4 5.01 × 10−4 2.12 × 10−3

srrw (deg s−3∕2) – 4.02 × 10−4 5.62 × 10−5 4.94 × 10−4 3.31 × 10−5 7.42 × 10−4 5.21 × 10−4

y-axis gyro srw 5.67 × 10−3 2.73 × 10−3 1.16 × 10−5 2.73 × 10−3 1.52 × 10−5 2.73 × 10−3 1.41 × 10−5

sb 2.22 × 10−3 1.30 × 10−3 7.39 × 10−5 2.20 × 10−3 7.09 × 10−4 2.14 × 10−3 5.67 × 10−4

srrw – 1.29 × 10−4 2.73 × 10−5 4.89 × 10−4 1.93 × 10−4 5.74 × 10−4 1.65 × 10−4

z-axis gyro srw 5.67 × 10−3 3.90 × 10−3 4.68 × 10−6 3.91 × 10−3 1.40 × 10−5 3.93 × 10−3 2.13 × 10−5

sb 2.22 × 10−3 1.11 × 10−3 6.01 × 10−5 1.33 × 10−3 2.39 × 10−4 1.30 × 10−3 1.72 × 10−4

srrw – 2.61 × 10−4 4.15 × 10−5 3.13 × 10−4 1.81 × 10−5 4.94 × 10−4 2.44 × 10−4

FIGURE 11 Comparison of Allan variances (x-axis gyro) between different sensors of 
the same model: Each thin line represents a different sensor, but all are of the same model 
(ADIS16470). This shows a greater variation than that found for a single sensor (e.g., Figure 10).
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In most cases, there was a minimal increase in the coefficient magnitudes from 
the GMWM to CGMWM, and from the CGMWM to the CGMWM against the 
chi-square upper bound for the s rw  terms, which is expected because the terms 
on the left of the Allan variance charts have so many samples that they are well 
characterized. On the other hand, the s rrw  terms show a marked increase as the 
estimate routines change. This increase enables the characterized noise values to 
be conservative across all timescales and data collects. Although the estimated bias 
instability ( )sb  values are smaller than the values given by the datasheet, it should 
be noted that the estimated noise values have non-zero rate random walk values, 
ensuring the predicted Allan variance values overbound the true Allan variance of 
the sensor as shown in Table 6.

5  CONCLUSION AND FUTURE WORK

When using inertial sensors in a fusion environment, it is important that the 
noise be conservatively bounded. In this paper, we presented two modifications 
to previously published best-fit methods (the ARMAV and the GMWM) to ensure 
the measurements were conservative. While both the constrained ARMAV and 
CGMWM techniques (with χ 2 overbounding) were shown to generate conser-
vative Allan variance predictions, the CGMWM method generally had less error 
from the truth, making it the method of choice. These results were also shown to 
be more accurate than models derived from the datasheet or from any single data 
collection of a sensor.

For future work, note that all the data used in this paper were collected under 
static conditions and roughly constant temperature. As identified in prior work 
(e.g., Vagner et al. [2012]), thermal and vibrational noise must be controlled to 
generate valid Allan variance data, which directly impacts all succeeding analy-
ses. These factors, as well as the accelerations and rotations involved in any real 
INS solution, must be evaluated in relation to static characterization results. Data 
collection should be performed to measure ground truth in a dynamic setting to 
evaluate sensor errors and compare against static results.
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