
Received: 11 May 2022   Revised: 1 February 2023   Accepted: 23 February 2023

DOI: 10.33012/navi.595

NAVIGATION, 70(3) Licensed under CC-BY 4.0 © 2023 Institute of Navigation

O R I G I N A L A R T I C L E

Authentication of Satellite-Based Augmentation Systems
with Over-the-Air Rekeying Schemes

Jason Anderson*  Sherman Lo  Andrew Neish  Todd Walter

1  INTRODUCTION

In this work, we delineate a complete satellite-based augmentation system
(SBAS) authentication scheme, including over-the-air re-keying (OTAR) and dis-
cuss how this proposed scheme meets necessary security levels and desirable traits
for SBAS stakeholders, including backward compatibility, data efficiency, and
quick time to first authenticated fix (TFAF). Moreover, this new scheme can be
expanded in response to additional stakeholder feedback. This work addresses the
complete authentication scheme design, including the connecting receiver hard-
ware requirements needed for maintenance schedules, key updates, and scheme
maintenance, and uses a full-stack Monte-Carlo SBAS simulation to test and
evaluate its performance. This work builds on and expands on our previous work
(Anderson et al., 2021) and includes updated security details as well as additional
results and definitions based upon SBAS Stakeholder feedback.

Aeronautics and Astronautics
Stanford, California
United States of America

Correspondence
Jason Anderson
Email: jand271@stanford.edu

Abstract
Here we delineate a complete satellite-based augmentation system (SBAS)
authentication scheme, including over-the-air rekeying (OTAR), that uses the
elliptic curve digital signature algorithm (ECDSA) and timed efficient stream
loss-tolerant authentication (TESLA) without the quadrature (Q) channel. This
scheme appends two new message types to the SBAS scheduler without over-
burdening the message schedule. We have taken special care to ensure that our
scheme (1) meets the appropriate security requirements needed to prevent and
deter spoofing; (2) is compatible with existing cryptographic standards; (3) is
flexible, expandable, and future-proof to different cryptographic and imple-
mentation schemes; and (4) is backward compatible with legacy receivers.
The scheme accommodates a diverse set of features, including authenticating
core-constellation ephemerides. We discuss the SBAS provider and receiver
machine state and its startup, including its use by aircraft that traverse differing
SBAS coverage areas. We tested our scheme with existing SBAS simulation and
analysis tools and found that it had negligible effects on current SBAS availabil-
ity and continuity requirements.

Keywords
authentication, over-the-air rekeying, SBAS, TESLA

ANDERSON et al.    

SBASs, such as the wide-area augmentation system (WAAS) used in the United
States, among other international equivalents, have become integral to the global
navigation satellite system (GNSS) used in civilian aviation. International parties
that choose to implement an SBAS (each is known as a Provider) use listening
stations around their service volume to assess GNSS satellite positioning data and
broadcast corrections widely via geostationary satellites. This information includes
wide-area differential GNSS corrections and GNSS satellite information such as
its health and integrity. Similar to most GNSS core-constellation signals, the SBAS
signal is open and susceptible to spoofing. Given its ubiquitous use in civilian avi-
ation, SBAS should be augmented with spoofing-resistant capabilities to ensure
ongoing civilian aviation safety. As Providers agree to share a common SBAS mes-
sage standard, our work seeks to specify how SBASs can be augmented to provide
authenticated service that is resistant to spoofing.

SBAS is primarily a data service. It broadcasts data that assists GNSS users.
Therefore, appending additional cryptographic data to the SBAS data would be a
natural way to authenticate SBAS data for civilian users. Additional SBAS broad-
cast messages could deliver cryptographic signatures and key values to its users.
Using the mathematical primitives underlying cryptographic authentication meth-
ods, users could assert that only a Provider was capable of generating a given set
of SBAS data as well as the accompanying authenticating pseudorandom data. In
this work, we refer to the authenticating data as “signatures”. Signatures, together
with the associated key data, are either “authenticating pseudorandom data” or
“OTAR Segment”, which are terms that refer to the cryptographic pseudorandom
data itself or the chunks separated for transmission to a receiver, respectively.
The term “authenticating pseudorandom data” is used because the data are not
human-readable nor are they predictable without the use of private secrets. The
security of the authenticating pseudorandom data assumes that (1) the Provider is
the exclusive holder of certain secret identifying information and (2) there are no
known efficient algorithms that can generate the authenticating pseudorandom
data without the secret identifying information. If the identifying information (e.g.,
keys) is leaked, that information is then compromised and must be revoked. If an
efficient algorithm is discovered, the relevant cryptographic primitives are known
as broken and must be replaced.

The use of cryptographic authentication methods poses challenges to SBASs.
The main challenge relates to the delivery of authenticating pseudorandom data
via SBAS given current data-bandwidth constraints. Because SBAS is an open
signal, secure SBAS authentication must rely on asymmetric cryptographic algo-
rithms, for example, the elliptic curve digital signature algorithm (ECDSA). In this
paper, we use the term ECDSA to include other, similar asymmetric cryptographic
algorithms (e.g., EC-Schnorr). However, we will specify ECDSA without losing
generality for concreteness, noting that certain parameters and characteristic secu-
rity strengths listed here would be different if we were not using the ECDSA. A
single ECDSA signature requires 512 bits to achieve the standard 128-bit security
level, which dwarfs the 216 data bits permitted per SBAS message.

Some prior art has suggested the use of the quadrature (Q) channel to deliver
authenticating pseudorandom data (Fernandez-Hernandez et al., 2021; Neish,
Walter, & Powell, 2019); however, those solutions would require power currently
used by the In-phase (I) channel. Use of the Q channel would strain the availability
and continuity of SBAS systems at coverage area boundaries and will thus be unde-
sirable to SBAS stakeholders. Other prior art suggested the use of a combination
of ECDSA with another algorithm known as timed efficient stream loss-tolerant
authentication (TESLA) (Fernández-Hernández et al., 2016; Neish, 2020; Various,

ANDERSON et al.

2021). Use of this algorithm provides more efficient use of authenticating pseu-
dorandom data and is loss-tolerant. TESLA uses a delayed-release mechanism to
authenticate data and requires less authenticating pseudorandom data than ECDSA.
However, TESLA requires the Provider and the user to be loosely time-synchronized
(Perrig et al., 2005). SBAS cannot use TESLA exclusively; TESLA must be used in
tandem with ECDSA to achieve authentication security. In this work, we establish
the following relationship between the proposed TESLA-ECDSA scheme. Using
this scheme, TESLA authenticates the SBAS messages and ECDSA authenticates
the SBAS’s use of TESLA for periodic maintenance. While prior art has identified
TESLA and ECDSA scheme parameters required to achieve authentication, the
maintenance and maintenance requirements, such as how best to perform OTAR,
remain largely unaddressed. This work addresses this challenge by suggesting a
more efficient authentication maintenance scheme that does not require use of
the Q channel. Moreover, this work leverages specific features of TESLA scheme
to assert security efficiently (Caparra et al., 2016) and permit the introduction of
additional features relevant to SBAS stakeholders.

Another challenge lies with receiver computational considerations. Some prior
art has explored how TESLA and ECDSA computations would fare when used in
GNSS, SBAS, and smartphone contexts (Cancela et al., 2019). TESLA frequently
requires a more intense, one-time startup hashing computation upon receiver start
followed by minimal hashing operations during standard operation. We note that
modern commodity electronics frequently perform these operations and often
include hardware-specific acceleration functions in their chips to increase com-
putational efficiency and facilitate parallelism. Therefore, we expect that if these
methods burden current receivers, manufacturers could augment their chips at a
minimal cost to accommodate the desired computational loads.

Prior art suggested appending a single message type (MT) to SBAS for authenti-
cation and maintenance (Neish, 2020). Findings from this work suggest that SBAS
might send this specific MT every six messages to deliver 190-bits of TESLA authen-
tication data and 26-bits for scheme maintenance. While the scheme requires fre-
quent delivery of the authentication-message, it will not overburden the SBAS
MT schedule. We modified this earlier work by appending another MT to SBAS to
replace the 26-bits mentioned above that was to be dedicated to maintenance. Our
proposed additional MT was designed to be modular for the exclusive purpose of
delivering all authenticating pseudorandom data related to scheme maintenance.
This design allows for reasonable TFAF requirements and is agnostic to the ECDSA
and TESLA scheme parameters. Therefore, minimal changes will be needed in the
event of cryptographic primitive breakage. Moreover, the additional MT scales well
with increases to security level requirements. It is also flexible and future-proof to
accommodate anticipated feedback from Providers and SBAS stakeholders.

To evaluate the proposed method against prior art, we implement a full-stack
SBAS simulation of our design by augmenting an existing SBAS simulation tool
known as the Matlab Algorithm Availability Simulation Tool (MAAST) (Jan et al.,
2001). MAAST was used previously to evaluate SBAS design and provides the
results of a Monte Carlo simulation performed to evaluate how our design per-
forms under message loss over the WAAS coverage area. Results using this tool
revealed that our proposed design outperforms key performance indicators (KPIs),
such as a shorter TFAF, a shorter time to authentication per message, and less sen-
sitivity to loss tolerance, compared to other ideas currently under consideration.

When using TESLA, the Provider and the Users must be loosely time-
synchronized. This poses an interesting “Catch-22” situation because the
GNSS provides the time function. Therefore, our scheme must also include a

ANDERSON et al.    

mechanism to resist a Replay Attack. A Replay Attack describes a situation in
which a spoofer can listen and then replay messages at a slightly delayed rate.
After some time, these induced time delays will allow the spoofer to violate
the loose time-synchronized assumption and thus break the TESLA scheme.
There are mechanisms described in prior art that receivers can use to estab-
lish trust in GNSS ranging signals (Fernandez-Hernandez et al., 2019; Psiaki &
Humphreys, 2016); however, GNSS ranging signals have not yet been rigorously
authenticated with cryptography. Prior art has also described how an onboard
receiver clock might be used to detect this type of attack, given clock uncertainty
(Fernandez-Hernandez et al., 2020). Other studies have investigated clock hard-
ware and models that could be incorporated into receivers to enforce the synchro-
nization assumption (Ardizzon et al., 2022). This work extends this prior art by
discussing how onboard clocks, external clocks, and maintenance conditions can
be used to mitigate the threat of Replay Attacks.

1.1  Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA is a standardized asymmetric authentication protocol. As we have
not included all details in the following summary, we refer the reader to several
widely-available detailed definitions in the cryptographic literature or on the
Internet (Boneh & Shoup, 2017). The protocol specifies a signing function and a
verifying function. For this protocol, let n be the security level of an instance of
the protocol, which linearly describes the required computation that will exhaus-
tively break the instance. The Provider generates a secure random 2n-bit integer
for long-term use as a secret private key. The Provider then derives a 2n-bit integer
from the private key and distributes it to receivers as a public key. The Provider then
uses the signing function with the secret private key to derive signatures on mes-
sages. Each signature is a 2-tuple of 2n-bit integers for a total of 4n bits. Receivers
use the verifying function with the public key and signatures to assert that the
private key holder generated the message and the signature. Because the protocol
is secure, there is no known efficient algorithm that can compute the private key
given the public key nor any that can compute the signature on a message without
the private key. The protocol assumes that the receiver trusts that the public key
is from Provider. The protocol is not loss-tolerant; if a single bit of a signature or
message is lost, the protocol will fail to provide verification. Likewise, this protocol
is not future-proof to attacks that might be conducted from theoretical quantum
computers, as described by Neish, Walter, & Enge (2019).

1.2  Timed Efficient Stream Loss-Tolerant
Authentication (TESLA)

TESLA is an authentication protocol that allows a receiver to authenticate
messages from a Provider when used in tandem with other asymmetric authen-
tication protocols. This protocol poses several relevant advantages over a purely
asymmetric systems used by GNSS and SBAS systems. First, the protocol requires
less authenticating pseudorandom data to authenticate messages from a Provider.
Second, the protocol is loss-tolerant. Third, the computation required for receiver
authentication is less strenuous. Figure 1 presents a conceptual diagram of the
TESLA description to follow. Algorithms 1 and 2 provide a more concrete descrip-
tion of the protocol.

ANDERSON et al.

TESLA uses only a single cryptographic primitive to generate a
cryptographically-secure hash function. In this proposal, we select a salted
SHA-256 that has been truncated to include the left-most 128-bits (described
here as the “Hash Function” or H()⋅). Thus, we can describe the TESLA protocol
concretely based on this selection without loss of generality. We truncate Hash
Function output to the 128 most significant bits to generate 128-bit integers. Because
the audience for this work includes primarily experts in navigation, we use the
geometric terms “path” and “point” instead of “key chain” and “key”, and describe

FIGURE 1 Conceptual diagram of TESLA that demonstrates the delayed-release key
secrecy schedule
The right section of the diagram follows the left section in time. The diagonally cross-hashed
boxes include information held secret by the Provider. The box recedes each time a hash point is
released.

ALGORITHM 1
Provider Procedures for Single Satellite-Single Frequency Authenticated Message Distribution
with TESLA

Generate a new Hash Path P with points p pP
n
P

2 1... + via Equation (1) and a secure random pP1
Broadcast pnP+1 signed by a Level-2 ECDSA key and distributed via MT51
 for i n n=[, 1, , 2, 1]− do
   Broadcast any 5 messages, called m m1 5

   Derive k k1 5 from Equation (2) with pi and the sending time of m m1 5

   Derive s s1 5 from Equation (3) from m m1 5 and k k1 5

   Recall the correct Hash Point to release pr (the Hash Point from the previous loop)
   if i n== then
      p pr

P= 1
1−

   else
      p pr i

P= 1+
   end if
   Send MT50 m6 message with s s1 5 and pr
 end for
For continuous operation, compute and broadcast the next Hash Path End pnP++11, signed by a
Level-2 ECDSA key and distributed via MT51, among the groups of sent messages m m1 5

ANDERSON et al.    

TESLA geometrically as a “one-way path”. For this case, let each 128-bit integer
be identified as a Hash Point, and let a collection of Hash Points that are consec-
utively related via the Hash Function be defined as a Hash Path. Non-consecutive
Hash Points further along the Hash Path will relate via repeated application of
the Hash Function. The Hash Function is secure and there are no known efficient
algorithms that can compute the input Hash Point to generate the Hash Function

ALGORITHM 2
Receiver Procedures for Single Satellite-Single Frequency Authenticated Message Distribution
with TESLA

 while on do
    Receive MT51 payload segments associated via the MT51 metadata and store into three

hash tables H1, H2, and H3. H1 holds data for level-1 ECDSA keys. H2 holds data for
level-2 ECDSA keys and associated level-1 signatures on those keys. H3 holds data for
TESLA Hash Path Ends pnP+1 and associated level-2 signatures on those Hash Path Ends.
Each element in the Hash Tables store metadata such as the key expiration time and the
relevant higher-level authenticating key. Await receipt of all needed unique MT51 OTAR
Payload Segments, called the Authentication Stack, to assert authenticated Hash Path Ends.
A Hash Path End element pnP+1 stored in H3 is authenticated if itself and signature are
ECDSA verified by an authenticated element in H2. A public ECDSA key element stored
in H2 is authenticated if itself and signature data are ECDSA verified by an authenticated
element in H1. A public ECDSA key element stored in H1 is authenticated if it was
prestored from the CA.

 end while
 while on do
   Receive and cache unauthenticated non-MT50 messages m m7 11
   if m m7 11 are MT51 then
    Follow the procedures immediately above
   end if
    Receive and cache MT50 message m12 with signatures s s7 11 and Hash Point pr
   Note time of receipt of m12 as t tr ← 12
   Recall m m1 5 and recall m6 with signatures s s1 5
    i ←1
    t tt r←
    p H p S tt r

P
t← (, ,) via Equation (1)

   while i ≤ Maximum Iteration From Max Hash Path Length do
     if p Ht ∈ 3 and H pt3() is authenticated and not expired via ECDSA through level-1

then
       pr is authenticated: check m m1 5 with pr and s s1 5 via Equations (2)

and (3) to authenticate m m1 5
      Break while loop
    else
       t tt t� �6
       p H p S tt t

P
t← (, ,) via Equation (1)

    end if
     i i� �1
     Note: caching previously authenticated pt prevents excessive hashing to Hash Path

End each iteration. There is no need to hash down to the Hash Path End more than once.
   end while
    Note: after this iteration m m1 5 and m12 are authenticated. m m7 11 are

authenticated at the next iteration.
    m m m m1 5 7 11 ←
    m m6 12← This procedure can be augmented to cached messages saved while awaiting

a complete Authentication Stack.
 end while

ANDERSON et al.

that yields a specific output Hash Point. In this manuscript, we refer to a specific
input Hash Point as the “preimage” Hash Point of a specific output Hash Point. In
other words, while it is trivially easy to compute the output Hash Point of the Hash
Function given the preimage Hash Point, one will only be able to locate a preim-
age Hash Point after an exhaustive search. This is a one-way path. The domain
of 128-bit integers, together with a randomized 128-bit salt inclusion to the Hash
Function, will render pre-computation attacks (also known as Rainbow Table
Attacks) infeasible with modern supercomputers because it meets 128-bit security.
Our use of the term Hash Point also serves to avoid confusion with the overuse of
the term “key” in TESLA and ECDSA applications. Authentication of private and
public keys relates to ECDSA. Many keys will be derived from TESLA Hash Points
to achieve the required authentication data-bandwidth efficiency.

To use a Hash Path to authenticate messages via TESLA, the Provider computes
a Hash Path derived from a random starting Hash Point. The Hash Path must
remain secret. The Provider broadcasts the final Hash Point along the Hash Path
(i.e., the “Hash Path End”) together with an ECDSA signature derived therefrom.
Receivers recognize the Hash Path End as authenticated based on the ECDSA sig-
nature. The Provider uses the secret preimage Hash Point to the Hash Path End to
derive hash-based message authentication code (HMAC) keys to send symmetric
authentication signatures along with the standard message set. We propose using
keyed-hash message authentication codes that use the Hash Function as its primi-
tive for message signatures (i.e., the function, “HMAC” and the HMAC signatures
themselves which are known as “HMACs”). We will continue to describe the pro-
tocol concretely using our selection without loss of generality. We truncate the
HMACs to the left-most bits so that they will fit into SBAS messages. Providers and
receivers agree on a schedule in which the Provider will (1) stop using the preim-
age Hash Point of the Hash Path End to authenticate messages, (2) broadcast that
preimage Hash Point for receivers to authenticate messages, and (3) use the next
preimage Hash Point along the Hash Path to authenticate new messages. Once a
particular preimage Hash Point has been broadcast, receivers cannot accept new
signatures derived therefrom. Because the HMACs were received when a specific
preimage Hash Point was known only to Provider, it is understood that the Provider
must have generated the messages. Each time the Provider releases a Hash Point,
the Provider moves back one Hash Point along the secret Hash Path to derive a new
HMAC. Given the security of the Hash Function, the Hash Point along the Hash
Path located just before the released Hash Point remains secret, and thus becomes
the new HMAC key for the next set of messages. The authentication security along
the Hash Path hinges on (1) the security of the Hash Function and (2) the loose
time-synchronization of the Provider and the receivers.

To complete authenticating security, TESLA must be used in tandem with an
asymmetric authentication protocol. TESLA is secure along the Hash Path length.
However, Hash Paths are finite and must be generated periodically. An asymmet-
ric authentication protocol must sign the Hash Path End, which is the first Hash
Point known to the receiver. In other words, for every Hash Path generated by the
Provider, the Provider must use an asymmetric signature to ensure authentication
security along the entire Hash Path. Moreover, the Provider and the receiver must
be loosely time-synchronized. This poses a type of “Catch-22” problem because
GNSS and SBAS Providers are the source of time information. This suggests that it
might be helpful to avoid using TESLA in any form and to focus only an asymmet-
ric protocol. Later in this work, we will show that the use of TESLA leads to supe-
rior loss-tolerance and requires less authenticating of pseudorandom data while
accounting for the time-synchronization issues.

ANDERSON et al.    

2  DEFINITION OF THE SBAS AUTHENTICATION
SCHEME

The SBAS authentication proposal proposes appending two MTs to the schedule
identified here as MT50 and MT51. MT50 is used to authenticate the actual SBAS
messages via the TESLA protocol. MT51 is used to (1) authenticate the Hash Path
Ends via ECDSA as the Provider uses a series of Hash Paths in its standard opera-
tion, and (2) to provide OTAR and perform system-level maintenance of the cryp-
tographic authentication scheme. The scheme in Figure 2 is a conceptual diagram
of an overview and the relationships between MT50, MT51, and the cryptographic
authentication method employed. In Section 2, we present precise definitions of
our proposed SBAS authentication scheme. Sections 3 and 4 provide explanations
and reasoning for our proposed definitions. While the definitions presented here
are for use in SBAS L5 signals, given the spare bits remaining in each definition,
this scheme can also be used for SBAS L1 signals by modifying the preambles
(noted with reserved bits in definitions).

2.1  ECDSA Key Structure

We propose a two-level ECDSA key structure, as suggested by Neish (2020).
Level-1 keys will be 256-bit-security ECDSA keys managed internationally by a

trusted Certificate Authority (CA). Each level-1 key will be in use for 100 weeks.
The CA will compute a large number of level-1 keys for use in the perpetual future
and will encrypt each key individually via AES-128 with different AES encryp-
tion keys (one for each level-1 key) maintained as secret by the CA. The CA will
distribute the AES-ciphertext to receiver manufacturers. Receivers will be pre-
loaded with the collection of 512-bit public keys and encrypted with 128-bit keys
via the AES-128. As level-1 keys expire, the CA will distribute the keys to decrypt
the AES-ciphertext, one at a time, for the Provider to distribute via MT51. As the
receiver receives the key to decrypt its onboard AES-ciphertext, it will update its
current level-1 ECDSA public key. Each level-1 public key will be 512-bits. Any
signature derived therefrom will be a 1024-bits.

Level-2 keys will be 128-bit-security ECDSA keys managed by the Provider. Each
level-2 key will be in use for ten weeks. To create a new level-2 key, the Provider
will generate a secure-random private ECDSA key and an associated public key.
The Provider will then submit the new public key to the CA for a signature from
the CA’s current level-1 key. Provider will then distribute the new public key and
the associated authenticating signature over the SBAS. The receiver will receive a
new level-2 public key and the authenticating signature, verifying the received new
level-2 public key with the associated decrypted level-1 public key.

The Provider will use the level-2 keys to authenticate the TESLA Hash Path Ends.
Keys derived from the TESLA Hash Paths will be used to authenticate the bulk
of SBAS messages with HMACs. For all levels, the authenticating pseudorandom
data delivered will accompany data (e.g., SBAS message preamble, MTs, and other
data) that must be sent as per the definitions described below. A specific signature
must be derived from the entire SBAS message used to deliver that particular key.
Concretely, when a level-1 key authenticates a level-2 key, the level-1 signature
must be derived from the entire set of messages used to deliver the level-2 key and
the expiration time of the accompanying key. In other words, the level-1 signature
must be derived from the complete messages containing overhead data, not just
from the level-2 key itself. If this does not take place, then the accompanying data,

ANDERSON et al.

most notably the key expiration times, will not be secured by the cryptographic
primitives.

2.2  TESLA Hash Path and HMAC Keys

Each TESLA Hash Path will be used over one week. The Provider will generate
an entire Hash Path before its actual use and then broadcast the Hash Path End
signed by the current level-2 ECDSA key via MT51. Each Hash Point, except the
Hash Path End, will be associated with at least five HMAC keys that will be used to
authenticate at least five messages with HMAC, depending on the number of itera-
tions of Equation (2). Therefore, a Hash Path will include 100,801 Hash Points, one
for each sixth second for the week, and one for the Hash Path End.

To generate a Hash Path P, the Provider will derive a secure random 128-bit salt
SP from level-2 ECDSA authentication, as described in Section 3.2.1. Let the Hash
Points of P be denoted piP , and let ti be the time at which the Provider publicly
releases piP via broadcast. Here, ti is an integer time (e.g., time in seconds since
the GPS epoch). We propose Equation (1) to define the Hash Path where || denotes
bit concatenation and denotes integer division.

FIGURE 2 Conceptual diagram depicting an overview of the entire scheme presented in
this work
The objects depicted are defined and described in the Sections to follow. Multiple levels of ECDSA
authenticate a Hash Path End (indicated as HPE in the diagram). Preimage Hash Points (HP
in the diagram) together with HMACs are used to authenticate SBAS messages. Black arrows
represent the direction of authentication; blue arrows, hashing operation, and red arrows, HMAC
operations. The diagram reads from left-to-right with increasing time of release by the Provider,
i.e., items to the right are released later by the Provider than items to the left.

ANDERSON et al.    

 p H p S ti
P

i
P P

i� � �1 = || || (6) (1)

The purpose of the integer division is explained in Section 3.2.2. We propose
a left-most 16-bit truncated signature from HMAC that authenticates each SBAS
message delivered via MT50. Each message mj , sent at t j , will be provided with
a unique HMAC key k j . The key k j for each message mj will be generated
according to Equation (2). The signature s j derived therefrom will be according to
Equation (3). t j is the integer time that the authenticated message will be broad-
cast and received. PRN is the pseudorandom code associated with the broadcasting
geostationary satellite. Frequency is the frequency band of the particular transmis-
sion (e.g., a string containing L1 or L5). We discuss the necessity of the concate-
nation and HMAC operations of Equation (2) in Sections 3.2 and 3.3. Equation (2)
ensures that the HMAC for each message from each satellite has its own key.

 k p tj i
P

j= (, || ||)HMAC PRN Frequency (2)

s k mj j j= (,)HMAC (3)

The output of Equation (3) is truncated to its 16 most-significant bits. We note
that because Equation (1) uses a concatenation operation because the input data
is less than 512-bits, the block size for the selected Hash Function. Equation (1)
would need to be modified if the input data were to be larger than 512-bits; this will
be critical to mitigate length extension attacks (Boneh & Shoup, 2017).

Section 2.5 and Algorithms 1 and 2 describe how the Provider and receivers
should perfrom authentication, queueing, and caching to verify messages.

2.3  Message Type (MT) 50

The findings shown in Table 1 present our proposed definition of MT50 with
bit allocations. The Provider will send an MT50 with every six messages. The
delayed key release used to authenticate messages means that each message will
be authenticated between 7 and 11 seconds after its broadcast. Provider should set
the cadence of the integrity messages so that each immediately precedes the sched-
uled MT50s to minimize the time needed for their authentication. If the receiver
cannot authenticate a message because of a lost MT50, it generally disregards the
message. (Information that alerts the receivers to decrease the level of trust need
not be disregarded). Within the message definition, there are five 16-bit HMACs
and one 128-bit Hash Point. Once the receiver receives an MT50, the five HMACs
included correspond to the previous messages with a secret Hash Point known
only to the Provider at the message sending time. The 128-bit Hash Point included
corresponds to the HMACS included in the previous MT50 message sent six sec-
onds earlier. Figure 3 provides a conceptual diagram of the delayed Hash Point key
release.

TABLE 1
Bit Allocation for the Proposed MT50

Preamble MT Reserved HMAC1 HMAC2 HMAC3 HMAC4 HMAC5 Hash
Point

Spare CRC

4 6 4 16 16 16 16 16 128 4 24

Note: As per SBAS definitions there are 250 bits per message.

ANDERSON et al.

As per the SBAS specifications, in the event of a GNSS integrity alert, an alert
message must be sent by the Provider with four messages in a row. Therefore,
occasionally an alert message will take priority over an MT50. The salted Hash
Function described in Equation (1) accommodates small perturbations to the
schedule resulting from alert messages as described in Section 3.2.2 and Figure 4.
Even with an MT50 delay, each MT50 must sign the messages that it would have
signed without an alert as described in Section 3.2.2.

2.4  Message Type (MT) 51

In this work, we provide two MT51 definitions with a 128-bit OTAR Payload
Segment and an 84-bit metadata section. This version includes many features that
could be relevant to SBAS stakeholders. We have not specified which features
should be incorporated. This will be deferred until all SBAS stakeholders have had
their considerations heard. The information in Section 4.1 discusses how to modify
the 128-84-bit allocation if SBAS stakeholders would prefer not to use the addi-
tional features described later in the text. However, given the academic context of
this work, and because our design meets the key performance indicators (KPIs),

FIGURE 3 A conceptual diagram of how consecutive MT50 messages relate to each other
The colors correspond to a specific Hash Point along the Hash Path. Each MT50 includes the
HMACs of the five previous messages and the Hash Point used for the HMACs sent with six
earlier messages.

FIGURE 4 Conceptual diagram of accommodations made by the counter scheme to
perturbations in the MT50 schedule
In the diagram, “m” denotes a standard message, and “I” represents an integrity message. Integrity
messages that would be sent on a nominal schedule are marked blue and additional integrity
messages during an alert are marked in yellow. Note that T6 does not change in the event of
an alert message MT50 delay, as shown in red; thus, the Hash Path is preserved.

ANDERSON et al.    

we choose to publish the 128-bit feature-rich design. Tables 2 and 3 provide our
proposed definition of MT51 with bit allocations. The Provider must broadcast
MT51 messages for approximately 1 in every 18 messages for MT51 as described in
Section 4.4. These messages do not need to be sent on a rigid schedule; they can be
sent in the extra space within the current SBAS schedule.

The payload section for MT51 is only 128-bits which leaves 84-bits for meta-
data that describes how a receiver should interpret the 128-bit payload. The larger
84-bits allows users to introduce additional features, such as parallel and redun-
dant key management as well as several other features explained later in the

TABLE 3
Bit Allocation of Payload Metadata

MT51 Payload Metadata

Section Bits Value

Germane Service Provider ID 5 WAAS, EGNOS, MSBAS, GAGAN, et al.

Germane Key Level 2

0 - Spare

1 - ECDSA AES key to decrypt Level 1 ECDSA
Public Key

2 - ECDSA Level 2 Public Key

3 - TESLA Hash Path End Hash Point

Germane Key Hash 16
Truncated Unsalted 16-bit Hash of Entire Germane
Key

Germane Key Expiration 32
Absolute GPS time (i.e., seconds since GPS epoch)
of Germane Key Expiration

Authenticating Key Hash 16
Truncated Unsalted 16-bit Hash of Entire
Authenticating Key

Payload Type 2

0 - Public Key, AES Decryption Key, or Hash Path
End

1 - Authenticating pseudorandom data derived from
the Authenticating Key

2 - Spare

3 - Core Constellation Broadcast Ephemerides
Authentication

Payload Segment Number 4
The ordered segment number of Germane
authenticating pseudorandom data

Parity Bit 1 Parity bit for a compressed public key

Spare 6 Additional features possible discussed in Section 4.1

Sum Total 84

Note: To distinguish the key updated with a specific MT51 and the key used to authenticate that
MT51, we call the key associated with the MT51-delivered payload the Germane Key and the key
used to authenticate that delivered key the Authenticating Key.

TABLE 2
Bit Allocation Proposed for MT51 at 250 bits per Message

MT51 Bit Allocation

Preamble MT Reserved Payload Metadata OTAR Payload Segment CRC

4 6 4 84 128 24

Note: Table 3 describes the metadata which specifies how a receiver should interpret the payload.
The Authentication Stack, defined in Section 2.5, is composed of a total 2048 bits and required
the receipt of the 16 unique messages to OTAR.

ANDERSON et al.

text. Table 4 provides an sample set of unique MT51 messages, each containing
a 128-bit segment per message, that form an Authentication Stack (defined in
Section 2.5). To distinguish the key updated with a specific MT51 and the key used
to authenticate that MT51, we call the key associated with the MT51-delivered pay-
load the Germane Key and the key used to authenticate that delivered payload
the Authenticating Key. The metadata specifies the following, matching the order
shown in Table 3. (1) it will identify the system to which the Germane Key applies;
(2) it will specify whether the payload is an ECDSA public key, an AES decryption
key for an ECDSA public key, or a TESLA Hash Path End; (3) it will provide a 16-bit
hash of the entire Germane Key so that the receiver can immediately associate the
OTAR Payload Segment with a specific key; (4) it will designate the expiration time
of the Germane Key; (5) it will provide a 16-bit hash of the entire authenticating
key so that the receiver can immediately associate the authenticating pseudoran-
dom data OTAR Payload Segment with a specific authenticating key; (6) it will
specify whether the payload itself is a key or authentication signature; (7) it will
identify the segment number of the authenticating pseudorandom data so that the
receiver can aggregate the authenticating pseudorandom data segments over time.

The signatures used to authenticate a particular key must be derived from the
entire set of full MT51 messages used to deliver them. The metadata associated
with authenticating pseudorandom data includes the expiration time. These keys
are only secure for specific lengths of time, as described in Section 2.1 and 2.2;
hence, the expiration time must be authenticated together with the corresponding
authenticating pseudorandom data so that each key is retired securely. After the
expiration of a particular key, receivers must reject all messages signed with the
expired key.

2.5  Procedures

Algorithm 1 describes the procedure needed by the Providers to use TESLA
securely. In addition, the Providers must assemble OTAR data by coordinating
with the CA as described in Section 2.1. Algorithm 2 captures how a receiver

TABLE 4
List of All Unique MT51s in an example Authentication Stack as defined in Section 2.5

Unique MT51 Number OTAR Payload Segment Content

1 AES-128 Key to decrypt receiver-stored Level-1 ECDSA Public Key

2 ECDSA Level-2 Public Key, Segment 1

3 ECDSA Level-2 Public Key, Segment 2

4 ECDSA Level-1 Signature of ECDSA Level-2 Public Key, Segment 1

5 ECDSA Level-1 Signature of ECDSA Level-2 Public Key, Segment 2

11 ECDSA Level-1 Signature of ECDSA Level-2 Public Key, Segment 8

12 TESLA Hash Path End

13 ECDSA Level-2 Signature of TESLA Hash Path End, Segment 1

14 ECDSA Level-2 Signature of TESLA Hash Path End, Segment 2

15 ECDSA Level-2 Signature of TESLA Hash Path End, Segment 3

16 ECDSA Level-2 Signature of TESLA Hash Path End, Segment 4

Note: This set is broadcast repeatedly by the Provider for cold-start receivers. A receiver must
receive all of the unique MT51s to initiate authentication.

ANDERSON et al.    

should operate beginning with a cold start and includes specifications of some
of the onboard data structures that should be used to track key maintenance.
The term “cold start” is used to describe use of a receiver that has been off for
an extended period with onboard Level-2 ECDSA or TESLA information that has
expired according to its onboard clock. Upon cold start, a receiver must track and
record incoming SBAS messages. A receiver should not use any unauthenticated
data. NB: the complete set of MT51s is self-authenticating. Therefore, it must track
the incoming MT51 messages until it has received a complete set of unexpired
Level-1 ECDSA public key, Level-2 ECDSA public key, TESLA Hash Path End, and
the associated signatures (collectively known as the “Authentication Stack”). The
receiver must track and store MT51 messages until the aggregate OTAR Payloads
of authenticating pseudorandom data provides a successful ECDSA authentication
of the entire Authentication Stack, including a level-1 key onto a level-2 key and a
level-2 key onto the Hash Path End. Until it has received and verified a complete set
of unique MT51s included in the Authentication Stack, the receiver cannot assert
an authenticated fix and must ignore the SBAS corrections and integrity data (i.e.,
non-MT51 messages) derived from incoming messages. Once the Authentication
Stack is received and verified by ECDSA, the receiver can process and authenti-
cate MT50 messages via TESLA and can also associate the MT50-delivered HMACs
with messages to authenticate and process the SBAS correction and integrity data.
The Provider repeatedly broadcasts the current Authentication Stack, as discussed
in Section 4.4 to accommodate random receiver startups.

Algorithms 1 and 2 delineate only the single satellite and single frequency
cases. To augment those algorithms to handle the multiple satellite or multiple
frequencies, five messages should be signed and verified for each satellite and
each frequency, as described by Equations (2) and (3). This means that the MT51
Authentication Stack is used for all satellites and frequencies, but each message for
each satellite and frequency is provided with its own authentication via TESLA. By
reusing he same Authentication Stack for all satellites and frequencies, we exploit
the scalability of TESLA allowing for smaller TFAFs (see Section 3.2).

Upon full receipt of the Authentication Stack, receivers must hash the Hash
Point from the most recent MT50 to the MT51-provided Hash Path End. In the
special case in which the receiver has only been off a short time, turned offline,
and then turned back online during the use of the same Hash Path, the receiver
TFAF is the time required to hash to the Hash Path End. The worst-case number of
hash computations is the length of the Hash Path (about 100,000) and will occur
when a receiver first turns on at or near the expiration of the Hash Path. With stan-
dard commodity hardware (e.g., an Intel Core i5 Processor), a worst-case time of
approximately 10 seconds will be observed if a receiver is turned on immediately
before a Hash Path expires. We measured this time by experimenting with personal
laptops that were not specifically built for this process. With hardware accelera-
tion, this process time could decrease and evaluated in parallel with other standard
receiver processes. This initial hashing computation only occurs when the receiver
is turned on and should not hinder processing SBAS navigation data in real-time
after an authenticated fix.

2.5.1  Modification for Metadata Removal

In Section 4.1, we discuss whether certain pieces of the metadata are strictly
necessary and whether certain features of the design of this work are useful to all
SBAS stakeholders. If the metadata are stripped from MT51 in a final design, then

ANDERSON et al.

Section 2.5 must be modified. For instance, a minimum-metadata MT51 design
could only contain the page number of aggregate metadata.

In Algorithm 2, the receiver stores keys in hash tables because the OTAR is
not rigidly managed. Different keys can authenticate other keys. For MT51, the
receiver must check that the TESLA Hash Path End is signed correctly by the
metadata-specified level-2 key and so on from level-2 to level-1. For another MT51
design with only the page number as the metadata, either the unique OTAR
Payload Segments do or do not aggregate to generate a consistent Authentication
Stack. Rather than store keys in hash tables, the receiver will simply aggregate the
OTAR Payload Segments for a complete Authentication Stack in an order specified
by the Provider, such as TESLA Hash Path End || ECDSA Level-2 Authentication
of TESLA Hash Path End || ECDSA Level-2 Key || ECDSA. Once the entire
Authentication Stack aggregate authenticates via ECDSA, the receiver achieves its
TFAF and can begin authenticating the bulk of SBAS messages via MT50.

3  TESLA DESIGN METHODOLOGY

3.1  TESLA Loss Tolerance

TESLA allows receivers to derive missed Hash Points from Hash Points released
later along the Provider’s pre-computed Hash Path that has been kept secret. For
example, suppose a receiver misses an MT50 message and therefore does not
receive a Hash Point. The receiver can derive that missing Hash Point by com-
puting the Hash of the next released Hash Point. In another example, suppose a
receiver misses several day’s worth of Hash Points; upon receipt of a new Hash
Point, the receiver can hash all the way down to the Hash Path End as described in
Equation (1) to document the new messages’ immediate authenticity. This prop-
erty scales along the length of the Hash Path. If a receiver is off longer than the
Hash Path’s length or applicability, it will need to OTAR the Hash Path End via
MT51 and ECDSA.

Regarding loss tolerance of messages and the security of 16-bit HMACs, we
implement a main idea previously described by Neish (2020). The smaller 16-bit
HMAC design of MT50 aids in general tolerance of message loss. Suppose, instead,
each MT50 contained a single HMAC that authenticated the previous five mes-
sages as a group. If any of the five earlier messages were lost, the receiver would
not verify any of the messages in this group. Therefore, to accommodate message
loss, we specify that each HMAC from the set of five smaller HMACs individually
authenticates each of the five previous messages. Because the 16-bit length of the
HMACs is unusually small with respect to cryptographic authentication, we take
special care to specify our spoofing detection procedures and ensure cryptographic
independence of keys, as described in Section 3.3.

3.2  TESLA Efficiency

The number of authenticating pseudorandom data bits required to perform
OTAR of a Hash Path does not increase with Hash Path length. While complete
OTAR requires a daunting 2048 bits, as described in Table 5, the bits do not scale
with Hash Path length because the Provider sends only a Hash Path End authen-
ticated with ECDSA. If the Provider finds that the overhead required to perform
OTAR of a Hash Path has become too burdensome on the schedule, the Provider

ANDERSON et al.    

can increase the Hash Path’s length and decrease the OTAR transmission fre-
quency. Increasing the Hash Path length requires the Provider to compute a longer
Hash Path for each OTAR and and for receivers to hash more in the event of cold
start. However, this burden is negligible because commodity hardware can com-
pute Hash Paths on the lengths specified in this work within seconds, as described
in Section 2.5. In any case, MT51 can reassign Hash Points mid-way through a
Hash Path to decrease this burden. For instance, while a Provider could generate
week-long Hash Paths, it could assign Hash Path Ends each day or each hour to
alleviate the burden of the initial hashing operation. Given the 128-bit Hash Point
length, a Hash Path length on the order of decades is safe from attack (Neish, 2020).
Therefore, the OTAR transmission frequency is primarily driven by the desired
TFAF, as discussed in Section 4.4.

To meet a standard 128-bit security level for TESLA, we must use
cryptographically-independent 128-bit long keys for each HMAC. It is generally
desirable to minimize the number of bits required for TESLA Hash Path distri-
bution. We achieve this by deriving all cryptographic keys from the same 128-bit
Hash Path. Specifically, each iteration of Equation (2), from each combination
of time, satellite, and frequency, is derived from the same 128-bit Hash Point
distribution. Thus, we do not need to generate a separate Hash Path for each
stream of authenticated information. Provided each of the keys derived is cryp-
tographically independent, the outcome is cryptographically secure. Ensuring
cryptographically-independent keys is achieved by the intermediate HMAC oper-
ation shown by Equation (2) as described in Section 3.3. This allows a single Hash
Point to authenticate multiple messages and a single Hash Path for a set of SBAS
satellites.

While the Providers could maintain separate Hash Paths for each satellite, using
a single Hash Path may decrease the time required to receive the Authentication
Stack by cold start receivers. For instance, WAAS uses three geostationary satel-
lites. WAAS could use the same Hash Path for all of its satellites and broadcast the
set of unique MT51 messages that make up the Authentication Stack out-of-phase,
thereby decreasing the TFAF by 66.6%, while accommodating receivers that do
not track each satellite. We can extend this argument for the L1 and L5 frequency
bands by decreasing the TFAF by 83.3%. Our selection of a TFAF for a receiver
tracking by a single geostationary SBAS satellite on a single frequency is discussed
in Section 4.4.

3.2.1  ECDSA-derived Hash Path Salt

The security of each TESLA Hash Path hinges on the difficulties involved in
computing any earlier preimage Hash Point before it is released by the Provider.

TABLE 5
Delineation of the Number of MT51s Required to Complete a Single OTAR for a Specific Key

Key Level Security Level Public Key Length OTAR Bit Requirement MT51s Req.

1 256 512 128 1

2 128 256 1280 10

TESLA 128 128 640 5

Note: Level-1 keys require only the 128-bit AES decryption key, hence a single MT51. Level-2
keys require 256-bit key, and 1024 bits of authenticating pseudorandom data (twice the Level-1
public key length), hence, 1280 bits and 10 MT51s. TESLA Hash Path Ends require 128-bit Hash
Point and 512 bits of authenticating pseudorandom data (twice the length of the level-2 public
key), hence 640 bits and 5 MT51s. Each unique MT51 is required for OTAR.

ANDERSON et al.

Unsalted Hash Paths are susceptible to pre-computation attacks, also known
as Rainbow Table Attacks (Boneh & Shoup, 2017). To perform these attacks, an
attacker pre-computes a large number of Hash Paths and stores them in hopes that
one of the pre-computed Hash Paths contains a currently secure mid Hash Path
Hash Point. If this were to occur, the attacker then has saved Hash Points located
earlier on the no-longer-secure Hash Path and can thus spoof SBAS-authenticated
messages. To prevent this from occurring, we must introduce random variations
(known as “salt”) to the Hash Function which will render pre-computation attacks
unfeasible.

A well-designed salt scheme will have the following characteristics: (1) the salt
scheme must be sufficiently strong to deter pre-computation attacks; (2) the scheme
must accommodate spontaneous and episodic message loss (e.g., receiver interfer-
ence or receiver offline cold start); and (3) he scheme must not impose a burden on
the message scheduler. A 128-bit salt would suffice for the security requirements.
Given the modular design of the proposed MT51, one could append a designa-
tion for the salt of a particular Hash Path to the metadata definitions shown in
Table 3 This would require an additional message sent by OTAR to a Hash Path.
This would be unlikely to pose a burden on the SBAS schedule. However, we pro-
pose an alternative that saves an MT51 message by basing the Hash Path salt on
the level-2 signature protocol. We suggest that the Provider might compute a Hash
Path Salt SP for Equation (1) via Algorithm 3.

In this case, the Provider computes a cryptographically-secure nonce for every
ECDSA signature. Using Algorithm 3, the salt derives a public quantity derived
from a nonce. For ECDSA, this is the curve point C. The analogous number in
EC-Schnorr signatures is usually called r. This C is cryptographically-secure and
random because it is derived from the cryptographically-secure nonce generated
at signing. Use of this entity as the Hash Path salt saves an MT51 message without
compromising the signing key or the Hash Path.

While this scheme provides the advantage of one less message for OTAR, it
impedes the scheme’s flexibility. Using a nonce more than once reveals will
reveal the secret private key used to authenticate the data. This means that the
Hash Path and its authentication signatures are immutable. The Provider can-
not remove a Hash Point mid Hash Path to save receivers the computation of
hashing down to the signed Hash Path End because the salt derived from it
would then be different. Providers also cannot change any of the metadata (e.g.,
the expiration time). To reincorporate these two features, as mentioned above,
the Provider could augment the MT51 metadata and distribute the salt as a sep-
arate MT51.

ALGORITHM 3
Transmitting Salt SP without additional message with ECDSA

 Provider
 Provider generates cryptographically-secure nonce K
 With elliptic curve base point G, Provider computes elliptic curve point C K G= ×
  S H CP = ()
 Provider computes hash path p pP

n
P

2 1... + with Equation (1)
  Provider generates ECDSA signature for pnP+1 with C and broadcasts before actual use of

Hash Path
 Receiver
 Receiver receives pnP+1 with ECDSA signature for authentication
 Receiver derives C from ECDSA signature
  S H CP = ()
 Receiver authenticates new message on a new Hash Path upon receipt of pnP .

ANDERSON et al.    

3.2.2  TESLA Hash Path Counter from Time

In the standard TESLA formulation, the Hash Function uses integer counter
denoting the number of Hash Path Hash Points from the Hash Path start. We pro-
pose an analogous approach involving the integer time of message dispatch and
arrival. Dispatch and arrival times, rounded down to the nearest integer, are the
same for the Provider and the receiver. This is because messages are sent each
second and transmission time-of-flight is less than one second. There are several
advantages to using the time, instead of the integer number of points from the
Hash Path start. Upon start, a receiver is capable of verifying a Hash Point since
Equation (1) is a function of current integer time and the ECDSA authenticat-
ing pseudorandom data. Moreover, it allows Hash Path switching to occur on a
non-rigid schedule, which also helps to maintain security (Caparra et al., 2016).
While we specified a one week interval, and it would be natural to have a new Hash
Path begin at the beginning of a GNSS week, the Provider need not communicate
the start and length of Hash Paths as overhead or metadata for a non-rigid schedule
because of the hashing properties of the Hash Point. If the Provider were to switch
Hash Paths arbitrarily, there is a constant-time complexity for the receiver which
will need to check if a new Hash Point hashes to the current Hash Path or a new
one, as shown in Algorithm 2.

Time-based counter aids with security can be used given the loose-time synchro-
nization assumption. The TESLA protocol assumes that Provider and receiver are
loosely time-synchronized. To break the TESLA protocol security, an attacker must
hack the receiver time to six seconds behind the Provider time. In Equations (1)
and (2), we proposed including the times ti and t j in the TESLA counter and
the Hash-Point-to-HMAC-key derivations. As proposed, if the Provider and the
receiver are not time-synchronized within one second, the authentication scheme
fails to certify messages as authenticated because all the keys were derived from
the integer time in seconds. Thus, SBAS message spoofing becomes more complex
since any SBAS spoofer must also spoof the GNSS time.

During standard operation, the Provider will send an MT50 every six seconds.
However, the SBAS alert requirements specified that, upon an alert, alert messages
must be sent immediately for four consecutive seconds. Since the Provider com-
putes the entire Hash Path before its use, including assuming the ti ’s associated
with each Hash Point, alerts will interfere with the six-second MT50 schedule and
the TESLA counter that we have proposed. To accommodate perturbations of the
authentication schedule, we propose (1) nominally sending each MT50s when
ti mod 6=0 and (2) performing an integer division by six on time ti as shown in
Equation (1). If an alert occurs leading to four consecutive messages that displace a
TESLA authentication between one and four seconds after ti mod 6=0, the Hash
Path is preserved because t ti i 6= (4) 6+ when ti mod 6 4≤ . Figure 4 provides
a conceptual diagram of how the TESLA counter is preserved in the event of an
alert message.

In the event of an alert, we must modify the scheme to maintain the security
of the time-synchronization schedule. Nominally, the earliest that a receiver will
authenticate a message is six seconds after its transmission. This serves to protect
the scheme and delay an attack for up to six seconds. That length of time is the
minimum spread between a delivered HMAC and the corresponding Hash Point
used to generate it. As shown in Figure 4, this six-second minimum is violated
unless one of the following two proposed modifications is implemented. Option 1:
In the event of an alert, the Hash Point after the normal Hash Point authenticates
messages during an alert. Consistent with the findings presented in Figure 4, the

ANDERSON et al.

MT50 in column 168 (not shown) would authenticate the messages of Alerts 3
through 6. Option 2: The receiver does not accept the delayed MT50 until it has
been authenticated by a 16-bit HMAC as any other message. Consistent with
with Figure 4, the receiver does not use the delayed MT50s shown incolumns 157
though 160 until it receives a valid HMAC from the MT50 in column 162 and the
Hash Point delivered in column 168 (not shown). Both Option 1 or Option 2 pro-
vides the same level of security by returning the minimum HMAC-to-Hash-Point
delay back to six seconds. Based on our implementation work with MAAST, we
claim that Option 2 may be easier to implement with current receivers and soft-
ware. To limit the information lost, a delayed MT50 should sign the original mes-
sages corresponding to the loosely-synchronized schedule. In Figure 4 in the row
labeled Alert 6: (1) the MT50 of column 160 must sign the messages of columns 151
through 155; (2) the MT50 of column 162 must sign the messages of columns 157
through 161; and (3) the non-MT50 message of column 156 will remain unauthen-
ticated. For the rows labeled alerts 3 through 6, the integrity messages of column
156 will also remain unauthenticated. This is acceptable because those messages
tell receivers not to use the service; the surrounding integrity messages will be
authenticated regardless. Without this requirement, messages of substance will
not be authenticated.

3.3  TESLA Security

Previous work identified the appropriate security-level lengths under conser-
vative adversary models (Neish, 2020). These findings assert that a TESLA Hash
Point length of 115-bits and an HMAC length of 15-bits will be sufficient to deter
a supercomputer-level attack over the time-between-authentication interval and
assert a sufficiently low probability of success. In this work, we have rounded up
these numbers to the nearest base-2 number, at 128 and 16, respectively. Increasing
these lengths adds additional security-level protection. The primary reason for 128
Hash Point lengths is that, as specified, MT51 can accommodate 128 bits. Section 4
discusses why 128 bits was selected to aid in the scheme’s maintenance. The selec-
tion of 16-bit HMAC lengths follows our general strategy of 2-bit lengths and aids
in the flexibility of the scheme, as discussed in Section 4.1.

Until the Hash Point is released, the HMACs are indistinguishable from ran-
dom bits. Given the security of the salted Hash Path, the probability that an
adversary could generate a preimage Hash Point is 2 128− . This probability is suf-
ficiently low so that it should not be expected to occur ever even with the support
of vast computational resources. As described in Section 3.2, given the desire to
use the 128-bit Hash Path efficiently at a particular Hash Point time interval, we
desire to authenticate many different pieces of information simultaneously (e.g.,
five messages per Hash Point, Section 4.2). Thus, we have taken a conservative
approach in our construction to mitigate any anticipated vulnerabilities when
implementing potential feature extensions in this SBAS TESLA design or any other
GNSS-TESLA constellation concepts (Anderson et al., 2022; O’Hanlon et al., 2022).
To discourage implementation errors when applying these design concepts, we
ensure that each piece of information authenticated with an HMAC has its own
cryptographically-independent HMAC key as described in Equation (2).

Equation (2) also takes the secure Hash Point and uses HMAC to derive
cryptographically-independent keys by applying HMAC with the Hash Point as the
HMAC key field together with unique contextual information in the HMAC mes-
sage field. In the specific case of Equation (2), the HMAC message field includes the

ANDERSON et al.    

message time, the satellite PRN code, and the frequency. The time parameter allows
a single Hash Point to authenticate the five messages individually because each
message is sent at a different time. The PRN code allows all of the satellites to share
the same Hash Path because each satellite has its own unique PRN code; the same
is the case with the frequency. Our time, PRN code, and frequency band choices are
arbitrary, except that our selection guarantees uniqueness; each message from each
satellite and from each band is provided with a cryptographically-independent key
that can be used to derive the HMAC. Any unique identifying information, such as
a counter, would suffice to ensure that the output of Equation (2) is cryptographi-
cally independent.

There are several ways to construct a secure scheme without the intermedi-
ate HMAC operation of Equation (2), for example, prepending the context to the
signed data. Careful consideration must be take to avoid implementation errors
that might introduce vulnerabilities including, but not limited to, (1) allowing
an adversary to spoof a message from one satellite so that it would appear to be
coming from another satellite (or another frequency); (2) allowing an adversary
to spoof a message from another time (given that we sign five messages at a time
using this scheme); (3) allowing an adversary to prefix the context of one message
to another to engage in a swap and provide context for confusion attacks (e.g., espe-
cially when the signed data are not of fixed length); (4) allowing an adversary to
engage in related-key attacks (Peyrin et al., 2012); or (5) deriving additional data
using this key (e.g., in signal watermarking concepts as described in Anderson
et al. (2022); O’Hanlon et al. (2022)) performed in a reversible manner, allowing
an adversary to have access to an unreleased TESLA Hash Point. Our construction
with Equation (2) separates context and content to mitigate these issues and pro-
vides a clear way to extend authentication by generating additional and irreversible
cryptographically-independent information (Section 4.2 (Anderson et al., 2022;
O’Hanlon et al., 2022)) in an implementation-error-proof manner.

Because the Hash Point is not known to an adversary when the HMACs are
released, the probability that an adversary can forge a 16-bit HMAC is 2 16− . To pro-
vide adequate protection against forgery, we must specify a conservative approach
for forgery detection. For example, if any of the smaller HMACs fails the verifi-
cation algorithm, the receiver must discard all non-MT51 information from that
particular SBAS satellite and restart collecting new SBAS data. While 2 16− is a
relatively high probability, this is sufficient for the SBAS context because (1) an
adversary does not yet have access to the delay-released key nor an HMAC veri-
fication oracle (from the cryptography security context), and (2) once forgery has
been detected, all prior SBAS data will be immediately discarded. While the details
will be presented in a forthcoming work, the receiver logic will be set up so that a
single message forgery event will not result in an integrity failure. this will decrease
the likelihood of harmful forgery to 2 <1032 9− − . The likelihood that an adversary
could forge so many messages successfully is small enought to meet the security
level required by the stakeholders.

Our selection of SHA-256 for the Hash Path and HMAC generation is not nec-
essarily required. We select SHA-256 because it is standard and widely-used.
However, the Providers may wish to consider other standardized hashing func-
tions such as SHA-384 or those from SHA3 group to address other concerns, for
example, future-proofing and hardware concerns. We selected HMAC-SHA-256,
which includes SHA-256 as its primitive, to simplify the protocol. The widespread
and straightforward use of SHA-256 aids in the continued security of the proposed
scheme. If the SHA-256 security is broken, it will be widely-publicized and quickly
exchanged for another hash function. Providers would need to replace only a single

ANDERSON et al.

function in their implementation to continue operation, much like the recent
SHA-1 deprecation.

4  OVER-THE-AIR REKEYING (OTAR) DESIGN
METHODOLOGY

The proposed design of MT51 is fundamentally modular. The design of MT51
serves to deliver pseudorandom data so that its use can be flexible and recycled
among different OTAR designs and applications that require delivery of pseudo-
random data, including keys, signatures, and Hash Points. Its purpose is to deliver
large chunks of pseudorandom data to maintain the SBAS authentication scheme
and the associated metadata that addresses the way in which the receiver should
interpret that authenticating pseudorandom data. The same message definition
delivers TESLA Hash Path Ends, level-2 keys, level-1-key decryption keys, and the
authenticating pseudorandom data required for authentication.

Our choice to allow 128-bits per MT51 serves several purposes. We selected 128
and 256-bit security level ECDSA keys since there exist standardized, secure ellip-
tic curves at these security levels with each divisible by 128. The public keys and
derived signatures are two- and four-times the security level length, respectively.
These quantities are divisible by 128, meaning that there will be integer numbers of
OTAR Payload Segments without wasted zero padding. Table 5 exhibits the num-
ber of messages required to perform OTAR at each of the key levels. We recognize
that we could use the 192-bit level without modifying our scheme because all of the
192-bit level data are also divisible by 128. The design is agnostic to the asymmetric
scheme and is recycled for OTAR of the Hash Path Ends, thereby expanding its use
for maintenance of the entire scheme, not just the asymmetric portion. The pro-
posed MT51 standard would require no changes if a more efficient authentication
scheme (e.g., EC-Schnorr), a quantum-secure scheme, or a different security level
replaced the proposed asymmetric authentication scheme. The modular design
also facilitates easy expansion of additional features described in Sections 4.1 and
4.2 that may desirable to several of the SBAS stakeholders.

MT50 and MT51 are agnostic to the asymmetric cryptographic security scheme
and hash function primitives. The SBAS MT scheme need not change When the
security of a primitive becomes compromised. However, the Providers and receiv-
ers will need to change the primitives that are used in modular fashion. Since MT51
provides 128-bits of authenticating pseudorandom data per message, and standard-
ized cryptographic primitive lengths are generally integer factors of 128, changes
to the scheme will by definition increase or decrease the number of segments
required to transmit information. If the security of the 128-bit truncated SHA-256
is compromised, SBAS could double the Hash Point length space without affecting
the MT50 frequency. Suppose the Hash Point space is the set of 256-bit integers,
analogous to untruncated SHA-256. Each MT50 will transmit half of a Hash Point,
and each HMAC key will be derived from two consecutive MT50 messages. This
increases the time-between authentication events by a few seconds; however, it
doubles the Hash Path security and maintains its loss-tolerant properties.

4.1  MT51 Metadata Design

We specified the inclusion of a Germane and Authenticating Key hash within the
authenticating pseudorandom data metadata. Since the payload is pseudorandom,

ANDERSON et al.    

metadata must exist so that the receiver can associate the unique MT51 payloads.
Any identifying feature would suffice, for example, the ordered key number which
rolls over every 2 =6553616 keys. However, the use of hash on the entire key pro-
vides additional features. The key schedule need not be rigid, linear, or sequential.
The Provider and the CA can maintain several redundant level-2 and level-1 keys,
respectively. Multiple keys, potentially managed in isolation by the Provider and
the CA, might provide redundant security. The Provider would need to check to be
certain that the two unexpired keys do not share the same 16-bit identifying hash;
however, this would be a rare occurrence and the Provider would simply need to
draw another key at random in that event.

SBAS Providers could broadcast each other’s Hash Path Ends and key mainte-
nance features to promote service continuity. Hence, we included the SBAS Service
Provider ID in the metadata. SBAS Providers would not need to have access to
one another’s secret data; they would only need to serve as repeaters. Whereas
Section 4.4 discusses higher MT51-frequency to support the local SBAS authen-
tication from cold receiver start, this feature would be low frequency and serve
to support the local Provider schedule. Having Providers broadcasting each other
keys at low frequency would contribute to TFAF when transferring to a new SBAS
Provider. For example, we consider the case of two adjacent SBAS systems, WAAS
and EGNOS, and an aircraft traversing from Europe to North America. It will take
several hours for an aircraft to make this journey. If EGNOS broadcasts the WAAS
keys once an hour, any westward-bound aircraft will receive the WAAS keys it
needs to operate before reaching North America. This decreases the WAAS TFAF
to zero. At a minimum, SBAS Providers could broadcast keys from adjacent SBAS
Providers. Without this feature, when an aircraft enters a new SBAS service vol-
ume the first time in a given week (or 10 or 100 weeks), it must act as a cold-start
receiver for as long as required to collect the Authentication Stack, as specified in
Section 4.4.

Spare bits in the authenticating pseudorandom metadata could accommodate
other features. These include scheme hyperparameters, such as the choice of a
hash function or key or HMAC length. MT51 messages could authenticate specific
messages immediately with ECDSA, including those identified by 16-bit hashes.
If keys are ever compromised, MT51 could also disseminate key revocations. A
revocation MT51 would include eight 16-bit hashes of the affected keys and would
only need to be broadcast until the keys have been removed using standard pro-
cedure. Because each MT51 broadcast is accompanied by a germane expiration
time, the Provider can arbitrarily shorten the applicability of a particular key by
rebroadcasting the MT51 with a different expiration time, under the assumption
that receivers actually receive and record that updated broadcast and that the Hash
Path salt is not disrupted, as described in Section 3.2.1. Receivers would need to
remember key expiration time changes and key revocations. Receivers that did not
receive these updates would remain vulnerable. If the Provider can remove data,
the metadata must include a parameter that identifies a given specific authenti-
cation. This is because without the germane key hash, authenticating key hash,
segment number, and authentication instance number, the individual segments of
pseudorandom data will not be associated. MT51 can manage other authentication
schemes, including the program adopted by GNSS as described in Section 4.2. A
GNSS authentication, especially one built on TESLA, would save bandwidth by
deferring the its maintenance to SBAS.

There are many features that can be accommodated by the scheme’s modular-
ity; however, if SBAS stakeholders prefer not to use these features, then the spare
meta bits could also be used to aid in maintaining resistance to message loss.

ANDERSON et al.

Providers could add redundant HMACS to the MT51 message and thus authenti-
cate messages redundantly to alleviate MT50 message loss. Moreover, the delivery
of 128-bits of authenticating pseudorandom data could be augmented via the use
of fountain codes (Fernandez-Hernandez et al., 2017). The use of fountain codes
may increase the reliability of delivering MT51 messages and decrease the num-
ber of transmitted messages required for an authenticated first fix. The selection
of 128-bits supports the scheme’s efficiency because all data points are integrally
divisible by 128. Special care must be taken to ensure that using fountain codes in
the spare bits to augment those 128-bits would not change this integral-divisible
property and thus will maintain efficiency.

A final MT51 design must accommodate all the features relevant to SBAS stake-
holders while maintaining the KPIs. The most relevant KPI for this discussion
is TFAF, because the use of more features will require more metadata. This will
increase the number of unique MT51s required for OTAR. We proposed MT51
because the minimum MT51 OTAR Payload Segment size was 128-bits. The con-
veniences associated with this choice are discussed in other sections. This choice
permitted us to specify maximum metadata. However, as defined in Table 3, there
could be redundant identifying information given certain assumptions about key
management. Furthermore, some of the bits of metadata are never used (e.g.,
delivery of a 128-bit salt will never require more than one page). Because this work
reflects an academic context, we are concerned with the breadth of features possi-
ble, given that our 128-bit design already meets the KPIs. Therefore, we acknowl-
edge that there are other ways of constructing MT51 metadata that will avoid
definition redundancy and spare bits. As SBAS Stakeholders discuss their desires
(e.g., for the metadata to become more or less crowded, and noting that even MT51
has some spare bits. Therefore, we offer several suggestions on how to consider bal-
ancing the design while maintaining scheme modularity, simplicity, and flexibility.

For example, a plausible MT51 design could include a 192-bit OTAR payload
or a larger payload. This can be achieved via any of the following: (1) the SBAS
Provider could identify keys by their expiration time, thus removing the need for
the Germane and Authenticating Key Hashes in the metadata; however, this would
eliminate the possibility of parallel and redundant key management; (2) any meta-
data regarding the keys could be placed on its own page, provided the authenticat-
ing signatures were derived from that data to ensure its security; and (3) the SBAS
Provider and receiver could agree on a defined ordering, for example, that depicted
in Table 4, for an aggregate OTAR payload. We note that the 128-bit MT51 design
does not require the receiver to presume anything about the OTAR schedule or use.
In our simulation, the receiver implementation proceeds without knowledge of the
100, 10, and 1 week cadence, nor any insight into whether the keys are managed
rigidly or linearly.

A 192-bit OTAR Payload Segment length almost maintains the integer-divisibility.
An Authentication Stack from Table 5 using AES-256 to encrypt level-1 keys and
having a separate TESLA salt MT51 would be integer-divisible by 192 with 2304
total bits and 12 192-bit MT51s. Alternatively, as features are removed, rather than
shifting bit allocations from the metadata to the OTAR Payload Segment, SBAS
Providers could instead arbitrarily replace metadata bits with fountain codes. This
suggestion would maintain the integer-divisibility of MT51 on the authenticat-
ing pseudorandom data, thereby ensuring there is no wasted zero-padding on the
delivered data, and will also add the loss-tolerant properties of MT51.

We implore the SBAS Stakeholders to have a future-proofing mindset that
includes consideration of attributes that may be needed decades in the future.
For example, cryptographic primitives will break and will need to be replaced.

ANDERSON et al.    

Likewise, quantum-computer resistant algorithms may be needed. The best way
to maintain a future-proof mindset is to make MT51 agnostic to the data it is
delivering and capable of expansion to any future pseudorandom data delivery
requirements.

At a 128-bit OTAR Payload Segment, the required delivery of 16 unique MT51
already meets the KPIs. However, increasing the OTAR Payload Segment would
decrease the number of unique MT51s. This would decrease the burden on the
SBAS Schedule, decrease TFAF, and have a less of an effect on continuity and
availability, among other considerations. Therefore, we expect the results shown
in Section 6 to be repeatable in designs that feature a larger than 128-bit OTAR
Payload Segment.

4.2  Core Constellation Ephemerides Authentication

Another feature that is accessible because of this scheme’s modularity is authen-
tication of navigation messages from a GNSS application. GNSS messages have
limited bandwidth and must maintain backward compatibility. MT51 provides a
natural pathway that might be used to authenticate GNSS data with the 128-bit pay-
load and spare meta-data bits. Table 3 provides the required metadata designations,
including (1) the germane core constellation system; (2) the type of authenticat-
ing pseudorandom data; and (3) the authenticating pseudorandom data segment
number. However, the payload will need to be modified to accommodate realistic
operations.

Given the Satellite-Receiver-Earth geometry, we suggest that the 128-bit payload
might be split into eight 16-bit payloads, as shown in Table 6. Each 16-bit HMAC
within the MT51 payload corresponds to a specific satellite’s broadcast ephemeri-
des. The MT51 metadata informs the receiver which satellites correspond to the
payload HMACs. By splitting the payload into smaller HMACs, the receiver need
not have access to the entire set of ephemerides to authenticate data from individ-
ual satellites.

 k p tj i
P

j
EphemerideSVN

SBAS SBAS CoHMAC PRN Frequency SVN= (, || || || rre) (4)

s kj j
EphemerideSVN

SVNHMAC Ephemeride= (,) (5)

Authenticating core constellation ephemerides exploits a main feature of TESLA
which is its bandwidth efficiency. Core constellation ephemerides can derive from
the same Hash Path as those distributed by MT50, meaning it would require min-
imal additional SBAS bandwidth. Equations (4) and (5) provide formulae that can
be used to generate the necessary HMACs, where k j

EphemerideSVN is the HMAC key
for a particular ephemeris’ HMAC, s j

EphemerideSVN is the HMAC broadcast and used
for authentication. piP , t j ; PRN, Frequency, and SVN share the same definitions as
those presented in Equation (1) and (2). Other information should be incorporated

TABLE 6
Bit Allocation for a Specific MT51 to Authenticate a Subset of Ephemerides With a 128-bit Payload.

Metadata,
etc

HMAC1 HMAC2 HMAC3 HMAC4 HMAC5 HMAC6 HMAC7 HMAC8 CRC

98 16 16 16 16 16 16 16 16 24

ANDERSON et al.

into these definitions (e.g., whether the signature is for the current or previous
ephemeris). These details will be considered in our future work.

There are three important security details that remain to be addressed. First,
similar to MT50, if any of one of the HMACs returns unauthenticated, the entire
set of ephemerides data must be discarded. Second, the HMACs derive from a
cryptographically-independent keys derived from a TESLA Hash Point, similar
to that described in Section 3.3. Equations (4) and (5) use the sending time t j ,
the SBAS PRN and frequency, and the core constellation satellite vehicle number.
Third, the ephemeris HMACs must be sent before the release of the corresponding
Hash Point according to the loose-time synchronized schedule (i.e., at least six sec-
onds in advance).

SBAS could authenticate the broadcast ephemerides of every satellite globally
and the receiver can draw from the entire set of HMACs, including the few within
the view of the receiver. The metadata segment number informs the receiver from
which set of eight satellites the HMACs are derive. For GPS, this would mean
four MT51s. However, MT1 and MT31 already provide an issues-of-data mask of
the 92-most relevant satellites currently under correction for a particular SBAS.
Therefore, we propose that the order of the eight HMACs might correspond to the
order prescribed in the issues of data already provided to the receiver. The issue
of data index, either the IODP or IODM, must be placed in the unused sections of
the metadata, and the metadata segment number field would determine the rel-
evant eight HMACs, in order, among the set of 92. Since the issue of data index
requires only two bits, SBAS could use the unused Germane Key Hash, Germane
Key Expiration, and Authenticating Key Hash to send 12 HMACs per MT51.
Alternatively, one could define a new message type that delivers 13 HMACs, the
issue of data index, and the segment number.

4.3  MT50 Redundant Authentication

MT51s are self-authenticating messages resulting from the use of ECDSA. Upon
receipt of the entire Authentication Stack, the receiver can assert authenticity to
the level-1 key maintained by the CA. However, the MT51 messages are among the
SBAS messages that are authenticated by TESLA and MT50. If the receiver has an
ECDSA-verified Authentication Stack that can authenticate the bulk of SBAS mes-
sages via MT50, the receiver can use TESLA to verify the next Authentication Stack
when it is delivered by MT51. In this manner, a receiver can assert the authenticity
of the next Hash Path End without awaiting the associated authenticating pseudo-
random data since an HMAC in the following MT50 will assert authenticity down
to the current Hash Path End through the current level-1 key. In Section 4.4, we
suggest that the next Authentication Stack might be rebroadcasted each hour. The
ECDSA- and TESLA-based authentication of the next Authentication Stack will
then be redundant to a receiver that has undergone an authenticated fix. Therefore,
an argument can be made that broadcasting the hour-long frequency of the next
Authentication Stack does not add to the scheme. Alternatively, MT50s could not
authenticate MT51s will instead authenticate messages redundantly. These consid-
erations will ultimately depend on the manufacturers’ implementation preferences
and whether this logic should be incorporated into the process. To avoid imple-
mentation errors that might serve to exploit the authentication scheme, we suggest
that, given stakeholder agnosticism, the simplest version might be selected. We
believe that the scheme delineated above, where MT51 data is redundantly authen-
ticated with MT50, is the simpler scheme overall.

ANDERSON et al.    

4.4  MT51 Schedule Frequency

As discussed earlier, we propose that the cryptoperiod of the level-1, level-2,
and TESLA Hash Paths might be 100, 10, and 1 week, respectively. Our selections
are somewhat arbitrary and were chosen in an attempt to balance the bandwidth
required to rotate key and Hash Path instances with security considerations such
as the resources required for a brute-force attack and the likelihood that a key
becomes compromised (e.g., leaked). Feasible scheme designs might permit level-1
cryptoperiods to be years longer, level-2 cryptoperiods to be as short as one month
or one week, and Hash Paths to rotate every hour or at least once a day. While we
will leave this consideration for future work, any choice made must meet mini-
mum security requirements that are associated with the required computational
time needed for exhaustive guessing of the keys. Upon cold receiver startup, we
would like the TFAF be reasonably short. Therefore, the Authentication Stack
must be sent out periodically. As shown in Table 5, a complete Authentication
Stack requires 16 MT51s. We propose that the Provider might broadcast the cur-
rent Authentication Stack every five minutes. In this way, the cold-start receiver
achieves the first authenticated fix within the first five minutes, assuming no mes-
sage loss. This will require a message to be transmitted from the 16 unique MT51s
at a rate of 1 out of every 18 messages. With multiple geostationary satellites and
frequencies, the satellites can broadcast the unique MT51s out of phase to decrease
the TFAF as discussed in Section 3.2.

Furthermore, the next keys, applicable immediately upon expiration of the cur-
rent keys, must be sent well before they are needed to facilitate a seamless transi-
tion as the current keys expire. To protect the security of a specific new key, it would
be prudent to send the new key just before it will be put into use. For instance,
we suggest that the Provider might send the next 100-week level-1 key repeatedly
beginning five weeks before its actual use. The next 10-week level-2 and 1-week
TESLA Hash Path End might be sent one week before their actual use. To demon-
strate its minimal impact on the MT51 SBAS bandwidth, if a Provider sent the next
Authentication Stack once every hour, together with the current Authentication
Stack once every five minutes, the Provider would need to send a message from the
set of 32 unique MT51s at a rate of 1 out of every 17 messages, rounded up. This
assumes that each OTAR Payload Segment of the Authentication Stack is broad-
cast at the same frequency as a baseline. Since some sections of the Authentication
Stack change less frequently, further optimization could be performed to balance
the TFAF with the likelihood that receivers are off for longer than for one week,
10 weeks, or 100 weeks. For instance, the slowly varying OTAR Payload Segments
could be broadcast once every 15 minutes with the weekly-varying OTAR Payload
Segments broadcast every two minutes.

We note that Providers and receivers may not need to adhere to a set schedule
for the key periods or the Hash Paths. As discussed above, the MT51 metadata and
modularity afford flexibility with respect to the expiration of particular keys and the
agreed-upon schedule for their expiration. Moreover, switching Hash Paths with-
out warning does not add computational complexity to receiver verification. Each
Hash Point is a hash, and hashes have constant-time look-up computational com-
plexity, as presented in Algorithm 2. This means that if the Provider were to switch
Hash Paths without warning, the receiver would need only one additional compu-
tation to check that the new Hash Point is the preimage to another ECDSA-verified
Hash Path End. This means that SBAS could incorporate unscheduled or stochastic
Hash Path switches, provided the appropriate MT51s are sent in advance, noting
that the MT51s specify only Hash Path End expiration times and not their actual

ANDERSON et al.

use time. If stakeholders elect not to have a rigid Hash Path schedule, a maximum
Hash Path length upper bound must be specified so that receivers do not get stuck
in an infinite loop as they attempt to hash down to an ECDSA-authenticated Hash
Path End.

The selection of the level-1 cryptoperiod, level-2 cryptoperiod, and Hash Path
length pose trade-offs among various SBAS stakeholders. With a very long Hash
Path, aircraft are less likely to find themselves without the current Hash Path End
via MT51 since the Hash Path End expires less frequently. Upon startup after a
shutdown less than the Hash Path End cryptoperiod, receivers need not await
delivery of an updated Authentication Stack via MT51, however, they must accom-
modate a more intense startup hashing operation to hash the current MT50 Hash
Point to the authenticated Hash Path End. With a very short Hash Path (e.g., a
Hash Path cryptoperiod of one day), receivers are more likely to be missing part of
the Authentication Stack after a shutdown because the missing parts expired while
the receiver was shut down. However, a shorter Hash Path will mean that less hash
processing will be required at startup. These considerations become especially
germane for aircraft that periodically traverse different SBAS service volumes. For
instance, consider aircraft that regularly travel a transatlantic route. When outside
a specific service volume, their devices will behave as shutdown receivers. Our
selection described in Section 4.4 was to accommodate a short time to first fix.
With a longer Hash Path, as flights travel across service volumes, the TFAF will
more likely be bounded by receiver computational hash capability instead of the
MT51 delivery schedule.

5  TESLA TIME SYNCHRONIZATION

The HMAC keys authenticating all SBAS messages with HMACs are derived
from the Hash Path delay-release on an assumed schedule. Therefore, it is crit-
ical to the Hash Path security that the Provider and the receiver are loosely
time-synchronized. Loosely time-synchronized means that the receiver has suf-
ficient externally-trusted time to reject HMACS after the release of the associated
Hash Point. This poses a “Catch-22” for aircraft that use an isolated GNSS receiver,
given that GNSS provides the time function. GNSS ranging signals allow receiv-
ers to derive an accurate, atomic-clock-synchronized time. This time measure-
ment is certainly accurate enough to support the delay-release schedule. The prior
art details many ways that receivers can establish trust in GNSS ranging signals
(Fernandez-Hernandez et al., 2019; Psiaki & Humphreys, 2016); however, GNSS
ranging signals are not yet rigorously authenticated with cryptography.

To damage SBAS security by breaking the loosely time-synchronized assump-
tion, an adversary must spoof the receiver by delaying the receiver’s time esti-
mate. In our case, this delay is six seconds. If the receiver clock was six seconds
behind the Provider’s clock, an adversary listening to the Provider could identify
the delay-released Hash Point, derive the keys, and generate forged HMACs. The
longer the delay, the more HMAC forging can be accomplished by an adversary.
While one could ensure that the receiver does not allow six-second time inter-
vals; however, this strategy would not work with to combat a Creeping Replay
Attack. The worst-case attack model will be examined in this work. In a Creeping
Replay Attack, an adversary listens to and replays the GNSS and SBAS signals
but introduces an incremental delay slowly enough to avoid detection by the
receiver. There are several strategies that can be used to mitigate the Creeping
Replay Attack.

ANDERSON et al.    

The first mitigation strategy is to use the onboard clock to evaluate a spoofed-time
hypothesis. The prior art has explored several mechanisms that might be used to
examine clock tolerances and to generate and use tolerance bounds to assert clock
trust (Fernandez-Hernandez et al., 2020). We have explored a few methods that
might be used to fuse GNSS and the onboard clock to determine whether a receiver
is actively involved in a Creeping Replay Attack, such as Pearson hypothesis tests
and Kalman-filter-based hypotheses tests. Explicit hypothesis methods and their
evaluation are left for future work. These strategies can detect a Creeping Replay
Attack before the six-second breakage boundary, provided the delay rate is faster
than the uncertainty bound of the onboard clock. For instance, a consumer quartz
clock oscillator will gain or lose approximately 15 seconds each month. This means
that any hypothesis that uses the onboard clock exclusively to estimate authen-
tic time is information-bound to 15 seconds per month. Aircraft technicians and
airport security officials could consider implementing procedures that guarantee
that the aircraft receiver periodically receives trusted GNSS and SBAS signals, for
example, while taxiing on the runway, where security officials ostensibly monitor
for spoofed signals and jamming. Operators would need to communicate with the
receiver that the current estimate can be trusted to reset the information-bound
consideration. Receiver manufacturers could invest in more accurate clocks that
tie time-trust events to periodic maintenance.

Another method is to compare to an external-to-GNSS, trusted time. Every day,
billions of devices establish time via rigorous cryptographic authentication via the
Internet. This system addresses tangential security concerns such as Internet-based
banking. This typically works well because the Internet does not need to accom-
modate for an SBAS bandwidth limitation. A receiver could compare its own time
to an Internet- or cellular-based time. This comparison need only be bound to the
GNSS-based time. In other words, the receiver can still utilize the accurate time
derived from the GNSS positioning regression, but it can check that this matches
the Internet-based time within a boundary such as one second. This internet or a
data-based time can be rigorously authenticated with cryptographically according
to the standard of the medium. The original TESLA protocol provides a secure
time-synchronization procedure. The Provider would establish an Internet server
that would accept and operate on receiver-generated nonces that would work
within the secure Hash Path (Perrig et al., 2005). Our choice to use the word “com-
pare” is intentional in this case, given the need to address concerns about allow-
ing external time inputs regarding to have access to an isolated SBAS receiver.
However, this comparison can be achieved without exposing the receiver time to
hacking strategies. Other strategies can be used to alert the pilot that the SBAS time
is not trusted, such as incorporating the GNSS time estimate into the Air Traffic
Control Radar Beacon System. If the beacon-broadcasted time was more than six
seconds behind the trusted time on the ground, then ground services could alert
the aircraft of the discrepancy.

Because the ranging signal remains unauthenticated despite rigorous methods
established with cryptography, SBAS must take a nuanced approach to assert the
loosely time-synchronized assumption.

6  FULL STACK SIMULATION AND KEY PERFORMANCE
INDICATORS (KPIS)

To examine the efficacy of this scheme, we implemented a full-stack simula-
tion of this scheme in MAAST. The MAAST Matlab implementation known as

ANDERSON et al.

the secure com.sun.security.auth java package was used to simulate actual SBAS
message transmission with ECDSA and TESLA routines asserting authentic mes-
sages and test that to verify that forged messages could be detected. At the time
of publication, the entire scheme was implemented except for (1) the hash path
salt; (2) the PRN concatenation operation for multiple satellites; (3) the pre-stored
encrypted level-1 public keys; and (4) testing for alert cases. These features do not
materially affect the outcomes because we took special care to ensure that the sim-
ulated scheme had the same number of unique messages per Authentication Stack.
Implementing these additional features will be left to future work after we receive
feedback from the SBAS stakeholders.

Using MAAST, we modified the message scheduler to send MT50s at a rate of
one in six messages and send MT51s whenever the schedule had an opening. For
this work, MAAST implemented the Authenticate-Then-Use (ATU) framework
for the receiver (Walter et al., 2021). Given the current use of the SBAS message
schedule, MT51s were sent more frequently than the requirement specified above,
at 1 in 17 messages. Therefore, among our simulations, TFAF occurred within two
minutes, rather than the required five minutes. The TFAF that resulted was lower
than that required as discussed in Section 4.4 because the simulated Provider sent

No Authentication With Authentication

FIGURE 5 Availability of contour maps from the output of MAAST
No authentication is shown on the left and with authentication is shown on the right. In the
authentication case, messages were accepted by the receiver only after authentication. The pie
graphs indicate the distribution of the different messages with no authentication (left) and with
authentication (right). With authentication, MT51s were sent in 1 of every 6 messages. While our
requirement specifies MT51 is to be sent in 1 of every 17 messages (i.e., about 6%), the simulation
schedule replaces the remaining MT63s with MT51s. There are some small coverage differences
between the figures, including north of Canada at approximately (130 , 72)− .

ANDERSON et al.    

the 16 unique messages within open slots of the SBAS schedule. Therefore, our
simulation indicates that SBAS availability and continuity are not affected by this
authentication scheme. Figure 5 displays availability maps that compare two cases,
including one with no authentication and another with faithful authentication
via MT50 and MT51 with message information accepted only after authentica-
tion. While the availability maps appear slightly different from one another, most
noticeably so at the service volume boundaries over Alaska and Canada, given the
reasonable fidelity of MAAST, we consider the results indistinguishable. The pie
graphs below indicate the distribution of the different messages with no authenti-
cation (left) and with authentication (right). In the authentication case, MT51s are
sent in 1 of every 6 messages. While our requirement specifies that MT51 is to sent
at a rate of 1 of every 17 messages (i.e., about 6%), this simulation schedule replaces
the remaining MT63s with MT51s. Given the nearly identical results under the
reasonable fidelity of MAAST, we find these results demonstrate the viabilility of
the scheme presented in this work.

7  CONCLUSION

This works delineates a complete TESLA-based SBAS authentication scheme that
includes OTAR. The scheme relies on three levels of security: (1) 128-bit-security
TESLA; (2) 128-bit-security ECDSA; and (3) 256-bit-security ECDSA. Using this
scheme, the two message types are appended to the schedule. It does not require
removal of power from the I-channel to support a Q-channel strategy. This strategy
is immediately backward compatible because older receivers can ignore the new
message types. It is also flexible and can be expanded according to the needs of and
additional feedback from SBAS Stakeholders. The flexibility of the scheme derives
from the observation that a single message can be used for all cryptographic main-
tenance. Given the reasonable use of onboard clocks, external clocks, and main-
tenance patterns, we assert the existence of reasonable, nuanced strategies that
might be used to mitigate attacks against the loose time-synchronized assumption
required by TESLA.

We tested the scheme with a faithful, full-stack simulation that includes full
encoding and decoding of messages and use of an appropriate cryptographic
library. Since the appended information fits within the unused slots in the message
schedule, our simulation revealed only negligible differences in performance of
the simulated receivers. Moreover, since the scheme makes use of space within the
I-channel and not the Q-channel, no associated power decrease or loss of service
at volume boundaries was observed. Therefore, we find this scheme, or one that is
substantially similar, will be acceptable for use in SBAS authentication.

a c k n o w l e d g m e n t s
We gratefully acknowledge the support of the FAA Satellite Navigation Team for

funding this work under Memorandum of Agreement #693KA8-19-N-00015.

r e f e r e n c e s
Anderson, J., Lo, S., Neish, A., & Walter, T. (2021). On SBAS authentication with over-the-air

rekeying schemes. Proc. of the 34th International Technical Meeting of the Satellite Division
of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO. 4288–4304. https://doi.
org/10.33012/2021.18132

Anderson, J., Lo, S., & Walter, T. (2022). Efficient and secure use of cryptography for watermarked
signal authentication. Proc. of the International Technical Meeting of the Institute of Navigation
(ITM 2022), Long Beach, CA. 68–82. https://doi.org/10.33012/2022.18228

https://doi.org/10.33012/2021.18132
https://doi.org/10.33012/2021.18132
https://doi.org/10.33012/2022.18228

ANDERSON et al.

Ardizzon, F., Laurenti, N., Sarto, C., & Gamba, G. (2022). It’s Galileo time: Options for crystal
oscillators in OSNMA-enabled receivers. GPS World. https://www.gpsworld.com/its-galileo-
time-options-for-crystal-oscillators-in-osnma-enabled-receivers/

Boneh, D., & Shoup, V. (2017). A graduate course in applied cryptography. Retrieved from: https://
crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf

Cancela, S., Calle, J. D., & Fernández-Hernández, I. (2019). CPU consumption analysis of TESLA-
based navigation message authentication. Proc. of the European Navigation Conference (ENC
2019), Warsaw, Poland. 1–6. https://doi.org/10.1109/EURONAV.2019.8714171

Caparra, G., Sturaro, S., Laurenti, N., & Wullems, C. (2016). Evaluating the security of one-way
key chains in TESLA-based GNSS navigation message authentication schemes. Proc. of the
International Conference on Localization and GNSS (ICL-GNSS 2016), Barcelona, Spain. 1–6.
https://doi.org/10.1109/ICL-GNSS.2016.7533685

Fernandez-Hernandez, I., Calle, D., Cancela, S., Fernández, A., Martínez, R., Seco-Granados,
G., & Walker, P. (2017). Fountain codes for GNSS. Proc. of the 30th International Technical
Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR.
1496–1507. https://doi.org/10.33012/2017.15368

Fernandez-Hernandez, I., Walter, T., Alexander, K., Clark, B., Châtre, E., Hegarty, C., Appel,
M., & Meurer, M. (2019). Increasing international civil aviation resilience: A proposal
for nomenclature, categorization and treatment of new interference threats. Proc. of the
International Technical Meeting of the Institute of Navigation (ITM 2019), Reston, VA. 389–407.
https://doi.org/10.33012/2019.16699

Fernandez-Hernandez, I., Walter, T., Neish, A., Anderson, J., Mabilleau, M., Vecchione, G., &
Châtre, E. (2021). SBAS message authentication: A review of protocols, figures of merit and
standardization plans. Proc. of the International Technical Meeting of the Institute of Navigation
(ITM 2021). 111–124. https://doi.org/10.33012/2021.17829

Fernandez-Hernandez, I., Walter, T., Neish, A., & O’Driscoll, C. (2020). Independent time
synchronization for resilient GNSS receivers. Proc. of the International Technical Meeting of the
Institute of Navigation (ITM 2020), San Diego, CA. 964–978. https://doi.org/10.33012/2020.17190

Fernández-Hernández, I., Rijmen, V., Seco-Granados, G., Simon, J., Rodríguez, I., & Calle,
J. D. (2016). A navigation message authentication proposal for the galileo open service.
NAVIGATION, 63(1), 85–102. https://doi.org/10.1002/navi.125

Jan, S.-S., Chan, W., Walter, T., & Enge, P. (2001). Matlab simulation toolset for SBAS availability
analysis. https://web.stanford.edu/group/scpnt/gpslab/pubs/papers/Jan_IONGPS_2001.pdf

Neish, A. (2020). Establishing trust through authentication in satellite based augmentation
systems [Doctoral dissertation, Stanford University, Stanford, CA, USA]. https://web.stanford.
edu/group/scpnt/gpslab/pubs/theses/Neish-Thesis-Final.pdf

Neish, A., Walter, T., & Enge, P. (2019). Quantum-resistant authentication algorithms for satellite-
based augmentation systems. NAVIGATION, 66(1), 199–209. https://doi.org/10.1002/navi.287

Neish, A., Walter, T., & Powell, J. D. (2019). Design and analysis of a public key infrastructure
for SBAS data authentication. NAVIGATION, 66(4), 831–844. https://doi.org/10.1002/navi.338

O’Hanlon, B., Rushanan, J. J., Hegarty, C., Anderson, J., Walter, T., & Lo, S. (2022). SBAS signal
authentication. Proc. of the 35th International Technical Meeting of the Satellite Division
of the Institute of Navigation (ION GNSS+ 2022), Denver, CO. 3369–3377. https://doi.
org/10.33012/2022.18443

Perrig, A., Song, D., Canetti, R., Tygar, J., & Briscoe, B. (2005). Timed efficient stream loss-tolerant
authentication (TESLA): Multicast source authentication transform introduction. Request For
Comments, 4082. https://www.rfc-editor.org/rfc/rfc4082

Peyrin, T., Sasaki, Y., & Wang, L. (2012). Generic related-key attacks for HMAC. In X. Wang &
K. Sako (Eds.), Advances in cryptology – asiacrypt 2012. 580–597. Springer Berlin Heidelberg.
https://eprint.iacr.org/2012/684.pdf

Psiaki, M. L., & Humphreys, T. E. (2016). GNSS spoofing and detection. Proc. of the IEEE, 104(6),
1258–1270. https://doi.org/10.1109/JPROC.2016.2526658

Various. (2021). Galileo open service navigation message authentication (OSNMA) user ICD for
the test phase. In (Vol. 1). https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_
OSNMA_User_ICD_for_Test_Phase_v1.0.pdf

Walter, T., Anderson, J., & Lo, S. (2021). SBAS message schemes to support inline message
authentication. Proc. of the 34th International Technical Meeting of the Satellite Division
of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO. 474–484. https://doi.
org/10.33012/2021.17908

How to cite this article: Anderson, J., Lo, S., Neish, A., & Walter,
T. (2023). Authentication of satellite-based augmentation systems with
over-the-air rekeying schemes. NAVIGATION, 70(3). https://
doi.org/10.33012/navi.595

https://www.gpsworld.com/its-galileo-time-options-for-crystal-oscillators-in-osnma-enabled-receivers/
https://www.gpsworld.com/its-galileo-time-options-for-crystal-oscillators-in-osnma-enabled-receivers/
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf
https://doi.org/10.1109/EURONAV.2019.8714171
https://doi.org/10.1109/ICL-GNSS.2016.7533685
https://doi.org/10.33012/2017.15368
https://doi.org/10.33012/2019.16699
https://doi.org/10.33012/2021.17829
https://doi.org/10.33012/2020.17190
https://doi.org/10.1002/navi.125
https://web.stanford.edu/group/scpnt/gpslab/pubs/papers/Jan_IONGPS_2001.pdf
https://web.stanford.edu/group/scpnt/gpslab/pubs/theses/Neish-Thesis-Final.pdf
https://web.stanford.edu/group/scpnt/gpslab/pubs/theses/Neish-Thesis-Final.pdf
https://doi.org/10.1002/navi.287
https://doi.org/10.1002/navi.338
https://doi.org/10.33012/2022.18443
https://doi.org/10.33012/2022.18443
https://www.rfc-editor.org/rfc/rfc4082
https://eprint.iacr.org/2012/684.pdf
https://doi.org/10.1109/JPROC.2016.2526658
https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_OSNMA_User_ICD_for_Test_Phase_v1.0.pdf
https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_OSNMA_User_ICD_for_Test_Phase_v1.0.pdf
https://doi.org/10.33012/2021.17908
https://doi.org/10.33012/2021.17908
https://doi.org/10.33012/navi.595
https://doi.org/10.33012/navi.595

	Authentication of Satellite-Based Augmentation Systems with Over-the-Air Rekeying Schemes
	Abstract
	Keywords
	1 Introduction
	1.1 Elliptic Curve Digital Signature Algorithm (ECDSA)
	1.2 Timed Efficient Stream Loss-Tolerant Authentication (TESLA)

	2 Definition of the SBAS Authentication Scheme
	2.1 ECDSA Key Structure
	2.2 TESLA Hash Path and HMAC Keys
	2.3 Message Type (MT) 50
	2.4 Message Type (MT) 51
	2.5 Procedures
	2.5.1 Modification for Metadata Removal

	3 TESLA Design Methodology
	3.1 TESLA Loss Tolerance
	3.2 TESLA Efficiency
	3.2.1 ECDSA-derived Hash Path Salt
	3.2.2 TESLA Hash Path Counter from Time

	3.3 TESLA Security

	4 Over-the-Air Rekeying (OTAR) Design Methodology
	4.1 MT51 Metadata Design
	4.2 Core Constellation Ephemerides Authentication
	4.3 MT50 Redundant Authentication
	4.4 MT51 Schedule Frequency

	5 TESLA Time Synchronization
	6 Full Stack Simulation AND Key Performance Indicators (KPIs)
	7 Conclusion
	Acknowledgments
	References

