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O R I G I N A L  A R T I C L E

Autonomous Lunar L1 Halo Orbit Navigation Using Optical 
Measurements to a Lunar Landmark

Mark B. Hinga1  Dale A. Williams2

1  INTRODUCTION

Recent years have seen a renewed interest in the development of cislunar 
space. As efforts are made to increase the number of satellites in both near-Earth 
and cislunar space, ground-based navigation assets are becoming increasingly 
taxed (Bradley et al., 2020). This necessitates the development of autonomous 
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Abstract
Autonomous cislunar spacecraft navigation is critical to mission success as com-
munication to ground stations and access to global positioning system (GPS) 
signals could be lost. However, if the satellite has a camera of sufficient qual-
ity, geometric line-of-sight (unit vector) measurements can be made to known 
lunar landmarks (e.g., Tycho Crater) to provide observations that enable auton-
omous estimation of the position and velocity of the spacecraft. In this study, an 
improved batch gaussian initial orbit determination (IOD) differential correc-
tor (DC) algorithm, based on the approximated values of the two-body f and g 
series, is applied to initialize a (non-conic based) circular restricted three body 
problem (CR3BP) extended Kalman Filter (EKF) navigator. This navigator col-
lects geometric line-of-sight unit vector (angle only) measurements to a known 
location on the Moon to sequentially estimate the position and velocity of an 
observer spacecraft flying on an approximate southern L1 Halo orbit.
In this study, it was found that the best approach is to initialize the CR3BP EKF 
(navigator) using the solution from the batch DC filter with at least 10 mea-
surements taken against the perceived centroid of Tycho Crater. Thereafter, it is 
best to continue the navigator with subsequent measurements taken against the 
same center coordinates of the Tycho Crater, where these coordinates are now 
expressed in the CR3BP rotating frame. For successful conic-based batch filter 
initialization and long-term CR3BP EKF convergence, it was found that the 
cadence for all optical measurements should be taken at 10 minutes for a simu-
lated measurement noise of 0.1° one sigma uncertainty about the line-of-sight 
measurement unit vector.
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navigation strategies that will allow satellites in these regions to operate effectively 
when ground-based supporting assets are unavailable. One possible framework 
for such autonomous navigation is to use optical measurements to known objects 
in the Earth-Moon system, such as satellites, asteroids flying near Earth, and the 
Moon. Bradley et al. (2020) consider the feasibility of this navigation strategy and 
conclude that artificial satellites, the Moon, and lunar landmarks provide effec-
tive targets for navigation in the cislunar region. Their study addresses practical 
navigation concerns, such as visibility and geometry constraints, illumination 
conditions, and location uncertainty of potential targets. The study also demon-
strates the performance of an optical AutoNav framework for trajectories used 
in the Lunar Reconnaissance Orbiter (LRO) and Gravity Recovery and Interior 
Laboratory (GRAIL) missions. Their treatment of the problem is quite general 
and thorough.

The purpose of this study is to investigate the performance of a custom-built 
angles-only extended Kalman filter (EKF) navigator that estimates the state (posi-
tion and velocity) of a spacecraft flying in a halo orbit of the Earth-Moon L1 libra-
tion point. An approximate Southern L1 Halo orbit, based on computed initial 
conditions from Zimovan (2017), is chosen as the baseline orbit for this study. We 
choose to simulate the “lost in space” problem by initializing the states with solu-
tions from a two-body f and g series batch differential correlator (DC) filter, which 
requires no a priori information to perform the initial orbit determination (IOD).

The reference L1 Halo orbit, along with a simulation and navigation result, 
are visualized in an Earth-Moon rotating frame in Figure 1 and a notional 
Earth-centered inertial (ECI) frame in Figure 2.

FIGURE 1 (Approx.) Southern L1 Halo orbit CR3BP frame

FIGURE 2 (Approx.) Southern L1 Halo Orbit ECI Frame
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This study aims to identify promising targets for use by the navigator and offer 
some explanation of why such targets may be advantageous. We aim to identify 
which navigational targets are preferable for EKF initialization via the batch DC 
filter and which are best for long-term EKF state estimates. A recommendation is 
also given regarding the required frequency of measurements.

Among all target cases, it was found that the best candidate DC batch filter solu-
tion to use in initializing the circular restricted three body problem (CR3BP) EKF 
was based on the perceived center coordinates of Tycho Crater. Once initialized, 
the best EKF navigation performance was obtained by continuing to use Tycho 
Crater as the observation target (as opposed to switching to a different target).

In all cases, it is recommended that at least 10 measurements be provided to the 
DC batch filter to ensure a reasonable initialization of the EKF navigator state to 
prevent navigator divergence. It was found that the best cadence for all measure-
ments should be 10 minutes for a simulated measurement noise of 0.1° one σ  in 
the observed right ascension and declination of the navigation target.

The noise value of 0.1° one σ  was chosen for the following reason: the accuracy 
performance for a novel and recent low-cost multi camera star tracker system for 
small satellites has been determined by Zhao (2020) to be significantly better than 
its stated accuracy objective of 0.1° one sigma error. For existing miniature star 
trackers, such as those used for the AeroCube-OCSD CubeSat, their pointing accu-
racy is 0.02° one sigma error, (Janson et al., 2016). Even though this uncertainty is 
smaller than that of the newer star trackers, we chose to be conservative and apply 
the larger, more challenging of the two values in this study.

The estimated states in the DC batch filter are the position and velocity in a 
notional inertial frame. All geometric line-of-sight unit vectors are equally 
weighted in the batch filter, and there is no a priori information or a priori uncer-
tainty. The only assumption made by the batch filter is two-body motion about the 
Earth. Indeed, this may be a poor assumption for the CR3BP dynamics of a Halo 
orbit, but it could be the only assumption available for the lost in space scenario. 
The estimated states of the CR3BP EKF are position and velocity expressed in the 
CR3BP rotating frame. The EKF is initialized with the state and covariance solu-
tion from the DC batch filter rotated into the CR3BP frame.

Figure 3 illustrates an example of the observation model, which is that of the 
geometric line-of-sight unit vectors pointing from the observing spacecraft to a 
target asteroid (example target body), shown by the green arrows. Note that each 
geometric line-of-sight unit vector can be represented by a right ascension and dec-
lination from the point of view of the observer. Within Figure 3, the vectors r (red) 

FIGURE 3 Observation model for both the batch and EKF filters.
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represent the unknown coordinates of the spacecraft and can be expressed in either 
the inertial or rotating coordinate frame. The vectors R (in black) are the known 
position vectors of the navigation target object, which are known from ephemeri-
des (e.g., Jet Propulsion Laboratory (JPL) DE441 (Park et al., 2021)). Finally, the 
vectors ρρ  (in blue) are the unknown relative range vectors between the asteroid 
and the spacecraft. The relative ranges are not known and are not directly mea-
sured in this observation model. By multiplying the green geometric line-of-sight 
unit vectors by minus one, we obtain the corresponding unit vectors associated 
with the unknown blue ρρ  relative range vectors. It is only the magnitudes of these 
relative blue range vectors that are unknown and are presented in Figure 3 for clar-
ification. Within the batch IOD algorithm, these unknown relative (scalar) ranges 
(corresponding to the measured geometric line-of-sight unit vectors) are initialized 
to zero and are used to estimate the initial state of the spacecraft.

Note that the direction of the vectors in Figure 3 is very important. If an arrow 
points from the spacecraft to the asteroid, this means that an actual geomet-
ric line-of-sight unit vector measurement is being physically measured from the 
spacecraft. In the computation of the spacecraft position, this unit vector is flipped 
(multiplied by minus one) and, thus, points from the asteroid to the spacecraft. In 
other words, we are computing the position of the spacecraft with respect to the 
asteroid, i.e., we form the measurement as if the observer is virtually located on 
the asteroid, not the spacecraft. If we knew the position of the spacecraft and were 
interested in computing the position and velocity of some unknown asteroid, then 
the system of arrows would be reversed, as seen in the study by Hinga (2018).

Within this study, several target bodies for navigation were considered, including 
a geostationary (GEO) and low Earth orbiting (LEO) satellite, the coordinates of 
the Moon’s center, and the center of Tycho Crater (−43.31° latitude and −11.36° 
longitude). In all cases, it was assumed that each target body was visible at all times.

1.1  Initial Orbit Determination - Inertial Reference Frame 
(Two-Body Problem - Phase One)

The problem of determining the orbit of an unknown object began with the 
advent of celestial mechanics seen in the works of Laplace (1780) and Gauss 
(1857) concerning the motion of heavenly bodies about the Sun. Their angle-only 
techniques utilized three observations to compute a position of a celestial object 
without the knowledge of the range, which had to be guessed with the help of the 
roots of an eighth-order polynomial. In 1889, Gibbs (Bate et al., 1971) developed 
his own technique enhancing the Gauss method of position estimation to include 
the determination of the velocity. Knowing both position and velocity, thus, defines 
an orbit in space. Herrick improved on Gibbs’ technique (for short arcs) with the 
use of a Taylor series to compute the velocity at the middle position vector. Clearly, 
these techniques were developed for celestial applications well before the begin-
ning of the space age and availability of the computer Herrick (1971). However, 
astronomer Paul Herget (1965) introduced an algorithm that uses more than three 
angle-only measurements to estimate an orbit in which an iterative approach is 
applied through the variation of guessed geocentric distances to minimize a set of 
residuals in a least squares approach, using as many observations as are available, 
performed on an IBM 1620 computer.

Over the last several decades, many iterative methods to estimate the orbit of an 
unknown object (natural or artificial) using angle-only measurements have been 
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developed. The Double r-iteration technique by Escobal (1965) iterates on an ini-
tial guess of the range between the observer and a target object via the numerical 
partial derivatives and a Newton–Raphson iteration to converge on the true range. 
The Gooding (1996) method, using a minimum of three measurements, requires 
an initial good guess of the first and third ranges and whether the orbit is pro or 
retrograde. Common to all of these methods are the assumptions they make about 
a target satellite to converge to a solution for its orbit.

However, instead of trying to guess “good” starting distances for scalar ranges, 
ρk , initializing all of them to zero provides for excellent starting values and have 
always converged to the nontrivial solution (in this study) for orbiting platform 
observations. A similar result was also found to be true by Karimi & Mortari (2011). 
A more detailed description of this iterative algorithm can be found in the study by 
Hinga (2018) and is also discussed in Sections 5.1 and 5.2.

1.2  Navigator - An EKF based in the Circular Restricted 
Three-Body Problem Reference Frame

Solving the IOD problem in the CR3BP introduces the issue of trying to deter-
mine an orbit in a rotating frame where conic sections no longer govern the motion 
of the spacecraft. The familiar f and g series are not applicable in the CR3BP 
because they are formulated based on the assumptions of two-body conic motion. 
In this study, an initial guess for the state of an unknown non-Keplerian orbit is 
first computed using a two-body approximated f and g series Gaussian-batch IOD. 
This estimated state is expressed in a notional inertial frame. It is then transformed 
into the rotating CR3BP frame. If the time span over which the measurements are 
taken is reasonable, then the IOD solution that uses the two-body motion can be 
sufficiently close to truth to prevent CR3BP EKF divergence. In this study, it was 
found that upwards of 90 minutes of measurements taken at a cadence of no more 
than 10 minutes apart can provide a good enough initial state estimate to enable 
convergence of the CR3BP EKF.

We find that if the spacecraft is in a region of the orbit that is fairly conic with 
respect to the Earth (i.e., near apolune), the two-body f and g batch filter will gen-
erally succeed in providing a reasonable IOD estimate. It is beyond the scope of 
this investigation to examine this issue further, although we might speculate that 
this leverages some of the underlying dynamics in this particular halo orbit. Once 
the CR3BP EKF orbit estimator is initialized, it continues to track the state using 
subsequent geometric line-of-sight unit vectors to the observed target body in the 
CR3BP reference frame.

CR3BP EKF navigation error is defined as the difference between the estimated 
positions and velocities from the known true states of the spacecraft within the 
simulation. The Jacobi Constant (the only known integral of motion in the CR3BP) 
is computed in the simulation to assess the quality of numerical integration. For 
every 50-day simulation and navigation solution, the difference between the 
very first and last Jacobi constant computed (fortunately) remained on the order 
of 10 15− .  This constancy of the first integral of motion satisfies only the neces-
sary condition on the accuracy of the numerical integration but does suggest that 
numerical propagation is not obviously wrong.

Finally, it is necessary to mention that all satellite navigation and measurement 
simulations, algorithm software development, and verification were carried out 
inside the custom-built and validated Hinga SpaceNavSim (Hinga, 2023).
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1.3  Observation Model G and the H Matrix

Within the EKF, the observation model is denoted G X[ , ]k k .  Intuitively, the 
observation model is the relative direction of the spacecraft (T) with respect to the 
observing platform (P), expressed as a unit vector. Recall that in our formulation of 
the problem, the observing platform (P) is the object we are using to navigate auton-
omously (e.g., Tycho Crater), while the satellite (T) is the object that is attempting 
to navigate. Letting rk  denote the position of the spacecraft (T) and Rk  the posi-
tion of the observing platform (P), the observation model is given by Equation (1).
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r R
r R

r R
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k k

k kk
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�
�

�
 (1)

Expressing rk  and Rk  in terms of their components in some orthonormal coor-
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The components lx ,  ly ,  and lz  can be expressed in terms of a right ascension ( )α  
and declination ( )δ  in the chosen coordinate frame, such that: 
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To relate the elements of the state vector to the target satellite X( )t satellite ,  we 
take the partial of G with respect to the elements of the state vector:
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Now, we can define the H  matrix and relate the change in a measurement to a 
change in the state vector.
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Notice that the last three columns are all zero. This shows that velocity is not 
directly sensed by the geometric line-of-sight unit vector and there is no relation 
between the change in the elements of G, l lx y, ,  and lz to the change in velocity.
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2  EXPERIMENT

In preparation for a potential flight experiment, simulations are carried out in 
custom-built astrodynamics software, and performance of the navigator is assessed. 
The formulation of the CR3BP EKF navigator is described in any standard textbook 
covering the EKF (see algorithm in the Appendix Section 5.4 for convenience).

Throughout our experiments, the CR3BP EKF navigator is intentionally given 
complete knowledge of the system dynamics to assess its ability to correct for 
simulated errors in measurement. It implements a high-quality variable step size 
numerical integrator found in Numerical Recipes in C, 2nd Edition (Vetterling 
et al., 1992). The fixed step Runge Kutta (RK4) is used by the simulation to propa-
gate the true states.

To incorporate realistic measurement error, we must first clarify what the naviga-
tor is actually measuring. An angles-only optical navigator makes use of measure-
ments of right ascension ( )α  and declination ( )δ  angles to compute geometric 
line-of-sight unit vectors (to the perceived center of the target object) in a chosen 
coordinate system (for our purposes, a CR3BP rotating coordinate system and an 
inertial). Due to inaccuracies in ephemeris data, knowledge of spacecraft orienta-
tion, and a variety of other error sources, measured values of α  and δ  are never 
exactly correct. In the effort to incorporate all real-world errors into this simula-
tion, we perturb the true values of α  and δ  by small values (dα dδ) to form a 
corrupted measurement. These values of dα and dδ  are sampled from a normal 
distribution about 0° with a standard deviation σ  of 0.1° for reasons found by 
Zhao (2020) above. It is true that systematic and persistent errors from ephemeris 
of target objects or solar radiation pressure (and other unmodeled effects) can-
not be adequately represented by random noise. However, they are assumed to 
be insignificant so that with appropriate process noise in the navigator, the state 
solution will not diverge but can capture dominant effects, thus, enabling coherent 
analyses. Moreover, one can increase the fidelity of the dynamical model to include 
known persistent effects, such as solar radiation pressure. Indeed, a higher fidelity 
ephemeris navigator would be necessary for mission applications.

As previously mentioned, our experiments aim to assess the performance of an 
optical navigator for a spacecraft flying in an L1 southern halo orbit. In our inves-
tigation, we aim to determine which objects the navigator might observe that offer 
the best navigation results. We consider an asteroid flying near Earth (EC2014), the 
perceived center of the Moon, the perceived center of the Tycho Crater, a LEO and a 
GEO satellite. (For these lunar targets, the perceived centers could be derived from 
a centroid of brightness or centroid of geometry.) For simplicity, we do not consider 
lighting conditions in this study. Neither do we consider geometric line-of-sight 
unit vector observability (or opportunity) to LEO and GEO satellites, with the 
understanding that there are sufficiently many of these satellites to allow a target 
switch when one passes out of view. Error introduced by switching between targets 
is not simulated or addressed in this investigation.

Simulations are carried out for a 50-day period beginning on March 5, 2014. This 
date was chosen for the close approach of the asteroid EC 2014 during this time. 
This nominal trajectory is illustrated in Figure 2 and was generated by propagating 
the initial conditions (provided by JPL’s Horizon Webpage) forward in time and 
transforming them to the CR3BP frame. Finally, we consider a nominal time inter-
val between noise-free measurements (dt obs) of 60 seconds to examine which of 
the five target bodies provides the best initial IOD and long-term navigation. All 
other target body motions are simulated in the same manner. After the best target 
body is determined, a variation of noisy measurement cadences for the winning 
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target body is investigated to examine how the state estimate is affected by increas-
ing time spans between observations. The best target candidate for the two-body 
inertial batch filter solution is also determined.

2.1  Phase One - Spacecraft Inertial f and g Series Batch 
Filter IOD - Results

The f and g series batch filter computes a snapshot in time of the lost spacecraft’s 
position and velocity (see Sections 5.1 and 5.2). Although it provides an imperfect 
initial guess of the state in CR3BP, it is good enough so that the CR3BP EKF even-
tually converges close to truth for all cases with no measurement noise, as shown in 
Table 1. For the cases with measurement noise, as shown in Table 2, the successful 
scenarios are when the target bodies are the (perceived) Moon center or the (per-
ceived) center coordinates of Tycho Crater. For nonlunar targets, our experiments 
suggest that the relative motion between the lost spacecraft and the target body is 
small enough such that the noise (0.1° one sigma) in the angles of the geometric 
line-of-sight unit vectors becomes significant enough to degrade state initialization 

TABLE 1
No Measurement Noise (1 min Interval): Inertial Batch Solution Difference to Truth for Lost 
Spacecraft

State Estimate 
Soln (diff to 

truth) 

GEO Sat LEO Sat Asteroid Moon 
Center 

Tycho 
Crater 

 x (km) 5620 4660 −1.63 × 105 −2.47 × 105 −6.86 × 105

 y (km) 350 −440 −8.704 × 104 2.3 −871 

 z (km) 150 2.2 4.81 × 104 6.64 × 105 1.67 × 105

 x  (m/s) 65 −12 1315 1.5 3.3 

 y  (m/s) 10 −931 −1294 −156 −733 

 z  (m/s) −940 −3.7 −2685 −5 −2.5 

CR3BP EKF always 
converged 

TABLE 2
With Measurement Noise 0.1° one Sigma (1-min Interval): Inertial Batch Soln Difference to 
Truth for Lost Spacecraft 

State Estimate 
Soln (diff to 

truth) 

GEO Sat* LEO Sat* Asteroid* Moon 
Center 

Tycho 
Crater 

 x (km) 3.46 × 105 3.44 × 105 3.72 × 105 −3.34 × 104 −3.38 × 104

 y (km) −3.43 × 104 −2283 2.59 × 104 −387.1 −637.7

 z (km) 5.46 × 104 8.25 × 104 −1.09 × 105 7.86 × 104 7.75 × 104

 x  (m/s) 3119 −2511 −2139 34.2 22.1 

 y  (m/s) 86.6 −5451 −25.6 −833.3 −836.1 

 z  (m/s) −326.0 −5314 6041 −1.51 5.29 

* CR3BP EKF 
never converged 
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to the point of causing eventual divergence in the Kalman filter. It is interesting 
to note that when the 10- or 30-minute measurement cadence is selected, only 
measurements made against the LEO satellite, Moon center, and the Tycho Crater 
are good enough to allow CR3BP EKF convergence. Although the batch filter (by 
itself) still converges, any solutions for measurement cadences above 60 minutes 
will cause divergences in all CR3BP EKF instances. For all measurement cadences 
performed, the batch filter solution uncertainties in position are on the order of 
300–1000 km, and those for velocity are about 6 km/sec. Obviously, compared with 
the actual errors illustrated in Tables 1 and 2, the batch filter is overconfident in 
position and underconfident in velocity. Nevertheless, convergence of the CR3BP 
EKF (during noise conditions) using the Moon targets was obtained.

2.2  Phase Two - Spacecraft CR3BP EKF - Results

Performance of the navigator is assessed on the basis of the accurate recovery 
of both position and velocity. It is assumed that the target body trajectories in this 
study, e.g., an asteroid or LEO spacecraft, would be very well known at any time, as 
those of interest are available in the JPL binary ephemeris file DE441, (Park et al., 
2021). This assumes that the ephemeris error of a target body would be small if the 
time on board the observing spacecraft is well known. Figure 4 illustrates errors 
in position using each navigation object (target body). It can be seen that all nav-
igation examples require about 5 days to converge. This is because the navigator 
warms-up (covariance becomes confident) using the perceived center of a particu-
lar target to compute the geometric line-of-sight unit vector measurements.

From Figure 5, we see that the Earth satellite target navigators struggle for about 
12 days until the actual error settles down to a maximum of about 15  km and 
80 m/sec in position and velocity, respectively. The Moon target navigators require 
about 4 days of simulation time (the warm-up period), until their state covariance 
remains inside a consistent bound of values. For the Moon targets, this time until 
convergence is directly related to the time it takes the spacecraft to arrive at lunar 
periapsis (more on this later). Over more time, however, as the navigators continue, 
their performance becomes more apparent, thus allowing for a good comparison 
of the candidate targets. We note that navigation using the asteroid target body 
is significantly less accurate after 10 days than other observation candidates as 
the simulation progresses. After 15 days, the asteroid navigator begins to diverge.  

FIGURE 4 Position error - all targets (no measurement noise)
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As  the asteroid reaches a great enough distance from the observer, the relative 
change in the angle between subsequent geometric line-of-sight unit vectors 
becomes very small.

This causes each new measurement to be essentially the same (or contain little 
or no new information) as the previous measurement because the relative change 
in dynamic motion from the point of view of the observer is insignificant. To 
make matters worse, for the asteroid target, the noise present in the measurement 
becomes relatively significant compared with the low information content in the 
observation and ultimately contributes to filter divergence. See Figure 4.

Noting the significantly worse performance of the asteroid in the recovering 
position, subsequent figures demonstrate the other possible navigation targets. 
Figure 5 illustrates position error results for a subset of possible targets and pro-
vides more insight into navigator performance in recovering position. It can be 
seen that it requires about 35 days for the LEO and GEO navigators to converge to 
position errors that are already obtained by the Moon targets after 5 days. Also in 
Figure 5, the results of the two Moon targets are plotted. They demonstrate better 
navigator performance in recovering position, with the Tycho Crater performing 
slightly better than the perceived Moon center.

In comparing the navigator recovery of velocity, we consider both velocity mag-
nitude, Figure 6, and direction, Figure 7. Due to the relatively poor performance 
of navigation based upon an asteroid, we consider only the Earth-orbiting artificial 
satellites and the Moon coordinates. In all cases, we see several spikes in velocity 
magnitude and direction, at times very close to the arrival time at lunar periapsis, 
which is about 12, 20, 28, and 36 days. For the Moon targets, their performances 
reach lower errors much sooner and have smaller maximums throughout the sim-
ulation. This is because the measurement information content (contained in the 
H matrices of the Moon targets) is much larger in magnitude. (See Section 1.3 for 
the definition of the H matrix and the model of observation G, both of which are 
standard elements of an EKF algorithm described in any standard textbook.) This 
allows the corresponding Kalman gains to better reject errors in the measurements 
and reduce the size of the spikes relative to those seen in other target bodies of 
navigation.

Having identified the Tycho Crater as the winner of the candidate target bodies, 
we next consider the effect of varying the time between subsequent observations 
while adding noise to its measurements. Figure 8 and Figure 9 illustrate the per-
formance of position error for the measurement time intervals of 1, 10, 30, and 

FIGURE 5 Position error - all targets except Asteroid (no measurement noise)
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60 minutes, respectively. We can see that the 60-minute measurement time step 
causes a very large error compared with the smaller intervals. This can be inter-
preted to mean that too much linearization error is accumulating between Kalman 

FIGURE 6 Velocity magnitude error (no measurement noise)

FIGURE 7 Velocity direction error (no measurement noise)

FIGURE 8 Position Error - Tycho Crater - All Measurement Intervals - (with measurement 
noise)
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filter measurement updates at this cadence. Because the uncertainty of the position 
solution is a factor of 100 times smaller than the actual error, this filter solution is 
unacceptable. See Figure 10. Discarding this 60-minute case and looking at Figures 9 
and 11, we see the 1-, 10-, and 30-minute intervals for the error and the uncer-
tainty of the position solution, respectively. As expected, the 10-minute cadence 
performs better than the 30-minute cadence. While the confidence converges after 
5 days, it is not until 20 days that the uncertainty in the 10- and 30-minute solution 
reflects an appropriate magnitude of confidence. That is, the error is bounded by 
the uncertainty. It may be surprising that the 1-minute solution does not always 
perform better than the other two, in both error and uncertainty. This is because 
more measurement noise is getting through to the state updates and is not being 
filtered out successfully until after day 35. It may be that the measurement angles 
subtended during the 1-minute cadences at large distances from the Moon are not 
large enough compared with the noisy angle of 0.1°, one sigma. However, during 
close approaches to the Moon (perilune), the change in angles of measurement (δ  
and α )  are more significant between each update and significantly larger than the 
assumed noise value. This allows for the overall error and uncertainty to go down 
over time. It is encouraging that these remaining covariance cases do indeed bound 

FIGURE 9 Position Error - Tycho Crater – 1-, 10-, 30-Minute Measurement Intervals (with 
measurement noise)

FIGURE 10 Position uncertainty - Tycho Crater - all measurement intervals - (with 
measurement noise)



HINGA and WILLIAMS    

the actual error before and after the perilune approaches at every 8 days after the 
5th day and thereafter for the remainder of the simulation. While the 1-minute 
measurement cadence covariance case of uncertainty is still acceptable, it does not 
perform as well as the 10-and 30-minute cases.

Figures 12, 13, 14 illustrate the corresponding performances in velocity magni-
tude recovery. It is not surprising to see that the 60-minute case shows poor perfor-
mance in error and uncertainty, and by discarding it, we expose something more 
encouraging. Filter velocity error performance is again quite good at 20 days (for all 
remaining candences) and beyond, while the uncertainties in velocity, Figure 15, 
reach a conclusion at 5 days and merely oscillate around 10, 5, and 4 m/sec for the 
remainder of the simulation (1, 10, and 30 min, respectively), with a slight down-
ward secular trend. It can be seen that the 10-min case performs better than the 
30-min case. The explanation as to why the 1-minute measurement step (for veloc-
ity) underperforms compared with the other step size cases is the same as that for 
position recovery. That is, the magnitude of the noise in the measurement errors 
is more significant than the information content (in the component angles) of the 
geometric line-of-sight unit vectors.

FIGURE 11 Position uncertainty - Tycho Crater – 1-, 10-, 30-min measurement intervals 
(with measurement noise)

FIGURE 12 Velocity magnitude error - Tycho Crater - all measurement intervals (with 
measurement noise)
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FIGURE 13 Velocity magnitude error - Tycho Crater – 1-, 10-, 30-min measurement intervals 
(with measurement noise)

FIGURE 14 Velocity magnitude uncertainty - Tycho Crater - all measurement intervals 
(with measurement noise)

FIGURE 15 Velocity magnitude uncertainty - Tycho Crater – 1-, 10-, 30-min measurement 
intervals (with measurement noise)
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Figures 16 and 17 illustrate the corresponding performances in velocity direc-
tion recovery. After we discard the 60-minute case, we observe similar behavior in 
the occurrences of peak amplitudes in the estimated velocity direction error versus 
time, just before perilune passages every 8 days starting at the 12th day. As we might 
intuitively expect, we see that navigator performance generally improves as the 
time between subsequent observations is reduced, but only down to a lower limit.

For measurement cadences below 1 minute, filter performance degrades as the 
measurement noise in the measurement angle becomes larger than or at least more 
significant in size than the relative change in the measurement angles themselves. 
It was noticed that the filter struggles to discern between the actual change in the 
measurement angles and the noise. Therefore, a so-called tuning effort (in-process 
noise (Q) and measurement noise (R)) was focused over this measurement time 
frame so that the accumulation of linearization error in all time frames could be 
mitigated and the noise filtered. This allowed the filter under noisy measurement 
conditions to achieve similar residual errors, after 12 days, as those converged to 
at 5 days by the same filter with zero noise measurements. See Figures 5 and 9. At 
the other end of the scale of measurement cadences, the 120-minute measurement 

FIGURE 16 Velocity direction error - Tycho Crater - all measurement intervals (with 
measurement noise)

FIGURE 17 Velocity direction error - Tycho Crater – 1-, 10-, 30-min measurement intervals 
(with measurement noise)
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interval step, or greater, caused eventual filter divergence, no matter how the filter 
was “tuned”. The tuning process of this study is described as follows.

Under noisy measurement conditions, it was possible to improve the navigator 
performance by tuning or adjusting the (constant) diagonal elements of the pro-
cess noise matrix Q (that compensates for mismodeled dynamics) of the standard 
EKF, which appears in the predict phase of the Kalman filter (see Section 5.4). In 
this study, the process noise was approximated as very small constant values on the 
diagonals of the Q matrix. The best constant diagonal elements of Q were obtained 
by varying them through a range of values over multiple performances of the filter, 
until a local minimum in the residual errors (with respect to the simulation truth) 
was found. Those elements discovered to give an optimum difference to truth were 
Qxx Qyy Qzz� � � � �6 0908 10 22.  and Qxx Qyy Qzz    � � � � �1 5284 10 14. ,  where the 
values are nondimensional and unitless in position and velocity. All nondiagonal 
elements of Q are zero. See Table 3. The best values of the diagonals in the R matrix 
were found to be 1 10 10� �  in units of squared radians.

A Monte Carlo approach could have been employed to continue the search 
for still better values based on perturbations of the initial conditions of the state. 
However, the belief is that the tuning performed in this CR3BP study was thorough 
enough to compensate for noise at all measurement cadences and for the error due 
to mismodeling of the dynamics. Indeed, performing a Monte Carlo in a future 
study that involves a higher fidelity simulation and a naive navigator would be 
worthwhile.

3  THE FROBENIUS NORM

To understand why the Moon might provide better navigation results than other 
objects considered, we compute the Frobenius norm of the navigator’s sensitivity 
matrix, H, as a function of time. The role and definition of the H matrix in the 
formulation of an angles-only EKF navigator are discussed in Section 1.3. Roughly 
speaking, the sensitivity matrix relates a change (or error) in state to a change in 
observation, G. The Frobenius norm gives an idea of the size of the elements in 
a matrix and of the magnitude of the matrix itself, represented as a single scalar 
value.

From Figures 19 and 20 we clearly observe that the Frobenius norm (size) of H is 
significantly larger for Moon targets than any other object for the vast majority of 
the simulation. This implies that a small change in state of the spacecraft produces 
a relatively large change in the associated observation when compared with navi-
gation targets closer to Earth (but very far away from the spacecraft).

TABLE 3
EKF CRTBP - Process Noise Q Diagonal Elements to Compensate for 
Model Errors 

Diagonal Process Noise Element Nondimensional Process Noise Values 

Qxx 6.0908×10−22

Qyy 6.0908×10−22

Qzz 6.0908×10−22

Qxx   1.5284×10−14

Qyy   1.5284×10−14

Qzz  1.5284×10−14
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Geometrically, this is intuitive to understand; as the distance between the 
spacecraft and navigation target is reduced, a small change in the position of the 
spacecraft can result in a large change in the geometric line-of-sight direction (the 
measurement). As such, for a halo orbit that remains relatively closer to the Moon 

FIGURE 18 Perilune at Downward Crossings (at zero - green stars) of r dot v

FIGURE 19 Frobenius norm of H vs. time - all targets (no measurement noise)

FIGURE 20 Frobenius norm of H vs. time - ignoring Moon targets (no measurement noise)
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than to Earth, we would expect that a small change in the spacecraft’s position 
would result in a larger observational change for a lunar navigation target than 
for a navigation target closer to Earth. This is reflected in the magnitudes of the 
elements of the corresponding H matrix, or similarly, the Frobenius norm thereof.

The Frobenius norm of the H matrix becomes a maximum precisely at the 
moment in time of lunar periapsis (perilune) when the spacecraft arrives at its 
closest approach to the Moon. A close examination of Figure 19 revealed the peri-
lune passage times to be: 4.03327, 12.1002, 20.1667, 28.2336, 36.3001, and 44.3667 
days. Figure 18 illustrates the plot of spacecraft position dotted with velocity versus 
time. The times at which these values pass through zero (at downward crossings) 
were found to agree exactly with the times corresponding to the maximum values 
of the Frobenius norm of H.

The verification of the perilune passage times is important because they serve as 
reference times at which the behavior (spikes) of the Kalman gain and state error 
can be understood in regard to the times of the H matrix peak values. This allows 
us to further understand the behavior/performance of the navigator in its recovery 
of position and velocity. This will be discussed in the next section.

4  CONCLUSION AND FUTURE WORK

The results of this study indicate that optical angles-only navigation for a satellite 
flying in this particular L1 halo orbit can be accomplished by initializing the state 
of a CR3BP EKF with a solution (both state and covariance) from an f and g series 
batch filter using 10 measurements, taken at a cadence of 10 minutes, against the 
perceived center of the Tycho Crater. The same target (Tycho) should then be used 
for further sequential observations at the same 10-minute measurement cadence. 
This measurement cadence is meant to be applied during all times in the orbit 
regardless of the observability of the Tycho Crater. Cadences larger than 1 hour are 
not desirable as they cause the filter to fall behind the fast-changing geometric con-
ditions, when the spacecraft repeatedly approaches and departs through perilune 
with every orbit, see Figure 21. Notice the 60-minute spike in the induced norm 
of the Kalman gain leading or lagging behind the other measurement cadences 
by approximately 2 or 3 days. This leads to eventual divergence. The 1-minute 

FIGURE 21 Induced norm of Kalman gain vs. time - Tycho Crater (with measurement 
noise - all cadences)
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measurement cadence does provide an adequate state estimate, but it has larger 
uncertainties and residuals.

The results of the approach considered in this investigation suggest that a lost 
in space satellite may be able to autonomously navigate without a priori knowl-
edge of its state. In other words, a conic IOD method can sometimes provide a 
good-enough estimate to initialize a nonconic, sequential orbit estimator.

These results also suggest that a greater observation frequency tends to increase 
navigator performance, but only to a lower limit. As the navigation step size is 
reduced beyond this point (below 1 minute), errors in measurement are as, or more, 
significant than the actual observed changes in the angle. This leads to degraded 
navigator performance.

A word about the 4-day warm-up period that the Moon target navigator requires 
to become confident in its estimate is warranted. An additional simulation was con-
ducted in which this spacecraft navigator was initialized at 1 day prior to perilune. 
It was discovered that the warm-up period was precisely 1 day, the time required 
to reach perilune. The time until the actual error was bounded by the converged 
uncertainties in state was (again) equal to the amount of time to complete one 
full revolution of the orbit, i.e., about 8 days. All behaviors in error, Kalman gain, 
H matrix magnitudes, etc., were repeated as seen in the original simulation, but 
merely offset by 3 days. This suggests that the navigator’s performance is highly 
dependent on the perilune approach.

Navigation results for LEO and GEO satellites and the asteroid suggest that these 
target bodies are not useful. Although the LEO satellite can provide for a good 
batch IOD initialization of the CR3BP EKF, an eventual switch to the Tycho Crater 
would be necessary to ensure stability in the presence of noise or larger measure-
ment cadences.

Considering the times of perilune passage, we observe that the spikes in both the 
position and velocity estimate errors occur around 110 minutes prior to perilune 
arrival. By the time perilune is reached, these errors have been reduced (via the Kalman 
gain in successive state estimates). This can be observed through careful inspection of 
Figures 9, 13, and 17. These spikes illustrate the effect on navigator performance of 
both rapid dynamical changes near perilune as well as the effects of range and relative 
angle changes on the values of the partials of the sensitivity matrix H.

Larger errors in position and velocity estimates near perilune are not surpris-
ing from a strictly dynamical perspective. Approaching perilune, velocity and 

FIGURE 22 Induced norm of Kalman gain vs. time - Tycho Crater (with measurement 
noise – 1-, 10-, 30-min cadences)
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acceleration are large, and the spacecraft state evolves very rapidly. This implies 
that even a small initial error in the navigation state with respect to the true space-
craft state can be magnified as the spacecraft passes through perilune. The maximi-
zation of the H matrix also occurs, as mentioned previously, precisely at perilune. 
The rapid growth of the H matrix as perilune is approached, coupled with an 
increased covariance prediction (due to the sensitive dynamics as represented by 
the state transition matrix Φ),  results in a spike in Kalman gain (K) slightly before 
perilune.

However, the Kalman gain is observed to decrease rapidly to very small values 
by the time perilune is reached. The covariance in state also behaves similarly, as 
the uncertainties in position and velocity collapse to smaller values just prior to 
perilune arrival. This illustrates the effectiveness of the update phase of the naviga-
tor, in which the Kalman gain is able to apply significant corrective updates to our 
posterior state and state covariance estimates. With successive passes at perilune, 
this behavior and performance of the Tycho Crater navigator continue with success 
for the entire duration of the 50-day simulation.

Further investigation is needed to determine if this overall assessment/under-
standing of the CR3BP EKF navigator is generally reasonable and can be extended 
to a higher fidelity simulation and navigator and in other orbits. It is expected 
that, because this Batch-CR3BP-EKF algorithm (and winning candidate Tycho 
Crater coordinates for navigation) captures the majority of the dynamics (the 
Earth–Moon perturbations) of the real cislunar environment, its elevation into an 
ephemeris-based navigator would be successful.

An investigation should be carried out that examines where in this halo orbit it is 
best to apply this two-body f and g series batch filter (as an initializer) and whether 
the results are improved if the batch IOD uses the Moon (as opposed to Earth) as 
the central body. A subsequent investigation could also consider the performance 
of this approach in a variety of other cislunar orbits. It is speculated that orbits 
with regions of “predominantly conic” motion with respect to either the Moon or 
Earth are likely to result in greater success of the batch IOD and subsequent EKF 
convergence.

Finally, additional work should also consider ways to reduce the warm-up period 
of this navigator even further. For example, initializing a few hours or minutes 
prior to perilune arrival (or also initializing the state covariance matrix off diag-
onals with some a priori information) would be interesting cases to examine. It 
might prove to be worthwhile to find the absolute minimum time required for con-
vergence. However, it is suspected that a full revolution would still be necessary to 
bring the actual error down to within the estimated uncertainties.
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5  APPENDIX

5.1  Development of the Coplanar System of Equations 
in the Inertial Frame (Two-Body Problem (f and g Series) - 
Phase One)

We define the kth inertial position vector of a target satellite for n observation 
times, t t t1 2, , ...., n  as the following:

 , 1, 2, ...ˆ ,k k k k k nρ= + =r Rρ  (14)

where Rk  is the known observer position, ρk  the scalar range from the observer 
to the target satellite, and ˆkρ  is the corresponding “line-of-sight” unit vector, which 
can be expressed in terms of two angles representing right ascension and declina-
tion. The observer can be on the Earth surface or on an orbiting satellite some-
where in space above the Earth.

For three observations, the following standard Gaussian equation expresses the 
relation of three vectors in inertial space as a linear combination summing to zero 
with three distinct coefficients, c c1 2, ,  and c3  as 

 c c c1 1 2 2 3 3 0r r r� � � .  (15)
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This was the equation used by Gauss when he predicted the position of the first 
minor planet after its conjunction with the Sun, (Herget, 1948). If we substitute 
Equation (14) into Equation (15) and separate all known quantities on the right 
side, we end up with

 1 1 1 2 2 2 3 3 3 1 1 2 2 3 3ˆ ˆ ˆ .c c c c c cρ ρ ρ+ + = − − −R R Rρ ρ ρ  (16)

After setting c2 1� �  and after many algebraic manipulations, it is found that 

 c
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where f f g1 3 1, , ,  and g3, are the so-called “Lagrange f and g coefficients” (Curtis, 
2013). For this three-observation example, the approximation (without the velocity 
term) of the f and g coefficients are 
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where τ1  and τ3  are the time intervals between successive measurements of 1 2ˆ , ˆ ,ρ ρ  
and 3ˆ .ρ

Just like Gauss, we put Equation (16) into matrix format. Because the unknown 
ranges appear on both sides of the equation, no closed form solution exists, forcing 
us to solve the system of coplanar equations through an iterative procedure. By 
starting with an initial guess of zero for the three unknown ranges we avoid form-
ing an eighth order polynomial and instead, iteratively solve for the scalar ranges 
of ρ ρ1 2, ,  and ρ3.  
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We do this by inverting the 3 × 3 matrix of known ˆiρ  unit vectors, premultiply-
ing against the right-hand side by this inverse, avoid forming and solving the tra-
ditional eighth-order polynomial for the scalar magnitude of the middle inertial 
position vector r2  (Vallado, 2001), and solve for ρ ρ1 2, ,  and ρ3.
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where 
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is defined as the state vector to be estimated.
At each iteration step, both the scalar ranges, ρi ,  to the target and the corre-

sponding magnitudes, ri ,  of the inertial position vectors, ri ,  are also computed. 
Both are required at each iteration step (after inversion for the state vector) for 
computing the f and g coefficients. ρi  is given by the relation, which describes the 
simple geometry of the measurement scenario. 

 
1
22 2ˆ2i i i i i ir Rρ ρ = + ⋅ + Rρ  (26)

Carrying this out to n observations, we still group the observations into sets of 
three where the kth relation is defined as 

 r r rk k k k kc d k n� � � �� �1 1 2 3 1, , , ...,  (27)

Here, the coefficients of ck  and dk  are obtained similarly as above (in the 
three-observation example) by expressing the vectors rk−1  and rk+1  in terms of 
position and (including) velocity vectors at time tk ,  rk ,  and vk  using the Lagrange 
coefficients f and g in the following (Curtis, 2013)/(Karimi & Mortari, 2011) format.

 r r vk k k k kf g� � �� �1 1 1  (28)

 r r vk k k k kf g� � �� �1 1 1  (29)

By inserting these two expressions into Equation (27), vector vk  can be elimi-
nated and a relationship between rk−1,  rk ,  and rk+1  is completely defined giving 
the expression for ck  and dk  (Karimi & Mortari, 2011) as
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(30)

Notice that by eliminating the velocity term in the Lagrange equations above we 
are constrained to a “triplet” of three position vectors to compute the f and g coef-
ficients. We can still increase the number of observations above three, however we 
will group the measurements into sets of three as we take on more observations to 
compute an orbit. This is discussed below in Section 5.2. The Lagrange coefficients 
fk  and gk ,  appearing in Equation (30), can be expanded in series with a time 

difference � � � �t t tk k k 1  up to a fourth-order series expansion approximation as 
in (Curtis, 2013)
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where � � �3 986004418 1014 3

2. m
sec

 is the Earth’s gravitational parameter.
For time intervals ∆tk  that are small in comparison with the orbital period, these 

coefficients f and g can be well approximated using the first two terms of the series 
expansion, which yield the approximate expressions (Curtis, 2013). These expres-
sions for ck  and dk  will actually be used in experimentation because the velocity 
magnitude at the middle position vector, vk ,  is unknown.
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where k n� �2 1, ...., .  For equally space measured times ( ,� �t constant)  it is very 
easy to see that 
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5.2  Multiple Observations in the Inertial Frame (Two-
Body Problem - Batch IOD - Phase One)

To extend the number of measurements to four or more using the Lagrange f 
and g coefficients in the coplanar system of equations, we must arrange them in 
groups of three so that the coefficients are still based on f and g being expressed as 
a combination of one initial position and one initial velocity vector. Since velocity 
was solved for in Equation (28) and inserted into Equation (29), we ended up with 
three position vectors, resulting in the relation in which the middle position vector 
is a linear combination of the first and third, as seen in Equation (27). Repeating 
this relation into a series of triplet measurements for a number n > 3  observations, 
the corresponding indices are seen as: 
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As we increase the number of observations, from k n� �2 3 1, , ...,  each triplet 
relation is preserved by considering the additional geometric line-of-sight unit vec-
tor as the “third” observation to form rk+1,  complementing the previous two. As 
this additional position vector is included, the corresponding kth “right-hand side,” 
similar to that seen in Equation (16), called the“residual” ξk ,  is formed. The fol-
lowing logic illustrates this principle.

In Equation (27), we substitute for each of the three inertial position vectors with 
the position vector given by Equation (14), ˆ ,k k k kρ= +r Rρ  expand the terms and 
organize the geometric line-of-sight unit vectors on the left-hand side and the posi-
tion vectors of the observer on the right. (Note: the observer could be a terrestrial 
or spaceborne platform.)

 ( ) ( )
1 1

1 1 1 1 1 1ˆ ˆ ˆ
k k k k k

k k k k k k k k k k k

c d
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+ = + + +

r r r
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 ( ) ( )1 1 1 1 1 1
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c c d d
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 1 1 1 1 1 1ˆ ˆ ˆk k k k k k k k k k k k k kc d c dρ ρ ρ ξ− − + + − +− + = − − =R R Rρ ρ ρ  (39)

On the left side Equation (39), the measurement “triplet” is shown as three known 
unit vectors pointing to the target satellite multiplied by unknown scalar ranges 
and Lagrange coefficients. The right-hand side (labeled as ξk )  contains the corre-
sponding three known inertial position vectors of the observing (satellite) platform 
(or the known position of the asteroid in the case of autonomous navigation) with 
the same unknown Lagrange coefficients. (The Lagrange coefficients are unknown 
because they are a function of the scalar magnitude of the inertial middle position 
vector of the target body.) Notice that the Lagrange coefficient of the “middle” geo-
metric line-of-sight unit vector remains as negative one for subsequent sets of trip-
let observations. Starting with the very first set of n = 3 observations, k = 2, we have

 2 1 1 2 2 2 3 3 2 2 2 2 3 2ˆ ˆ ˆ .c d c dρ ρ ρ ξ− + = − − =R R Rρ ρ ρ  (40)

Putting Equation (40) into matrix format leads to

 
1

2 1 2 2 3 2 2
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ˆ .ˆ ˆc d
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  − =  
 
 

ρ ρ ρ  (41)

Adding a fourth observation (n = 4, k= 3), we group the measurements into sets 
of three, yielding two equations:

 2 1 1 2 2 2 3 3 2 2 1 2 3 2

3 2 2 3 3 3 4 4 3 3 2 3 4 3
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(42)

To prepare this set of equations for a least squares solution (Herget, 1965), we 
leave them set equal to their own residual and “stagger” them into matrix form in 
Equation (43),
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where 0 represents a 3 1×  vector of zeros.
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Writing Equation (43) in compact matrix notation, we have 

 * .H =ρ ξ  (44)

Expanding this to n observations, the system of equations is given as 
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Notice that H *  (for this batch DC filter, not to be confused with the H of the 
EKF) is a 3 2( )n n� �  matrix with ρρ  and ,ξ  having the dimensions of n×1  and 
3 2 1( )n � � ,  respectively.

Instead of inverting matrix H *  on the left side and iteratively solving for the state 
vector of unknown scalar ranges ρρ ,  as seen in the similar example of Equation (24), 
here we are able form the normal equation, Equation (45), treating ξ  as the resid-
ual with equal weights for all measurements in matrix H * ,  and solve for ρρ  in 
Equation (46). This iterative approach is similar to that of Herget (1965). However, 
instead of trying to guess “good” starting distances for scalar ranges, ρk ,  initializ-
ing all of them to zero provides for excellent starting values and have always con-
verged to the nontrivial solution (in this study) for orbiting platform observations. 
This result was also found to be true by Karimi & Mortari (2011).

 H H HT T* * *�� ��� .  (45)

 �� ��� �[ ] .H H HT T* * *1  (46)

5.3  Solving for Velocity: Lambert and the Fixed Time-of-
Arrival Solution

After the vector of unknown ranges have been estimated, the series of inertial 
position vectors of the target spacecraft are calculated. To evaluate the spacecraft’s 
velocity, a Lambert solver is applied to the first and last inertial positions with the 
known fixed time of flight between them. The solver used in this study is that 
developed by the European Space Agency (ESA) for their 10 year “Rosetta” mis-
sion (ESA, 2004–2015). However robust and dependable this Lambert solver is, 
an improvement to its solution is obtained by implementing a two point bound-
ary value problem (TPBVP) shooting method to “fine tune” the departure and 
arrival velocity at initial and final time, respectively. The guidance or “shooting” 
algorithm is based on the Linear Perturbation Theory (Battin, 1960) developed for 
the America’s Program for Orbiting Lunar and Landing Operations (APOLLO) 
program during the 1960s. This TPBVP guidance algorithm can be applied equally 
well in either the rotating or inertial frames, where the Lambert method serves as 
a guess for the initial/final conditions in the inertial frame.

Using the notation of Battin (1960), the relation of the final state (position and 
velocity) error of the target ballistic spacecraft to the deviation of the current state 
from the nominal at time t  is given by Equation (48). The term Φ ( , )t tf 0  is known 
as the state transition matrix and is formed by taking the partial of the final state 
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with respect to the initial state, (Gelb et al., 1974). This derivative is a matrix of 
partials, commonly known as the “Jacobian”, shown as matrix A  in Equation (47). 
In this study, the Earth’s J2 gravitation model is used to define the inertial accel-
erations in this derivative and for the accelerations in the rotating frame deriv-
ative, the CR3BP accelerations are used. Integrating this equation produces the 
state transition matrix, which relates the change in state from a certain time t0  to 
another time t f .  The homogenous solution, for a fixed time of integration, is given 
in Equation (48) and yields a fixed time-of-arrival solution.

 � �( , ) ( , ) ( , )t t A t t t tf f f0 0 0�  (47)

 � �x t t t x tf f( ) ( , ) ( )� � 0 0  (48)
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 (49)

Let us expand Equation (48) in terms of position “r” and velocity “v” components 
and assign convenient labels to the portions of the Φ  matrix. Because we know the 
position of where the spacecraft starts and do not want to vary it, we set �r t( )0 0� .  
Then, the expression for the perturbation to the position and velocity at final time 
t f  is, 

 � �r t R v tf( ) ( )� 0  (50)

 � �v t V v tf( ) ( )� 0  (51)

Thus, the equation that defines how to vary (or perturb) the spacecraft velocity at 
time t0 ,  based on the missed distance at the target impact, is 

 � �v t R r t f( ) ( ),0
1� �  (52)

where R  is the upper right 3 3×  matrix of the state transition matrix Φ( , )t tf 0 .
The velocity correction defined in Equation (52) is used as the iterative correc-

tion term at initial time t0  in the search for the optimal improvement of the initial 
velocity to minimize the miss distance at t f .  Upon convergence of this shooting/
guidance method, the Lambert velocity solution has been improved, allowing 
for more accurate orbital elements to be evaluated in the inertial frame and for 
the improvement of the initial state velocity in the synodic frame of the CR3BP 
problem.

5.4  Extended Kalman Filter Formulation - Phase Two

The Extended Kalman Filter (EKF), a workhorse of real-time spacecraft state 
estimation (Crassidis et al., 2007), is a recursive nonlinear estimator (perturbed 
by Gaussian noise) that is discretized in the time domain by linearizing the phys-
ical dynamics of the current best estimate of the parameters of interest. It is not 
a requirement that the model of the state dynamics X F X t t= [ ( ), ]  and observa-
tion model G X t t[ ( ), ]  be linear, only that they are differentiable. This means that 
the formulation of the state transition matrix Φ ( , )t t0  and the matrix H X t t[ ( ), ], 
which is the partials matrix needed to compute the predicted measurement from 
the predicted state (discussed below), is defined. In a non-Extended Kalman Filter, 
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the same is true, but the linearization occurs for some precomputed nominal tra-
jectory of the state. In the EKF, the current best estimate comes from an optimal 
combination of the state from the previous time step (that propagated to the cur-
rent time) and the current measurement. The definition of this combination is 
determined by the so-called Kalman gain K, which is defined below.

Kalman filters are unusual in that most filters (i.e., Butterworth filter) are for-
mulated in the frequency domain, then transformed back into the time domain 
for application. The EKF can be considered an adaptive low-pass infinite impulse 
response (IIR) digital filter, meaning that its response to an impulsive input is non-
zero for infinite time (Gelb et al., 1974). The frequency response of the EKF in this 
study is of no interest.

Ideally, if the model of the state and measurements are complete and accurate 
and perpetrate no acts of error omission or commission, then the covariance P t( )  
of the estimate state will accurately reflect the confidence of the estimated state 
vector, and those parameters will have a mean error of zero. Stated differently, the 
variance and covariance of the estimated state parameters will have a distribu-
tion about the true state. Invoking the expectation operator E f f d[ ( )] ( )� � ��

��

�

� ,  
where f ( )ξ  is the function of interest, if there are no biases in the estimate X̂  and 
residual ˆ ,( [ , ])ktruth k k= −y Y G X  then: 
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E

E k

 − = 
− =
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Y G X
 

(53)

and the covariance matrices for the state estimate and residual, defined as, 
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ˆ T
k k k k k k

T
k k

E E E
E E E

= − −

= − −

P X X X X
S y y y y   

 
(54)

will have zero bias. However, since the filter of this study is intentionally mecha-
nized as a suboptimal filter, small biases will be present and the Equations of 53 
will be close to zero.

The state of the filter is represented by ˆ ,kX  the estimated state at time k, and the 
error covariance matrix Pk ,  which is a measure of the confidence in that state esti-
mate. The EKF has two separate phases, which are called prediction and update. In 
the prediction phase, the estimate from the previous time step (k−1), both the state 
and covariance matrix, are propagated forward to the current time step (k). Then, 
during the update phase, the state is refined with measurement information from 
the current time step. It is intended that after this refinement, the new estimate 
of the state is more accurate, i.e., closer to the truth. In this study (note that there 
is neither a control model nor a control input vector), the equations for these two 
phases are as follows (Kalman, 1960).

Predict Phase 

, 1 1

, 1 , 1 1, 1 , 1

(predicted state estimate) 
(predicted covarianc

ˆ ˆ

e) 
k k k k

T
k k k k k k k k k

− −

− − − − −

=

= +

X X
P P Q

Φ

Φ Φ

where , 1k k−Φ  and Qk  are the state transition and process noise matrices, respec-
tively. In this investigation a Runge-Kutta 4 integration scheme (and when needed, 
a variable step size integrator with an appropriate tolerance) is used to propagate 
both �k k, �1  and 1

ˆ
k−X  forward one time step to give Xk ,  using the Jacobian matrix 

(a matrix of partial derivatives).
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Update Phase 

, 1
1

, 1 , 1

[ , ] (formmeasurement residual) 
(covariance of residual) 

[ ] (optimal Kalman gain) 
(optimal update for the state estimate) 
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, , 1

timate) 
( ) ( ) (covariance) T T

k k k k k k k k k k k−= − − +P I K H P I K H K R K

The terms G X[ , ]k k  and Hk  are the measurement model and the partials of the 
measurement model with respect to the state, and are defined in Section 1.3. Yk  
is the actual measurement taken by a camera to produce a geometric line-of-sight 
unit vector and is discussed in Section 5.1.

a c k n o w l e d g m e n t s
The authors would like to thank the AFRL Scholars’ Program for funding Mr. 

Williams’ work on this project. We thank Robert Morris (of Wabtec) for advice on 
Kalman filtering.

a u t h o r  c o n t r i b u t i o n s
All authors contributed equally to this work.

c o n f l i c t s  o f  i n t e r e s t
The authors declare no potential conflicts of interest.

d i s c l o s u r e s
Approved for public release; distribution is unlimited. Public Affairs release 

approval No. AFRL-2021-4143

How to cite this article: Hinga, M B., & Williams, D A. (2023) Autonomous 
lunar L1 halo orbit navigation using optical measurements to a lunar land-
mark. NAVIGATION, 70(3). https://doi.org/10.33012/navi.586

https://doi.org/10.33012/navi.586

	Autonomous Lunar L1 Halo Orbit Navigation Using Optical Measurements to a Lunar Landmark
	Abstract
	Keywords
	1  Introduction
	1.1  Initial Orbit Determination - Inertial Reference Frame (Two-Body Problem - Phase One)
	1.2  Navigator - An EKF based in the Circular Restricted Three-Body Problem Reference Frame
	1.3  Observation Model G and the H Matrix

	2  Experiment
	2.1  Phase One - Spacecraft Inertial f and g Series Batch Filter IOD - Results
	2.2  Phase Two - Spacecraft CR3BP EKF - Results

	3  The Frobenius Norm
	4  Conclusion and Future Work
	References
	5  Appendix
	5.1  Development of the Coplanar System of Equations in the Inertial Frame (Two-Body Problem (f and
	5.2  Multiple Observations in the Inertial Frame (Two-Body Problem - Batch IOD - Phase One)
	5.3  Solving for Velocity: Lambert and the Fixed Time-of-Arrival Solution
	5.4  Extended Kalman Filter Formulation - Phase Two

	Acknowledgments
	Author contributions
	Conflicts of interest
	Disclosures


