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1  INTRODUCTION

To provide secure navigation for civilian global positioning system (GPS) users, 
the Air Force Research Lab (AFRL) has developed the chips-message robust 
authentication (Chimera) (Anderson et al., 2017) signal enhancement for the GPS 
L1C signal (GPS Directorate, 2022). Chimera inserts a digital signature within both 
the navigation message and the pilot channels of L1C to allow civilian users to jointly 
authenticate both components of the signal (AFRL Space Vehicles Directorate, 
Advanced GPS Technology, 2019). The AFRL will broadcast and test this signal 
enhancement on the upcoming Navigation Technology Satellite 3 experimental 
platform, which will be launched in 2024 (Cozzens, 2021; Divis, 2019, AFRL, 2023). 
If incorporated within the GPS L1C signal, the Chimera enhancement will be the 
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first GPS signal encryption scheme available for civilian users, thereby enabling 
secure navigation for all future GPS users.

To ensure that the GPS signal cannot be forged by a malicious attacker, the 
Chimera-enhanced satellite segment will only publish the encryption key to the 
user segment after the subsequent key has already been updated. Users with access 
to only the GPS L1C signal receive the slow channel encryption key once every 
3 min within the GPS L1C navigation message. However, users with access to 
secure out-of-band channels will be able to receive the fast channel encryption key 
once every 1.5 s, e.g., through a secure internet connection, or once every 6 s, e.g., 
through an augmentation system (Cozzens, 2021; GPS Directorate, 2022). With 
these encryption keys, users can authenticate their received GPS signal periodically 
at the rate of key reception. However, in either case, the Chimera signal authenti-
cation feature is not continuously available. In particular, even fast channel users 
will experience a 6-s latency in signal authentication, whereas GPS position update 
rates for moving receivers, such as autonomous vehicles, are typically 5–20 Hz.

To address this challenge, the present work develops a method to provide con-
tinuously available authenticated navigation solutions using Chimera. In partic-
ular, we focus on using the Chimera authentication feature in this work, because 
of the availability of its detailed interface specification (AFRL Space Vehicles 
Directorate, Advanced GPS Technology, 2019); however, the techniques and deri-
vations in this work can be applied to any setting in which periodic authentication 
information is available. In addition to the Chimera authentication information, 
we utilize measurements from another self-contained sensor on-board the vehicle, 
such as an inertial measurement unit (IMU), in order to validate the received GPS 
signal, while accounting for measurement uncertainties and unknown bounded 
biases in the self-contained sensor and GPS measurements under authentic con-
ditions. This work is based on our recent ION GNSS+ 2021 conference paper 
(Mina et al., 2021).

1.1  Related Work

Prior work has been conducted to perform signal verification on encrypted global 
navigation satellite system (GNSS) signals to detect the reception of a false received 
signature as well as to detect a secure code estimate-and-replay (SCER) attack, 
where an attacker rapidly estimates the encrypted spreading signals and immedi-
ately rebroadcasts them to mimic authentic GNSS signals on the fly (Humphreys, 
2013; Wesson et al., 2012). Indeed, these detection strategies are of critical impor-
tance to leverage the security benefits of cryptographically secured GNSS signals 
as well as to defend against more sophisticated SCER attacks. However, these tech-
niques do not address simpler spoofing attacks during the critical authentication 
interval before the encrypted signature is received.

Additional prior work has utilized point-valued state estimation to conduct 
spoofing detection with on-board inertial navigation system measurements by 
monitoring Kalman filter innovations in a tightly coupled system (Tanıl et al., 
2017) and by comparing IMU-estimated state trajectories with GPS-estimated tra-
jectories (Broumandan & Lachapelle, 2018). However, these detectors often require 
strong assumptions regarding the underlying distributions of sensing uncertainty, 
such as known sensor biases and nominal unbiased Gaussian measurement noise.

Many approaches for conservative error modeling have been developed for the 
analysis of GNSS integrity systems. These approaches include cumulative distri-
bution function (cdf) overbounding, which uses a single Gaussian distribution to 
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bound both sides of the true error cdf (DeCleene, 2000), i.e., overbounding the 
left side, where the cdf is less than 0.5, and underbounding the right side, where 
the cdf is greater than 0.5. A desirable property of a conservative error modeling 
framework is the ability to overbound the summation of two independent error 
distributions using their individual overbounding distributions, i.e., via a convo-
lution in the probabilistic domain. For GNSS integrity analysis, this property is 
particularly valuable for determining an overbounding distribution in the posi-
tion domain, using individual overbounding distributions in the range domain 
(DeCleene, 2000; Rife et al., 2006; Rife et al., 2004). However, cdf overbounding 
only satisfies this summation bounding property for symmetric, zero-mean, and 
unimodal error distributions (DeCleene, 2000). To handle nonsymmetric and mul-
timodal error distributions, paired overbounding techniques have been developed, 
in which two distributions are used to bound the left and right sides of the error cdf 
(Rife et al., 2006; Rife et al., 2004). Additional techniques have also been developed 
in which cdf overbounding and paired overbounding are combined to create an 
intermediate overbounding distribution and the cdf overbounding requirements 
are relaxed while maintaining an upper bound of the final position domain integ-
rity risk (Blanch et al., 2017, 2018). However, all of these past works typically only 
model overbounding scalar distributions and assume knowledge about the exact 
underlying error distribution, such as the distribution of sensing biases (e.g., GNSS 
multipath errors), which can lead to difficulties in reliable modeling in practice 
and for all types of sensing errors.

Promising work has also been conducted in utilizing formal verification tech-
niques, including stochastic reachability (SR), in the context of safe satellite-based 
navigation applications. SR, which is described in greater detail in Section  2, 
addresses the challenges of point-valued state modeling approaches by using less 
restrictive error models (e.g., unknown, but bounded, biases in sensing uncer-
tainty). Indeed, unlike many prior works on conservative error modeling for GNSS 
integrity analysis (Blanch et al., 2018; DeCleene, 2000; Rife et al., 2006), SR provides 
a complete probabilistic overbound over a set of possible vehicle state distribu-
tions. Additionally, SR provides an elegant framework to extend this probabilistic 
overbounding to a multidimensional space in an efficient manner that provides 
tighter bounds than maintaining overbounds in each dimension separately, as dis-
cussed in Section 2. Furthermore, set representations for SR have been developed, 
which can be used to efficiently evaluate the overbound under linear mapping and 
summation operations (Althoff, 2010; Althoff et al., 2009), as discussed in more 
detail in Section 2. In prior works, this technique has been used to compute a set 
of reachable unmanned aerial vehicle states for safe trajectory planning, while 
incorporating bounds on potential GNSS measurement biases (Shetty & Gao, 2019, 
2021). Additionally, formal verification techniques through SR have been utilized 
to perform secure GPS timing estimation within a network of phasor measurement 
unit devices in a power grid network (Bhamidipati & Gao, 2020a).

1.2  Overview of Proposed Method and Contributions

We propose a spoofing detector to provide continuous GPS signal verification 
between Chimera authentication times using SR analysis, inspired by recent meth-
ods such as those described in Althoff et al. (2009) and Bhamidipati and Gao (2020a, 
2020b). We derive our spoofing detector and state estimator for a generic linear or 
nonlinear self-contained sensor model with GPS positioning measurements. To 
experimentally validate our technique, we implement our algorithm for a ground 
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receiver paired with (1) a linear sensor model of two-dimensional (2D) acceleration 
inputs in the navigation frame of reference as well as (2) an on-board IMU sensor 
as the self-contained sensor. For each time instant at which the receiver position is 
updated, our formal verification method leverages the previously authenticated set 
of Chimera measurements in combination with conservative error models for the 
GPS and self-contained sensor measurements to ensure that the detector meets a 
user-defined false alarm threshold on declaring a spoofing event.

To address the challenges of point-valued spoofing detection methods and 
to leverage the Chimera signal enhancement, our proposed formal verification 
technique: 

1. enables continuous GPS signal verification between Chimera authentication 
times by validating the received signal against local self-contained sensors, 

2. provides a probabilistic overbound on the set of possible vehicle states for 
navigation, in the presence of both stochastic uncertainties and bounded 
measurement biases for the self-contained sensor and GPS sensor during 
authentic conditions, and 

3. evaluates a spoofing detection statistic that satisfies a user-defined false alarm 
metric, while accounting for potential biases in the self-contained sensor and 
GPS measurements during nominal unspoofed operation. 

1.3  Paper Organization

In Section  2, we establish our notation and key definitions. In Section  3, we 
present our proposed SR filter and spoofing detector. We present our experimental 
results in Section 4 and conclude in Section 5. 

2  PRELIMINARIES

In this section, we introduce the notation used throughout the paper. We also 
provide a basic introduction to probabilistic zonotopes (p-zonotopes), which 
are used for representing stochastic sets. Other mathematical objects have been 
developed, including ellipsotopes (Kousik et al., 2021), which can provide tighter 
bounding stochastic sets than p-zonotopes. However, the primary objective of 
this work is to develop the overall framework and analysis for an SR-based spoof-
ing detector and state estimator. As a result, we focus on using a single stochas-
tic set representation for our derivations; in particular, we utilize p-zonotopes. 
Zonotopic set representations are a popular choice for modeling reachable sets 
in formal verification applications (Kousik et al., 2019; Medina Lee et al., 2019; 
Schürmann et al., 2021).

2.1  Notation

We denote natural numbers as   and n-dimensional Euclidean space as n .  
Scalars are represented in lowercase italics (e.g., x), vectors are represented in 
lower case boldface (e.g., x), and arrays and matrices are represented in uppercase 
boldface (e.g., X).

For multiple vectors x x1, , n ,  we use the tuple notation to indicate the vertical 
concatenation of these vectors: ( , , ) [ , , ]1 1x x x x n n=    .  For a vector v∈n ,  
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we index its i-th element as v[ ]i .  For an array A� �n m ,  we index its i-th row 
(column) as A[ ]i, :  ( ).A[ ]:, i  For a set A a i i

n nA� ��{ ( )} 1   (nA � � � { }),  the nota-
tion a i( )  denotes the i-th element of the set.

Let v  be the true value of the quantity of interest (e.g., a system state); we use a 
hat, ˆ ,v  to indicate an estimated value. 

We use uppercase script characters to denote sets and set-valued functions. We 
use ⊕  to denote the Minkowski sum (i.e., set sum) operation; for a pair of sets   
and ,  this operation is defined as A B A B� � � � �: |{ , }a b a b .  The negative of a 
set is denoted by � � � � { | }a a .

2.2  Probabilistic Zonotopes

We make use of zonotope-based SR analysis (Althoff, 2010; Althoff et al., 2009), 
which has seen recent success in integrity monitoring (Bhamidipati & Gao, 2020a, 
2020b). A zonotope is a particular type of convex symmetrical polytope defined as 
follows: 

 ( ) { || || }c G c G, | 1� � � ��� �n  (1)

where c∈n  is the center, G� �n m  is a generator matrix, and ��m  is a coeffi-
cient vector. The columns of G  are called generators. One can interpret a zonotope 
as the Minkowski sum of the center with a line segment created by scaling each 
generator by its corresponding coefficient, which lies in [ 1, 1]� � .  If X Z= ( )c G, ,  
we denote � � � �X Z( )c G, .

Zonotopes are bounded sets, which limits the types of distributions they can 
represent. To address this concern, Althoff et al. (2009) introduced p-zonotopes to 
represent an enclosing probabilistic hull (EPH), which is a conservative approxima-
tion of the set of estimated states and their corresponding probability distributions. 
These objects can be used to probabilistically overbound a collection of probability 
density functions, which one can obtain by performing reachability analysis on a 
system described by stochastic linear differential inclusions, as is considered in the 
present work.

Much like regular zonotopes, p-zonotopes are parameterized by a center and 
generators, which determine the zonotope width. For p-zonotopes, the width rep-
resents an uncertain mean of the underlying distributions. However, unlike a regu-
lar zonotope, a p-zonotope is additionally parameterized by a Gaussian covariance 
matrix. Thus, p-zonotopes represent an EPH of a set of distributions, e.g., a set of 
Gaussian distributions with a mean in the zonotope and the given covariance: 

 Z Np and( ) { || || ( )}c G c G w w 0, , | 1 ,�� ��� � � ��� �   (2)

where ��� �n n  is a positive semi-definite covariance matrix. By modeling a prob-
abilistic overbound on the state, p-zonotopes can encompass multiple possible 
Gaussian distributions, as shown in Figure 1, thereby allowing for uncertainty mod-
els with fewer restrictive assumptions on the error distribution (e.g., a zero-mean 
Gaussian distribution with perfectly known covariance).

Figure 1 depicts examples of 1D and 2D p-zonotopes. Note that a p-zonotope is 
not a probability distribution, but a probabilistic overbound over a set of probability 
distributions, also called an EPH. Also note that the 2D p-zonotope in Figure 1 
provides a tighter probabilistic bound than one would obtain by maintaining two 
separate 1D overbounds, because of the relationship between the two states over 
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the distribution set. Although we depict p-zonotopes in 1D and 2D in Figure 1, 
these overbounding objects can be extended to any multidimensional space.

Note that p-zonotopes differ from mixture distributions in two key ways. First, 
these mathematical objects represent a probabilistic overbound on the set of pos-
sible distributions, rather than modeling a multimodal distribution with explicitly 
defined mixture weights. Second, mixture distributions often incorporate a finite 
number of distribution components or, potentially, a countably infinite number, 
whereas p-zonotopes can encompass an uncountably infinite number of possible 
distributions, which is especially useful for modeling certain types of distribution 
uncertainties. As an example, let us consider a Gaussian random variable that has 
an unknown, but bounded, mean. The set of possible distributions is uncountably 
infinite, but its overbound can be elegantly represented via a p-zonotope, as 
depicted in Figure 1.

Importantly, p-zonotopes are closed under linear maps and Minkowski sums 
(Althoff et al., 2009), i.e., the resulting mathematical object under these operations 
is also a p-zonotope. These two operations are necessary for reachability analy-
sis, wherein a system’s uncertain state is propagated forward under the system’s 
dynamics. The resulting uncertain set of reachable states is typically dilated via the 
Minkowski sum to compensate for uncertainty (e.g., linearization error). Hence, 
p-zonotopes have recently been used for the verification of stochastic systems (e.g., 
as in Bhamidipati and Gao (2020a, 2020b) and Combastel and Zolghadri (2020)).

3  PROPOSED METHOD

In this section, we first provide a high-level overview of our proposed method 
in Section 3.1. Next, we outline the derivation of the p-zonotope model for a gen-
eral, loosely coupled Kalman filter that integrates GPS positioning measurements 
with odometry information from any self-contained sensor, such as an IMU. The 
odometry information from the self-contained sensor is incorporated through the 
filter propagation model, while the GPS positioning measurements are incorpo-
rated through the measurement model. Following a derivation similar to that of 
Shetty and Gao (2019), we first describe the point-valued Kalman filter-based state 
estimate in Section 3.2. Then, in Section 3.3, using an overbounding p-zonotope 
noise model of the process and measurement noises under authentic conditions, as 
well as the properties of linearity and Minkowski summation for p-zonotopes, we 

FIGURE 1 Illustrations of p-zonotopes 
Note that a p-zonotope is not a probability distribution, but a probabilistic overbound over a set 
of state distributions, also called an EPH. (a) shows a 1D p-zonotope, represented by its center, 
width, and covariance parameters. (b) and (c) show a 2D example of a p-zonotope from a 3D view 
and a bird’s eye view, respectively.
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express the probabilistic overbound on the state estimation error for the SR-based 
Kalman filter (SR-KF). This derivation initially assumes a linear propagation 
model as represented by the self-contained sensor. In Section 3.4, we derive the 
corresponding SR-based Chimera spoofing statistic and detector. In Sections  3.5 
and 3.6, we extend the derivations to a nonlinear propagation model.

Finally, we extend our derivation of the SR-based filter and Chimera spoof-
ing detector for application to a nonlinear propagation model represented by 
a self-contained sensor, which applies to IMU body-frame measurements. We 
thereby derive an SR-based extended Kalman filter (SR-EKF) in Section 3.5 and 
the corresponding Chimera SR-EKF spoofing detector in Section 3.6. 

3.1  Overview

The core idea of our proposed method is as follows, with an illustration of our 
method shown in Figure 2 and the high-level architecture depicted in Figure 3. 
Recall that during the Chimera authentication period of tauth s,= 6  the receiver 

FIGURE 2 Core idea and illustration of our proposed method (a) Illustration of the 
problem statement applied to a ground vehicle model, over one Chimera fast channel epoch of 
tauth s= 6  (b) Likely authentic scenario, at time step t t0 +   (c) Likely spoofed scenario, at 
time step t t0 + 

The time of the last Chimera authentication is represented as the first time step t0,  and 
t t< auth  represents the duration of time between Chimera authentications, where the received 

GPS measurement is not yet authenticated, as depicted in (a). In (b) and (c), the p-zonotopes 
representing position state estimates depending on the received self-contained sensor 
information are shown in blue, and the corresponding p-zonotopes based on unauthenticated 
GPS measurements are shown in orange. The illustration in (b) depicts a scenario in which the 
received, unauthenticated GPS signal is likely authentic, while the illustration in (c) analogously 
depicts a scenario in which the unauthenticated GPS signal is likely spoofed, due to the 
inconsistency of the unauthenticated GPS-estimated p-zonotope over the vehicle state with 
respect to the p-zonotope estimated by the self-contained sensor.
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obtains a series of unauthenticated GPS positioning measurements, as shown in 
Figure 2(a). Between the Chimera authentication times, we maintain a pair of 
receiver position state estimates: one estimate is based on the unauthenticated GPS 
positioning measurements, and the other estimate is initialized according to the 
previous Chimera-authenticated GPS measurements and then updated according 
to a trusted local self-contained sensor, such as an IMU. We similarly maintain 
a pair of p-zonotopes on the receiver state error: one p-zonotope is based on the 
variance and bounded biases from the unauthenticated GPS positioning measure-
ments during authentic conditions, and the other p-zonotope is computed via an 
SR-based state estimation filter based on the self-contained sensor. When initial-
izing the SR filter at the beginning of the Chimera epoch, we assume that the user 
has access to a sufficient number of Chimera-enhanced GPS measurements from 
the previous epoch in order to obtain an authenticated position solution, e.g., at 
least four Chimera signals for a weighted least-squares solution.

From the two stochastic reachable sets, we find the probabilistic set, or EPH, of 
expected errors between the estimators, under nominal unspoofed conditions. To 
detect spoofing, we assess whether the current error between the estimators has 
a sufficiently high likelihood within this EPH with respect to a user-defined false 
alarm condition, as shown in the final detector block in Figure 3. Intuitively, if the 
received GPS signal is likely authentic, then we should observe significant over-
lap between the two p-zonotopes on the state estimate, as depicted in Figure 2(b). 
However, if the p-zonotope based on the unauthenticated GPS measurements is 

FIGURE 3 High-level architecture of our proposed spoofing detector and SR estimator for 
continuous Chimera-enhanced GPS signal verification 
Inputs are parallelograms, processes are boxes, and outputs are ellipses. Different subsets of the 
inputs are used in three separate SR state estimators: one with the self-contained sensor, one with 
unauthenticated GPS measurements, and one that fuses the self-contained sensor measurements 
with the unauthenticated GPS measurements. The SR state estimators output both state estimates 
and stochastic reachable sets, which are used to make a spoofing decision by the SR spoofing 
detector process box in violet, depending on whether the error between the self-contained sensor 
and unauthenticated GPS state estimates lies within a set of predicted errors. The final output 
of the detector is the binary spoofing decision, as well as the final state estimate and estimator 
error p-zonotope provided by the output SR filter switch in light green. If the spoofing detector 
outputs an “authentic” decision, the filter switch outputs the state estimate and p-zonotope from 
the fused SR filter; otherwise, the filter outputs the state estimate and p-zonotope from the self-
contained SR filter. The 1D EPH image used for the SR spoofing detector process block is adapted 
from Althoff et al. (2009).
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not sufficiently consistent with the p-zonotope based on the self-contained sensor 
information, as depicted in Figure 2(c), then we declare the received GPS measure-
ments as being likely spoofed.

As shown in Figure 3, the output stochastic reachable state estimation takes 
the detector decision as an input. While the detector outputs an “authentic” deci-
sion, the output SR state estimator outputs the fused state estimate, based on the 
self-contained sensor measurement and the GPS positioning measurements. Once 
the detector outputs a “spoofed” decision, the output SR state estimator switches to 
rely on the self-contained sensor filter until it can re-authenticate the received GPS 
measurements via the Chimera enhancement.

3.2  Point-Wise Kalman Filter Estimation Expressions

To establish the context for the SR-KF, we review the standard Kalman filter. Let 
us consider a generic linear receiver motion model: 

 x A x B u wk k k k k k k� � �� � �1 1 1��  (3)

where xk ,  uk ,  and wk  represent the true state, state transition input, and pro-
cess noise, respectively, at time k. In this work, we model the state propagation of 
the Kalman filter-based estimator by using the self-contained sensor information. 
For our point-wise state estimate, wk  is modeled according to the hypothesis that 
w Wk k (0, ).  We discuss the extension to an unknown biased process noise, as 
modeled by a p-zonotope in Section 2.2, which allows us to express the probabilis-
tic overbound for the state estimation errors. For our state estimate, we have the 
following Kalman filter expressions for the prediction step: 

 | 1 1 1ˆ ˆk k k k k k− − −= +x A x B u  (4)

 | 1 1 1
ˆ ˆ

k k k k k k k k− − −= +P A P A W Γ Γ  (5)

where ˆ kx  and | 1ˆ k k−x  represent the state estimate and predicted state estimate, 
respectively, at time k. Analogously, ˆ

kP  and | 1
ˆ

k k−P  represent the covariance of the 
state estimate and predicted state estimate, respectively, at time k. For the Kalman 
filter update step, which corrects the predicted state using the latest received GPS 
positioning measurements zk ,  we have the following: 

 z H x rk k k k� �  (6)

 ( ) 1
| 1 | 1

ˆ ˆ
k k k k k k k k k

−

− −= +K P H H P H Z   (7)

 ( )| 1 | 1ˆ ˆ ˆk k k k k k k k− −= + −x x K z H x  (8)

 | 1
ˆ ˆ( )k k k k k−= −P I K H P  (9)

where Hk  is the system measurement matrix for the GPS positioning measure-
ments, rk  is the measurement noise, and Kk  is the Kalman gain matrix. For 
our point-wise state estimate, the measurement noise is modeled according to 
the hypothesis that r Zk k (0, ),  where Zk  is the measurement covariance. 
We discuss the extension to an unknown biased measurement noise vector in 
Section 3.3.
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3.3  Stochastic Reachability-Based Kalman Filter (SR-KF)

Now, by following a procedure similar to that of Shetty and Gao (2019), we derive 
the stochastic reachable set of state estimation errors in the presence of unknown 
bounded biases in the process noise and measurement noise. First, we represent 
the state estimation error at time k  as follows: 

 ˆ=k k k−x x x  (10)

Substituting xk  with the expression in Equation (3) and ˆ kx  with the expressions 
in Equations (8) and (4), we can write: 

 ( )( ) ( )1 1 | 1 1 1 1ˆ ˆk k k k k k k k k k k k k k k k− − − − − −= + + − − + +x A x B u K z H x A x B u w Γ  (11)

 ( )1 | 1 1ˆk k k k k k k k k− − −= + − −A x K z H x w Γ  (12)

Then, using Equations (6), (4), and (3), we derive a recursive expression for the 
state estimation error: 

 ( )( )1 1 1 1ˆk k k k k k k k k k k k k k− − − −= + + − + −x A x K H x r H A x B u w  Γ  (13)

 
( )(

( ))
1 1 1 1

1 1 1ˆ
k k k k k k k k k k k

k k k k k k k

− − − −

− − −

= + + + +

− + −

A x K H A x B u w r

H A x B u w

 Γ

Γ
 (14)

 � � � � �� � �� � � �A x K H A x H w r wk k k k k k k k k k k k 1 1 1 1�� ��  (15)

 � �� � � �� � �� �I K H A x I K H w K rk k k k k k k k k k 1 1��  (16)

Converting Equation (16) to set notation as is done in Shetty and Gao (2019), we 
obtain a recursive expression for the stochastic set of state errors  ,  which rep-
resents a probabilistic overbound on the set of state errors: 

  X X W Rk k k k k k k k k k k� �� �� �� � �� �� �� � �� �I K H A I K H K1 1��  (17)

where k  and k  represent the stochastic reachable sets of errors in the process 
noise and measurement noise, respectively. Finally, we can represent a probabilis-
tic overbound over the set of true states, in terms of the state estimate and stochas-
tic set of state errors: 

 ( )ˆk k k= + −x    (18)

3.4  Chimera SR-KF Spoofing Detector

Next, we leverage the SR-KF for spoofing detection. In particular, during the time 
interval between Chimera authentications, e.g., 1.5-s or 6-s intervals proposed for 
the Chimera fast channel implementations, we separately model the receiver state 
estimates from the self-contained sensor information using the state propagation 
model described in Equation (4) as follows: 

 self self
1 1ˆ ˆk k k k k− −= +x A x B u  (19)
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where the superscript ( )⋅ self  indicates self-contained sensor information. The cor-
responding state error is similarly derived as in Equation (12), but without the 
measurement update term, thereby allowing us to model the stochastic set of state 
errors as follows: 

  X X Wk k k k k
self self� � �� �� �A 1 1��  (20)

Projecting the state selfˆ kx  to the position coordinates to obtain selfˆ ,kp  we define 
the spoofing statistic qk  as the difference in position state estimates: 

 self GPSˆ ˆ:k k k= −q p p  (21)

where GPSˆ kp  represents the received GPS positioning measurement. Next, we 
can relate the spoofing statistic to the difference in position state errors in the 
following way: 

 self GPSˆ ˆk k k= −q p p  (22)

 � �� � � �� �p p p pk k k k 

self GPS  (23)

 � � p pk k
self GPS  (24)

As a result, assuming that the state errors from the self-contained sensor noise 
and the GPS noise are independent, we can model the stochastic set of the spoofing 
statistic during nominal conditions as follows: 

 Q P Pk k k� � �� � 
self GPS  (25)

where k
self  is the stochastic set of position errors found by projecting k

self  to 
the position coordinates and k

GPS  is the stochastic set of errors for the GPS posi-
tioning measurement GPSˆ ,kp  modeled according to the variance and bounded 
biases from the GPS positioning measurements under nominal unspoofed con-
ditions. Because these stochastic sets represent a probabilistic overbound on the 
set of state errors under nominal conditions, the stochastic set of k  correspond-
ingly represents a probabilistic overbound on the spoofing statistic in the nomi-
nal case.

Let k k( )q  represent the evaluation of the p-zonotope k  at the spoofing 
statistic qk ,  which corresponds to the probabilistic overbound of the spoofing 
statistic, under nominal conditions. Thus, we choose the binary spoofing deci-
sion to satisfy a user-defined false alarm requirement PFA  through the following 
definition: 

 d Pk k k: ( )� �� �1  q FA  (26)

where  returns 1  if its argument is true and 0  if false. Thus, dk = 1  corresponds 
to an “authentic” decision, and dk = 0  corresponds to a “spoofed” decision, which 
are chosen according to the user-defined false alarm probability. Intuitively, if the 
probability of the spoofing statistic qk  under the nominal condition assumptions 
represented by the p-zonotope k  is sufficiently large, we declare that the signal is 
likely authentic. Otherwise, we declare that the signal is likely spoofed. The thresh-
old of PFA  guarantees that we satisfy the corresponding user-defined false alarm 
probability requirement under authentic conditions.
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3.5  Extension to a Nonlinear Propagation Model: Stochastic 
Reachability-Based Extended Kalman Filter (SR-EKF)

To estimate the state error p-zonotopes and perform validation with a self- 
contained sensor with a nonlinear model, such as an IMU that returns accelerations 
in the body frame of reference, we must extend the SR-KF and spoofing detector 
for application to a nonlinear propagation model f, which we represent as follows: 

 x f x u wk k k k� � �� � �1 1 1, ,  (27)

Maintaining our measurement model of GPS positioning measurements from 
Section 3.3, we only need to update the predicted state estimate expressions from 
Equation (4) to obtain our point-wise EKF estimate: 

 ( )| 1 1 1ˆ ˆ , , 0k k k k− − −=x f x u  (28)

Here, the remaining point-wise state estimation expressions from Section  3.3 
remain the same for our application for the nonlinear propagation model exten-
sion. We define Ak  and ΓΓk  as follows for the SR-EKF: 

 ( ) ( )1 1 1 1ˆ ˆ: , , 0 and : , , 0k k k k k k− − − −

∂ ∂
= =
∂ ∂

f f
A x u x u

x w
Γ  (29)

To derive the stochastic set of state estimation errors for the SR-EKF, we must 
account for linearization error in the state estimation expression. To do so, we follow 
the method in Althoff et al. (2008) to conservatively represent the Lagrange remain-
der of the nonlinear propagation expression. To proceed, we define sk  as the concat-
enation of all arguments of the nonlinear propagation model f at time step k: 

 s x u wk k k k:� � �, ,  (30)

Correspondingly, we can express the true state propagation as x f sk k= 1�� �.  We 
can further write the true state propagation in terms of the first-order approxima-
tion of the Taylor series along with the corresponding Lagrange remainder term 

ˆ
1 ,k−

s
  as follows: 

 ( ) ( )
1

ˆ
1 1 1 1

ˆ=

( )ˆ ˆ
k

k k k k k
−

− − − −
∂

= + − +
∂

s

s s

f sx f s s s
s



 (31)

 ( ) ( ) ( )
2

ˆ
1 1 1 1 12

1 ˆ ˆ:
2k k k k k

ζ
− − − − −

∂
= − −

∂
s

f
s s s s

s


  (32)

where ˆ ˆ: 0 .k k k =  s x u
   Note that sk  is restricted to be in a convex set, 

because we represent each component as a p-zonotope. As a result, for a particular 
sk  and ˆ ,ks  we have ( )ˆ ˆ{ | [0, 1]}k k kζ α α∈ + − ∈s s s  (Althoff et al., 2008; Berz & 
Hoffstätter, 1998).

Rewriting Equation (31) in terms of each component of s,  we can express the 
true state propagation in terms of the linearized SR-EKF matrices Ak ,  ΓΓk ,  and 

( )1 1ˆ: , , 0 ,k k k
∂

− −∂
= f

uB x u  with: 

 ( ) ( ) ( ) ( ) ˆ
1 1 1 1 1 1 1 1ˆ ˆ, , 0 0k k k k k k k k k k k k− − − − − − − −= + − + − + − + sx f x u A x x B u u w Γ

 (33)
 ( ) ˆ

1 1 1 1 1ˆ , , 0k k k k k k k− − − − −= − + + sf x u A x w
Γ  (34)
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Correspondingly, for the SR-EKF, we can express the state error from Equation (10) 
by replacing the nonlinear predicted state representation with Equation (28) and 
by substituting the expression from Equation (34): 

 ˆk k k= −x x x  (35)

 ( )( ) ( )( )ˆ
| 1 | 1 1 1 1 1 1ˆ ˆ ˆ , , 0k k k k k k k k k k k k k k− − − − − − −= + − − − + + sx K z H x f x u A x w

Γ

 (36)

 

( ) ( )( ) ( )(
)

1 1 | 1 1 1
ˆ

1 1 1

ˆ ˆ ˆ, , 0 , , 0k k k k k k k k k

k k k k k

− − − − −

− − −

= + − −

− + + s

f x u K z H x f x u

A x w
Γ  (37)

 ( )( ) ˆ
1 1 1 1 1ˆ , , 0k k k k k k k k k k− − − − −= − + − − sK z H f x u A x w

Γ  (38)

Using Equation (6) and replacing xk  with Equation (34), we finally derive a 
recursive expression of the state estimation error: 

( )( ) ˆ
1 1 1 1 1ˆ , , 0k k k k k k k k k k k k k− − − − −= + − + − − sx K H x r H f x u A x w 

Γ  (39)

( )( ) ( )( )ˆ
1 1 1 1 1 1 1

ˆ
1 1 1

ˆ ˆ, , 0 , , 0k k k k k k k k k k k k k

k k k k k

− − − − − − −

− − −

= − + + + −

+ − −

s

s

K H f x u A x w r H f x u

A x w







Γ

Γ (40)

( )( )ˆ ˆ
1 1 1 1 1 1k k k k k k k k k k k k k− − − − − −= − + + + + − −s sK H A x w r A x w 

 Γ Γ  (41)

( ) ( ) ( ) ˆ
1 1 1k k k k k k k k k k k k k− − −= − − − − − +sI K H A x I K H w I K H K r

Γ  (42)

Converting Equation (42) to set notation, we obtain a recursive expression for 
the stochastic set of state errors for the SR-EKF that incorporates the nonlinear 
propagation model: 

( ) ( ) ( ) ˆ
1 1 1k k k k k k k k k k k k k k− − −= − ⊕ − + ⊕ − + ⊕sI K H A I K H I K H K     Γ  (43)

where ˆ
1k−

s  is a set representing all possible Lagrange remainder values ˆ
1k−

s
  given 

by choosing sk ,  ˆ ,ks  and ζ  as noted above. We overapproximate ˆ
1k−

s  as a zono-
tope using the strategy in Althoff et al. (2008). First, note that from Equation (10) 
and the definition of ˆ ,ks  the state estimation error is contained in a set as follows: 

 ( ) ( ) { }1ˆk k k m k×− ∈ − × ×s s 0   (44)

where the set on the right-hand side is a p-zonotope created by the Cartesian prod-
uct of the state, input, and noise p-zonotopes and m  is the dimension of the input 
vector. By choosing a confidence level, we can overapproximate this set with a 
zonotope. Then, the method in Althoff et al. (2008) overapproximates this zono-
tope as an interval and finally overapproximates ˆ

1k−
s  as a zonotope by evaluating 

Equation (32) with interval arithmetic.

3.6  Extension to a Nonlinear Propagation Model: Chimera 
SR-EKF Spoofing Detector

When using a nonlinear propagation model, we model the state estimate based 
on the self-contained sensor as follows: 

 ( )self self
1 1ˆ ˆ , , 0k k k− −=x f x u  (45)
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where we similarly obtain the position estimate selfˆ kp  by extracting the corre-
sponding position states. The corresponding state error can be similarly derived 
as in Equation (38) without the measurement update term, thereby allowing us to 
model the stochastic set of state errors as follows: 

 ( ) ( )selfˆself self self self
1 1 1k k k k k k− − −= ⊕ − ⊕ − sA    Γ  (46)

where ( )self selfˆ ˆ: , , 0k k k=s x u  and where Ak
self  and ΓΓk

self  are defined similar to the 
definitions in Equation (29), but with respect to selfˆ .ks  Similar to the linear SR-KF 
case, the corresponding p-zonotope on the position estimation error k

self  can 
be found by projecting the error zonotope k

self  onto the position domain. Using 
the updated p-zonotope for the nonlinear dynamics, the spoofing statistic for the 
SR-EKF qk  is the same as in Equation (24) whereas the corresponding stochastic 
set   is the same as in Equation (25).

4  EXPERIMENTAL RESULTS

In this section, we present two experimental validations of our proposed 
Chimera spoofing detector. We first implement and validate an example of the 
linear Chimera SR-KF detector and estimator in Section 3.4, followed by an exam-
ple of a nonlinear extension of the Chimera SR-EKF detector and estimator in 
Section 3.6. We assume a 6-s fast channel implementation of Chimera and start 
our simulation at the beginning of the Chimera epoch, when the GPS signals can 
be authenticated. We assume that the user has access to a sufficient number of 
Chimera measurements to obtain an authenticated position solution at the start of 
the epoch, which our SR-KF and SR-EKF leverage for initialization, as indicated 
in Figure 3.

In both experimental examples, we run Monte Carlo simulations for 1000 sam-
pled trajectories to probabilistically validate that our proposed detector maintains 
the required correct authentication rate (CAR), derived from the required false 
alarm rate (FAR), under authentic conditions. To evaluate the CAR, at each time 
step, we examine the ratio of binary spoofing decisions that performed a correct 
authentication across the 1000 Monte Carlo simulations. We similarly quantify 
the missed detection rate (MDR) and, consequently, the correct detection rate 
(CDR) in the presence of simulated trajectory-drifting spoofing attacks. Because 
our proposed SR-KF detector and estimator analyze discrepancies between the 
GPS and self-contained sensor measurements within the position domain, we 
similarly perform the simulated attacks in the position domain by modeling the 
spoofed GPS measurements as additive biases with respect to the true vehicle 
state. We additionally plot the ratio of states bounded by the 3σ  confidence-level 
zonotopes from our Chimera SR estimator, during each scenario. Furthermore, to 
better understand when our Chimera SR detector and estimator switch between 
the fused SR filter and the self-contained SR filter, we additionally plot the 3σ  
state bounding statistics for the naively fused SR filter, for reference. To perform 
p-zonotope operations and assess the SR, we use the MATLAB CORA toolbox1 
(Althoff et al., 2018).

1We used the 2020 version of CORA, available at https://tumcps.github.io/CORA/.

https://tumcps.github.io/CORA/
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4.1  Validation of Chimera SR-KF Detector and Estimator 
with a Double-Integrator System

4.1.1  Setup

To validate the Chimera SR-KF detector and estimator, we consider a linear 
double-integrator system model for a ground vehicle, with 2D inertial-frame accel-
erations as the self-contained sensor information, which is utilized for the vehicle 
propagation model. We assume that the propagation occurs with bounded biases 
within [ 0.1, 0.1]� � m  in each position dimension and within [ 0.01, 0.01] 1� � �ms  
in each velocity dimension and with stochastic noise represented by the following 
covariance matrix: 

 Q
t

t t

t
�

�

�

�
�

�

�

�
�

�0.1 3 3 3 2 2 2

2 2 2

3 2

2m s
s s

s
s

I I

I I
 (47)

where ts  is the discrete sample period.
We additionally simulate unauthenticated GPS positioning measurements such 

that, in the nominal case, the measurements zGPS  have a bounded bias of ±0.5 m 
in each position dimension with a standard deviation of 5 m. In the spoofed case, 
the measurements zGPS  contain an additive ramping bias, which results in a total 
error of 60 m at the end of the simulated trajectory. The self-contained sensor and 
GPS measurements are both simulated at a rate of 10 Hz.

4.1.2  Results and Discussion

For nominal unspoofed conditions, we observe in Figure 4(a) that the CAR of 
the Chimera SR-KF consistently remains above the 3σ  confidence level of 0.997, 
thereby satisfying the corresponding user-specified FAR requirement of 0.003, 
where CAR FAR.� �1  The continuously authentic decision is qualitatively vali-
dated by the bird’s eye view of the trajectory in Figure 4(b), which shows the sig-
nificant overlap of the stochastic sets k

GPS  and k
self .  In Figure 4(b), the 3σ  error 

zonotopes are plotted to be centered about the average estimated trajectory across 
the 1000 Monte Carlo runs for ease of visual interpretation, whereas the SR-KF 
centers the error zonotopes about the current state estimate in practice and for 
each of the conducted Monte Carlo simulations, as also indicated in Equation (18). 
Thus, the SR-KF correspondingly provides the user with a probabilistic bound on 
the true vehicle state. We further analyze this probabilistic bound on the true vehi-
cle state in Figure 4(c), which plots the ratio of true trajectories bounded by our 
proposed Chimera SR-KF across the 1000 Monte Carlo simulations. The Chimera 
SR-KF uses state estimates and error p-zonotopes from the fused SR-KF when 
a spoofing event is not detected. As a result, in this nominal scenario, both the 
Chimera SR-KF and the naively fused SR-KF nearly always output the same state 
estimate and error p-zonotopes, which bound the true state for all Monte Carlo 
simulations in this case.

During the simulated spoofing attack, we observe in Figure 5(a) a low CDR in the 
initial part of the trajectory, when the bias is too small with respect to the expected 
nominal GPS measurement errors and self-contained sensor errors to be detected. 
Correspondingly, we observe a high MDR in the initial part of the trajectory. Once 
the bias is sufficiently large, the CDR increases to 1 and the MDR decreases to 0. Due 
to the presence of measurement biases, the difference in position estimate qk  lies 
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FIGURE 4 Monte Carlo validation of the Chimera SR-KF estimator and detector for the 
linear double-integrator system outlined in Section 4.1.1 under nominal conditions (a) Ratio of 
CAR (b) Bird’s eye view of the trajectory (c) Ratio of states bound by 3σ  error zonotopes
Trajectories and statistics have been averaged over 1000 Monte Carlo simulations for 
the same trajectory. In (a), we observe that the CAR remains consistently above the 3σ  
confidence level, corresponding to a FAR of 0.003. We qualitatively observe in (b) that the 
3σ  confidence level zonotopes of k

GPS  and k
self  significantly overlap each other throughout 

the trajectory, indicating that the received GPS measurement is likely authentic. For ease of 
visual interpretation, the error zonotopes are plotted to be centered about the average estimated 
trajectory across the 1000 Monte Carlo runs, which also coincides with the true trajectory. 
In  (c),  because the Chimera SR-KF state estimate and error p-zonotopes are nearly always 
identical to those of the naively fused SR-KF, we observe that both estimators consistently 
bound the true state over the trajectory.

FIGURE 5 Monte Carlo (MC) validation of the Chimera SR-KF estimator and detector 
during spoofed conditions for the linear double-integrator system outlined in Section  4.1.1 
(a) Ratio of MDR and CDR (b) Bird’s eye view of the trajectory (c) Ratio of states bound by 3σ  
error zonotopes
Trajectories and statistics have been averaged over 1000 Monte Carlo simulations of the same 
trajectory. (a) We observe that the CDR increases to 1, while the MDR correspondingly decreases 
to 0, once the bias is sufficiently large to be detected by our proposed detector. (b) We observe 
an overlap between the self-contained and GPS 3σ  error zonotopes in the initial part of the 
trajectory, resulting in missed detections of the spoofing event. For ease of visual interpretation, 
the error zonotopes are plotted to be centered about the average Chimera SR-KF and GPS 
estimated trajectories across the 1000 Monte Carlo runs, where the average Chimera SR-KF 
estimated trajectory also coincides with the true trajectory. As the spoofed trajectory deviates 
from the true trajectory, our proposed detector detects the spoofing event and the Chimera SR-KF 
switches to use the self-contained SR filter estimate. Thus, the Chimera SR-KF error zonotopes 
become equivalent to those of the self-contained SR-KF and correspondingly overlap exactly for 
the latter half of the trajectory. (c) We observe that in the initial part of the trajectory, both the 
Chimera SR-KF and naively fused SR-KF bound the true state. In the latter part of the trajectory, 
the Chimera SR-KF continues to bound the true state while the naively fused SR-KF stops 
bounding the true state on average.
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outside the set k  for a sufficiently large bias, thereby causing the detector to raise an 
alarm when the bias is sufficiently large. Qualitatively, we correspondingly observe a 
limited area of intersection between the stochastic sets k

GPS  and k
self  in the bird’s 

eye view of the trajectory in Figure 5(b).
Once a spoofing event is detected, the Chimera SR-KF switches from using the 

fused state estimates and error p-zonotopes to the self-contained state estimates and 
error p-zonotopes. When the GPS measurement bias is small, the fused state estimate 
and 3σ  error zonotope bound the true state. As the bias grows, the spoofing attack is 
detected by our proposed approach, and eventually, the fused state estimate and 3σ  
zonotopes no longer bound the true state. In this case, the Chimera SR-KF switches 
to using the state estimates and error p-zonotopes of the self-contained SR filter, and 
we observe in Figure 5(c) that the Chimera SR-KF continues to bound the true state 
during this spoofing scenario over the 1000 Monte Carlo trajectories.

4.2  Validation of Chimera SR-EKF Detector and Estimator 
with an IMU-GPS System

4.2.1  Setup

To validate the Chimera SR-EKF detector and estimator with a nonlinear state 
propagation model, we model an IMU sensor as the self-contained sensor, with 
stochastic measurement noise and bounded measurement biases. We model the 
vehicle state as x p v� �� ��

  
, ,�  where p v, 2∈  are the 2D position and velocity 

states, respectively, and ψ  is the heading angle. The vehicle’s state propagation is 
modeled as a nonlinear system: 

 p p vk k kt� �� �1 1,s  (48)

 v v R ak k k kt� �� � �1 1 1s
ref  (49)

 � � �k k kt� �� �1 1s  (50)

where ts  is the sample period. In the above model, Rk−1
ref  denotes the passive 

rotation matrix from the body frame of reference to the inertial frame of reference 
and is the source of nonlinearity in the propagation model. The 2D body-frame 
accelerations ak−1  and angular velocity �k�1  are noisy measurements with 
unknown bounded biases from the IMU sensor and are utilized to propagate the 
system state.

We simulate both the IMU measurements and GPS positioning measure-
ments at a rate of 10 Hz. We model the nominal GPS positioning measure-
ments with the same bounded biases and measurement variances as in the 
linear double-integrator system. We model the IMU measurement vari-
ances using the typical root power spectral density values from an automotive 
microelectromechanical system (MEMS) inertial module (ST, 2020), and we con-
servatively model the bounded biases according to the typical range of dynamic 
bias values for a consumer-grade IMU (Groves, 2013).

We create the simulated trajectory and simulated spoofing trajectory by gener-
ating open-loop control input sequences (i.e., yaw rates and longitudinal acceler-
ations) as quartic splines using the technique in Mueller et al. (2015) and then 
forward-propagating the nonlinear dynamics.
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4.2.2  Results and Discussion

For the nominal case of the nonlinear IMU self-contained sensor scenario, sim-
ilar to the linear propagation model scenario, we observe a CAR that consistently 
lies above the required rate, as shown in Figure 6(a). Similar to the linear scenario, 
in the IMU self-contained sensor scenario, the stochastic set of GPS measure-
ment errors k

GPS  is constant over all time instances k  while the stochastic set of 
self-contained position errors k

self  grows with time, as the IMU errors accumulate 
with time.

Given that in the nominal case, the biases in the GPS positioning measure-
ments are probabilistically bounded by the corresponding p-zonotope k ,  then 
the corresponding set k  consistently overbounds the spoofing statistic qk .  As a 
result, the detector does not raise an alarm, and we qualitatively observe significant 
intersection of the stochastic sets k

GPS  and k
self  in the bird’s eye view shown in 

Figure 6(b). In nearly all Monte Carlo trajectories, the detector does not raise an 
alarm; thus, the Chimera SR-EKF correspondingly uses the fused SR-EKF state 
estimates and error p-zonotopes for nearly all trajectories, which probabilistically 
bound the true state, as shown in Figure 6(c).

Similar to the linear propagation model scenario, for the spoofed case of the 
nonlinear IMU self-contained sensor scenario, we observe that as the spoofing tra-
jectory deviates from the true trajectory, the detector begins to recognize the anom-
alous GPS measurements and the CDR reaches nearly unity over the Monte Carlo 
trajectories, as shown in Figure 7(a). Correspondingly, we observe from the bird’s 
eye view of the trajectory in Figure 7(b) that the set of possible states indicated by 
the GPS position estimate and the self-contained sensor position estimate begin to 
have little to no overlap, thereby qualitatively validating that the detector should 
declare a spoofing event.

As the spoofing trajectory deviates from the true trajectory, we observe in 
Figure 7(b) that the Chimera SR-EKF switches to the self-contained state estima-
tor after detecting a spoofing event. Correspondingly, in Figure 7(c), the Chimera 

FIGURE 6 Monte Carlo validation of the Chimera SR-EKF estimator and detector under 
nominal conditions for the nonlinear IMU propagation model outlined in Section 4.2.1 (a) Ratio 
of CAR (b) Bird’s eye view of the trajectory (c) Ratio of states bound by 3σ  error zonotopes
Trajectories and statistics have been averaged over 1000 Monte Carlo simulations of the same 
trajectory and control. The CAR shown in (a) remains above the required value of 0.997, which 
corresponds to a required FAR of 0.003. In (b), we observe an overlap between the self-contained 
and GPS 3σ  error zonotopes, visually validating our detector’s correct authentications on 
average. For ease of visual interpretation, the error zonotopes are plotted to be centered about the 
average estimated trajectory across the 1000 Monte Carlo runs, which also coincides with the true 
trajectory. In (c), we observe that, in the absence of a spoofing attack, the fused SR-EKF estimates 
bound the true state and are used by the Chimera SR-EKF.
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SR-EKF continues to bound the true state in nearly all Monte Carlo simulations, 
whereas the naively fused SR-EKF estimate fails to bound the vehicle state once 
the GPS measurement biases become large. 

5  CONCLUSION

In this work, we derived an SR-based filter and spoofing detector to provide 
continuously authenticated navigation solutions between Chimera authentication 
times. Our formal verification method leverages the previously authenticated set 
of Chimera measurements, in combination with conservative error models for 
the GPS and self-contained sensor measurements to update the receiver state and 
uncertainty at each time instant. In particular, we derived an SR detector to satisfy 
a user-defined false alarm requirement in nominal GPS operation while operat-
ing with stochastic errors and unknown bounded biases in the GPS measurements 
and self-contained sensor measurements. We further extended our state estimation 
filter and spoofing detector for a nonlinear propagation model by conservatively 
modeling the linearization error in the state propagation.

While we have focused on the application of our SR filter and detector with 
the Chimera authentication feature, the techniques and derivations in this work 
can be applied to any setting in which periodic signal authentication information 
is available. Through Monte Carlo simulations over a 6-s Chimera fast channel 
authentication period, we empirically validated for a ground vehicle model that 
our Chimera SR-KF and SR-EKF detectors satisfy the user-defined false alarm 

FIGURE 7 Monte Carlo (MC) validation of the Chimera SR-EKF estimator and detector 
under spoofed conditions for the nonlinear IMU propagation model outlined in Section  4.2.1 
(a) Ratio of MDR and CDR (b) Bird’s eye view of the trajectory (c) Ratio of states bound by 3σ  
error zonotopes
Trajectories and statistics have been averaged over 1000 Monte Carlo simulations of the same 
trajectory and control. In (a), we observe that the CDR increases, while the MDR correspondingly 
decreases, as the difference between the two trajectories sufficiently exceeds the errors of the self-
contained sensor. For ease of visual interpretation, in (b), the error zonotopes are plotted to be 
centered about the average Chimera SR-EKF and GPS estimated trajectories across the 1000 Monte 
Carlo runs, where the average Chimera SR-EKF estimated trajectory also coincides with the true 
trajectory. We observe that once the trajectories deviate significantly, there is little to no overlap 
between the self-contained and GPS 3σ  error zonotopes. Because our detector recognizes the 
discrepancy between the sensor measurements and declares a spoofing attack, the Chimera 
SR-EKF switches to using the self-contained SR filter estimate. Thus, the Chimera SR-EKF 
error zonotopes are equivalent to those of the self-contained SR-EKF and are correspondingly 
overlapping for the majority of the trajectory. In (c), we observe that, in the presence of a spoofing 
attack, the naively fused SR-EKF begins to fail to bound the true state while the Chimera SR-EKF 
switches to the self-contained state estimate and error zonotope and continues to bound the true 
state in nearly all Monte Carlo runs.
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requirement during the Chimera epoch, while detecting spoofing during simu-
lated trajectory-drifting spoofing attacks. Additionally, we demonstrated that our 
Chimera SR-KF and SR-EKF estimators successfully bound the vehicle state under 
both authentic and spoofing conditions.
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