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Abstract
Smartphone receivers comprise approximately 1.5 billion global navigation sat-
ellite system receivers currently manufactured worldwide. Smartphone receivers 
provide measurements with lower signal levels and higher noise than commer-
cial receivers. Because of constraints on size, weight, power consumption, and 
cost, it is challenging to achieve accurate positioning with these receivers, partic-
ularly in urban environments. Traditionally, global positioning system measure-
ments are processed via model-based approaches, such as weighted least-squares 
and Kalman filtering approaches. While model-based approaches can provide 
meter-level positioning accuracy in a postprocessing manner, these approaches 
require strong assumptions on the corresponding noise models and require 
manual tuning of parameters such as covariances. In contrast, learning-based 
approaches have been proposed that make fewer assumptions about the data 
structure and can accurately model environment-specific errors. However, these 
approaches provide lower accuracy than model-based methods and are sensitive 
to initialization. In this paper, we propose a hybrid framework for learning posi-
tion correction, which corresponds to the offset between the true receiver posi-
tion and the estimated position. For a learning-based approach, we propose a 
graph convolution neural network (GCNN) that can learn different graph struc-
tures with multi-constellation and multi-frequency signals. For better initializa-
tion of the GCNN, we use a Kalman filter to estimate a coarse receiver position. 
We then use this coarse receiver position to condition the input features to the 
graph. We test our proposed approach on real-world data sets from the Google 
Smartphone Decimeter Challenge and show improved positioning performance 
over model-based methods such as the weighted least-squares and Kalman filter 
methods.
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1  INTRODUCTION

High-precision positioning with smartphones could bring in-demand tech-
nologies to users around the world, enabling applications such as lane-level 
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accuracy for road users and autonomous cars, precise mapping, indoor posi-
tioning, and improved localization in augmented reality-based gaming envi-
ronments. Over the last few years, raw global navigation satellite system 
(GNSS) measurements from smartphone receivers have become more publicly 
accessible, as demonstrated by the release of the Android GNSS application 
program in 2016 (Humphreys et al., 2016) and the Google open data sets in 
2020 (Fu et al., 2020). More recently, Google launched the Google Smartphone 
Decimeter Challenge (GSDC) (Fu et al., 2020) to invest in the development of 
novel technologies that can achieve high-precision positioning from smart-
phone measurements.

The current challenge with smartphone receivers is that they can only offer 3–5 m 
of positioning accuracy under good multipath conditions and over 10-m accuracy 
under harsh multipath environments. Because of limitations in GNSS chipset, size, 
and hardware cost, GNSS measurements from smartphones have lower signal lev-
els and higher noise than commercial receivers (Guangcai & Jianghui, 2019; Zhang 
et al., 2018).

However, new opportunities have emerged that can be leveraged to design 
novel positioning algorithms. For example, with the advent of the new Android 
application programming interface (API) (Humphreys et al., 2016), raw GNSS 
measurements have become more publicly accessible, which has encouraged the 
development of new tools and software for processing these data sets. We also have 
access to multi-frequency and multi-constellation measurements, which provide 
redundancy while navigating in dense urban canyons, whereas GNSS measure-
ments from a single frequency/constellation can be sparse. Lastly, we also have the 
capability to utilize more precise measurements, such as carrier-phase measure-
ments, for providing decimeter-level accuracy.

Many works in the literature use a model-based approach to provide a position-
ing solution from raw GNSS measurements. In the work by Realini et al. (2017), the 
authors used the open-source goGPS software to achieve decimeter-level accuracy 
in stationary scenarios. In the study by van Diggelen and Wang (2018), Google 
designed APIs to obtain high-precision GNSS positioning with the use of the accu-
mulated delta range (ADR) from carrier-phase measurements. Other researchers 
have designed algorithms combining real-time kinematics and inertial measure-
ment units (IMUs) to achieve meter-level accuracy (Bochkati et al., 2020). The 
author of the winning paper of the GSDC challenge for 2021 and 2022 designed 
a factor graph global optimization method using ADR observations and corrected 
pseudorange observations from GNSS reference stations as constraints, to achieve 
nearly meter-level accuracy (Suzuki, 2021). Although model-based approaches 
have shown promising results in the GSDC challenge, these approaches require 
manual tuning of parameters such as covariances and require strong assumptions 
for the noise models.

In contrast, some learning-based approaches have been proposed that make 
fewer assumptions about the underlying data structure and are known for their 
ability to model complex environmental errors using data. Instead of learning 
the position directly, one can instead learn the positioning correction, which 
refers to the offset of the baseline position from a standard algorithm such as the 
weighted least-squares (WLS) or Kalman filter algorithm from the ground truth. 
In the work by Siemuri et al. (2021), the authors trained machine learning algo-
rithms such as linear regression, Bayesian ridge regression, and neural network 
algorithms as well as a weighted combination of all three approaches to predict 
the positioning correction. The results showed that the weighted combination 
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approach outperformed all three algorithms in terms of positioning accuracy. 
Another line of work (Kanhere et al., 2022) proposed the use of deep neural net-
works (DNNs) to learn the correction, with pseudorange residuals and satellite 
line-of-sight (LOS) vectors as inputs. The DNN leveraged a set transformer (Lee 
et al., 2019) that accounts for the varying number of measurements at different 
time instances while being permutation-invariant to the order of input measure-
ments. The approach showed an improvement in the positioning error over the 
WLS baseline on real-world data. However, the positioning accuracy was limited 
by approximation errors from linearization around the initial position estimate 
and the reliance on only pseudorange measurements.

In general, learning-based approaches have not been able to outperform 
model-based methods, specifically on the GSDC data sets. Moreover, standalone 
learning-based methods have been shown to be sensitive to initialization and fea-
ture design. A notable work from 2021 (Han et al., 2021) attempted to use rein-
forcement learning to tune measurement noise covariances in a Kalman filter that 
combines GNSS-IMU measurements. However, adopting a reinforcement learning 
approach requires manual tuning of the reward function to learn the right measure-
ment noise covariances. With the exception of this work, few studies have consid-
ered a hybrid approach, i.e., one that combines the benefits of both learning-based 
approaches and model-based approaches.

In this work, we propose a hybrid framework to learn position corrections from 
smartphone GNSS measurements. For the learning-based approach, we use a 
graph convolutional neural network (GCNN) that predicts a position correction 
given an initial coarse receiver position. To overcome the sensitivity of the GCNN 
to the inputs, we use a Kalman filter as a model-based approach to predict an 
initial position and to condition the input measurements to the graph. The GCNN 
then predicts a finer position correction by applying convolution operations to 
the input graph. Given the success of factor graphs in winning both the 2020 
and 2021 GSDC challenges (Suzuki, 2021), the GCNN forms our design choice 
for the learning-based approach because the GCNN can learn such a graph with 
satellite positions as nodes and preconditioned inputs from a Kalman filter. The 
GCNN is also capable of handling varying satellite visibility in urban environ-
ments via an unordered structure of nodes and of modeling measurements from 
multiple constellations and multiple signal frequencies. Given a graph structure 
that is derived from known properties of GNSS measurements and the Kalman 
filter solution, the GCNN performs inference in an end-to-end manner, where the 
graph structure helps propagate information among neighboring nodes (Kipf & 
Welling, 2017).

In our work, we provide the following contributions. This paper is based on our 
recent Institute of Navigation GNSS+ 2022 conference paper (Mohanty & Gao, 
2022).

•	 We propose a hybrid framework using model-based and learning-based 
methods to learn position corrections from smartphone GNSS measurements.

•	 For the learning-based module, we design a GCNN that can represent different 
graph structures.

•	 We use a Kalman filter for better initialization of the GCNN, as well as for 
conditioning the input features to the graph.

•	 We evaluate our proposed approach on real-world data sets collected in urban 
environments. 
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2  PROPOSED ALGORITHM

2.1  Background of GCNNs

Traditionally, neural networks have shown high predictive power in learning 
tasks that require fixed-size, regularly structured inputs. However, graph neural 
networks can operate on vector data structures such as a graph and make more 
informed predictions by utilizing features from the graph nodes. As a subset of 
graph neural networks, GCNNs (Kipf & Welling, 2017) offer the same advantages 
with the extended capability of performing convolutions on arbitrary graphs. 
Although ordinary convolutions are not node-invariant, GCNNs still retain the 
permutation-invariance properties of a graph neural network. This property indi-
cates that the function learned by the graph is independent of the rows and col-
umns in the adjacency matrix. Moreover, this property also implies that changing 
the order of the inputs (or the nodes in the graph) does not affect the graph-level 
prediction. This feature makes GCNNs suitable for modeling the varying number 
of GNSS satellites at each time step.

As shown in Figure 1, a GCNN takes as input a connected graph G V E= ( , ),  
where V  represents the nodes and E  represents the edges (Kipf & Welling, 2017). 
We also define the cardinalities of the edges and nodes as | |V n=  and | |E m= ,  
respectively. The graph also takes additional inputs. The first input is an adjacency 
matrix representation A  that depicts the connection of each node to its neighbor-
ing nodes. In A, an element has a value of 1 if two nodes i  and j  are connected. 
From A, we define the degree matrix for the graph as D, where D i i A i jj

n( , ) ( , )1�
�� ,  

and the Laplacian matrix as L D A� � .  The normalized symmetric version of the 
Laplacian matrix is denoted as L I D AD� � � �1/2 1/2 .

The second input to the graph is a feature matrix X  that describes the graph 
signal for each node. The matrix X  has n  rows, contains d  signals of the graph, 
and represents all of the node features stacked together.

FIGURE 1 Multilayer GCNN with an example convolution layer 
A GCNN takes two inputs: a feature description for every node, as indicated via different colors 
in the figure, and a description of the graph structure, as represented via edge connections among 
the nodes. The model first predicts a node-level output, which is then passed through the fully 
connected layer to produce a graph-level output. Figure adapted from Jian et al. (2018).



    MOHANTY and GAO

Each layer of the neural network is then described by a nonlinear function as 
follows: 

	 H g H Al l( 1) ( , )� � � (1)

where Hl  and H l( +1)  represent the output from the hidden layers of the net-
work and the function g(.)  is learned by the GCNN. Kipf and Welling (2017) for-
mulated the propagation rule for each convolution layer of the GCNN as follows: 

	 f H A D AD H Wl l l( , ) ( )1/2 1/2��   

� � � (2)

where A A I� � ,  D  is the diagonal degree matrix of A  and Wl  refers to the 
weights that are learned by the GCNN.

The above equation alludes to the Weisfeiler–Lehman (WL) isomorphism test 
(Weisfehler & Leman, 1968), which is a heuristic for graph isomorphism testing 
and is used to analyze the discriminative power of graph neural networks or the 
ability to distinguish between different types of representations. Two graphs are 
considered isomorphic if there is a mapping between the nodes of the graphs that 
preserves node adjacencies, as illustrated in Figure 2. The WL test produces a 
canonical form for each graph. If the canonical forms of two graphs are not equiv-
alent, then the graphs are not isomorphic. In a message-passing layer within a 
GCNN, the features of each node are updated by aggregating the features of the 
node’s neighbors. The choice of the convolution and aggregation layers is import-
ant because only certain choices of GCNN satisfy the WL test and are thus able to 
learn different graph structures.

After performing several layer-wise propagations in the GCNN, we can generate 
a latent representation for each node and infer a node-level output Z  from the 
graph, which can then be aggregated using pooling operations to produce a single 
graph-level output. In general, this operation can be summarized as follows: 

	 h mean max sum h h hG
K K K= / / ( , , , ...)1 2 3 � (3)

where hG  is the pooling operation on the entire graph and hiK  refers to the prop-
agation output from each hidden layer of the network. Note that, similar to the 
weight-sharing mechanism in a standard convolutional neural network, the GCNN 
reuses the same filter weights across all of the different nodes because of the 
layer-wise propagation rule. Because of this property, the number of parameters in 

FIGURE 2 Graph 1 and Graph 2 are isomorphic. The correspondence between nodes is 
illustrated by the colored nodes. If we execute the WL test on these graphs, we arrive at the same 
canonical form for both graphs, indicating that these graphs might be isomorphic. Figure adapted 
from Beiber (2019).



MOHANTY and GAO    

the GCNN is not limited to the size of the graph, which makes the GCNN scalable 
for large predictive tasks and flexible to varying input sizes. The final prediction 
can be represented as follows: 

	 ˆ ( )Gy predict h= � (4)

where predict  denotes any standard neural network, such as a perceptron or a 
fully connected network.

2.2  Problem Setup

Let xt  represent the position of the receiver at time t, with an associated GNSS 
measurement set M m mt t t

S= ( , ... )1 ,  where S  denotes the total number of satellites 
from multiple constellations. The constellations are denoted by C  and span 1−3 
where 1: GPS, 2: GALILEO, and 3: GLONASS. For this work, we use code-phase, 
ADR, and Doppler measurements from GPS, GLONASS, and GALILEO constella-
tions. For GPS, we use the L1, L2, and L5 frequencies. For GLONASS, we use the 
L1 and L2 frequencies, and for GALILEO, we use the E1 and E5 signal frequen-
cies. The satellites are denoted by sv  and indexed with j S= 1, 2, ... ,  with measured 
pseudoranges given as ρt

j  and positions given as pt
j .  In addition to Mt ,  we also 

have access to an initial position estimate xt  from a model-based approach, i.e., 
the Kalman Filter approach. We use this initial position estimate to compute the 
expected range rt

j  and the true correction using the ground truth, ∆∆xt .  At each 
time step, the GCNN learns both a positioning correction δ xt  using the measure-
ment set Mt  and the latent function f (.),  which captures the relationship of vari-
ous node features to the predicted correction.

2.3  Architecture

Figure 3 presents an overview of our proposed algorithm, and each module is 
described below.

•	 Kalman Filter Initialization: To mitigate the sensitivity of the network to 
initial inputs, we provide an initial position to the network, which is a coarse 
estimate of the receiver’s true position. We choose a Kalman filter as our 
model-based approach because the Kalman filter uses the temporal history 
of GNSS measurements, converges quickly, and is computationally efficient. 
We first select GNSS measurements based on carrier-to-noise density power 
ratio (C/N0), satellite elevation, and carrier error values and then compute the 
receiver’s position using the Kalman filter.

•	 Feature Preprocessing: We preprocess the GNSS measurements using the 
following steps: 
1.	We group all measurements into different constellations and signal types. 
2.	We eliminate inter-system and inter-frequency biases, clock biases, and 

tropospheric and ionospheric errors from the code-phase measurements. 
3.	We apply carrier smoothing over two consecutive time epochs to the 

code-phase measurements by utilizing the ADR measurements. In the 
event of a cycle slip, we use Doppler values for smoothing the code-phase 
measurements. Note that the presence of a cycle slip is indicated by a bitwise 
operation that is recorded from the receiver.
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Using the satellite grouping (Step 1) and smoothed code-phase 
measurements (Step 3), we construct feature vectors for each satellite. 
Because the choice of features is a design choice, as a proof of concept, we 
use simple features for the GCNN, such as LOS vectors and measurement 
residuals. Given the initial position estimate from the Kalman filter and 
satellite positions, we compute the LOS vector and measurement residuals 
for each satellite as follows:

	    x
x p

x p
x rLOS

t t
j

t t
j RES t

j
t
j� �





�

�
�

 

, � � (5)

where xLOS  is the LOS vector and xRES  is the measurement residual. 
•	 GCNN: In the graph, we represent each node using the satellite position pt

j .  
Note that the graph is dynamic in nature because, for every t, we have a new set 
of measurements Mt  and a new set of satellite positions. For every satellite, 
we concatenate the LOS vector and the measurement residual to form a 4 1×  
feature vector. Given the feature vectors for each node, we can form the feature 
matrix for the entire graph. A sample feature vector and feature matrix are 
illustrated in Figure 4.

To create the adjacency matrix, we establish edge connections between satellites 
that belong to the same constellation as well as connections between satellites from 
different constellations if their node features have similar measurement residuals. 
Mathematically, this step is described as follows: 

	
A sv sv C x xij i j iRES jRES� 1, | ( ) |<
0,

if and or
otherwise

� ��
�
�

��

�
� (6)

where C  refers to the constellation type, τ  is a hyperparameter that dictates the 
threshold for determining whether two nodes have similar measurement residu-
als, and i j,  are two arbitrary nodes in the graph. This threshold is important for 

FIGURE 3 Our proposed hybrid framework has three core modules, which are highlighted. 
We use a Kalman filter to obtain a coarse position correction and to condition the GNSS 
measurements for better initialization of the learning module (feature preprocessing). The 
learning-based module uses a GCNN to aggregate measurements across satellites from multiple 
constellations and signal frequencies and fine-tunes the initial position correction.
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connecting different clusters to leverage multi-constellation measurements and 
improve aggregation over the entire graph. Otherwise, the GCNN loses its discrim-
inative power and is reduced to a simpler nonlinear network. A sample adjacency 
matrix is illustrated in Figure 5.

Convolution Layers and Prediction: There are many available choices of 
convolution layers. For our work, we choose graph isomorphism network (GIN) 
convolution (Xu et al., 2019) layers because these layers satisfy the WL graph iso-
morphism test and achieve maximum discriminative power among all other graph 
neural networks.

FIGURE 4 A sample feature vector and feature matrix X 
The feature vector contains the measurement residuals and the LOS vectors for every satellite 
computed with respect to the initial position from the Kalman filter. The feature matrix contains 
the feature vectors for all of the satellites, across all constellations and signal frequencies.

FIGURE 5 A sample adjacency matrix 
In our graph, we establish an edge between satellites if they either belong to the same constellation 
or have similar measurement residuals as determined by a threshold. Having dense connections in 
the graph allows the GCNN to perform aggregation and provide improved positioning corrections 
compared with a fully connected network.
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Instead of following the traditional node representation, as shown in 
Equation (2), the GIN operator updates the node representation as follows:

	 h MLP h hv
k K k

v
k

u v
u
k� (1 ) 1

( )

1� ��

�

��ε
N

� (7)

where MLP  denotes a multilayer perceptron that can represent the composition of 
several functions,   is a fixed scalar, hvk  is the feature vector of node v  at the kth 
layer, and  ( )v  is the set of nodes adjacent to node v.

We learn an aggregation function over the features associated with each node 
in the graph, akin to the concept of an attention module, as explored by Lee et al. 
(2019). There are multiple choices for the aggregator function, such as the mean 
aggregator, long short-term memory aggregator, and pooling aggregator. For this 
work, we perform a mean pooling across all of the graph nodes because our final 
output is a graph-level prediction instead of a node-level prediction. Pooling 
instantiates message passing among different nodes of the network, allowing the 
neighboring nodes to update their features and weights concurrently. Pooling also 
reduces the spatial resolution of the graph for subsequent layers and is mathemat-
ically described as follows:

	 h ReLU W mean h u v vv
k

u
k� ( ( , ( ) ))1� � � ��  � (8)

where ReLU  is the activation function and W  is a learnable matrix containing 
weights for the previous layer. After aggregation, we pass the updated features at 
every node through a series of fully connected linear layers, which increases graph 
expressivity and improves our final prediction.

To infer the position correction, we train the entire graph using a standard 
Euclidean loss function or one of its derivatives. The loss function is constructed 
from the estimated positioning correction and the true correction obtained from 
the ground truth, as shown below: 

	 Loss x
i

N

t t�
�1

2|| ||� �� ��x � (9)

where the first term is the predicted correction from the GCNN and the second 
term is the true correction calculated from the Kalman filter position and the true 
receiver position. Note that we can construct this loss function only during train-
ing, as we do not have access to the true correction during inference.

3  EXPERIMENTS AND SETUP

Training: We tested our proposed algorithm on the GSDC 2021 data sets 
(Fu et al., 2020) that contain GNSS code-phase, ADR, and Doppler measurements 
and ground truth from an integrated GNSS inertial navigation system. The setup 
for data collection and sample trajectories showing routes of the collected data are 
displayed in Figure 6.

Baselines and Metrics: We compared our proposed algorithm against two base-
lines: A WLS solution, which is a snapshot positioning method, and a Kalman filter 
solution, which is a temporal method. We tuned both baselines using Bayesian 
hyperparameter optimization to achieve maximum performance on the test data 
sets. For evaluation, we used quantitative metrics such as the mean, median, 
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maximum, and minimum horizontal positioning error. We also studied the dis-
tribution of positioning error for the baselines and our algorithm. For qualita-
tive results, we compared the predicted trajectory from all of the algorithms with 
respect to the ground-truth trajectory.

Evaluation and Key Parameters: We split the GSDC data sets into 81 training 
data sets and 17 test data sets. Some of the test data sets contain data that were col-
lected in cities previously absent from the training data sets. We made this design 
choice to enable us to stress-test our proposed approach. We leveraged the publicly 
available Pytorch Geometric tool (Fey & Lenssen, 2019) to design, train, and test 
the GCNN module of our framework. We trained the GCNN for 100 epochs using 
a mean squared error loss function and Adam optimizer (Kingma & Ba, 2015). 
We performed training across multiple hardware platforms such as Kaggle, Google 
Colab, and Amazon AWS using graphical processing unit and tensor processing 
unit accelerators for faster training. The network architecture and the number of 
parameters in each layer are shown in Table 1.

TABLE 1
Parameters of the GCNN Architecture

Module Layer Parameter 

GINConv(1) Linear 4 × 32 

ReLU* - 

Linear 4 × 32

GINConv(2) Linear 32 × 32 

ReLU -

Linear 32 × 32

LayerNorm 32 

Post-Message Passing Linear 32 × 32 

Dropout p = 0.25

Linear 32 × 3 

*rectified linear unit

FIGURE 6 GSDC data sets: Setup and sample trajectories (Fu et al., 2020) (a) Setup of the 
smartphones in the cars during data collection (b) Ground-truth trajectories plotted from GSDC 
data sets for various cities



    MOHANTY and GAO

4  RESULTS

We first analyzed the horizontal positioning error across all 17 unseen test 
data sets. As shown in Table 2, our algorithm outperforms both the snapshot 
method (WLS) and the temporal method (Kalman filter) for each metric. Our 
approach leads to the lowest mean, median, minimum, and maximum error on 
all 17 data sets.

We present qualitative results in Figure 7 via sample trajectory plots that were 
generated by plotting the position predictions from our algorithm and the Kalman 
filter baseline for the Mountain View data set. The figure indicates that our algo-
rithm is able to closely track the ground-truth trajectory while showing improve-
ment in regions that are depicted by the magnified plots. In these regions, we 
observe that the predictions from the Kalman filter baseline show some deviations. 
However, the GCNN module is able to fine-tune the correction and compensate for 
the deviations, leading to improved results from our algorithm.

For the next set of results, we only show results from the Kalman filter baseline 
for easier comparison, as the predicted positions from the WLS baseline always 
have the highest errors. We studied the distribution of the horizontal positioning 
error on selected test data sets. For this purpose, we consider both the Mountain 
View data set and an additional data set collected in Los Angeles.

TABLE 2
Summary of Positioning Error on Test Data Sets 
Our algorithm outperforms the WLS and Kalman filter approaches across all 
17 unseen test data sets. 

Error Metric (m) WLS Kalman Filter Our Approach 

Mean 5.7 4.6 3.4 

Median 4.4 3.9 3.3 

Minimum 1.7 2.4 1.4 

Maximum 25.5 7.8 5.6 

FIGURE 7 Trajectory tracking on one test data set from our algorithm and the Kalman filter 
baseline for the Mountain View data set 
The left plot shows the entire trajectory as plotted in the city of Mountain View. The right plots 
show magnified maps of selected portions of the entire trajectory. Our approach follows the 
ground truth more closely than the estimated position obtained by the Kalman filter.
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Figure 8 shows the error distribution from our evaluation of the Mountain View 
data set. We observe that, compared with the Kalman filter baseline, our algorithm 
has few outliers, which are defined to be positioning errors > 5 m. Additionally, our 
algorithm provides more accurate positioning than the Kalman filter, as our error 
distribution has higher instances of error in the range of 0–3 m.

We also analyzed the error distribution on the Los Angeles data set, as shown in 
Figure 9. Similar to the Mountain View test data set, our approach provides posi-
tioning with fewer outliers than the Kalman filter baseline and shows improved 
positioning, with most errors in the range of 1–3 m.

5  ADDITIONAL EVALUATION

We conducted a comprehensive evaluation of our proposed GCNN approach by 
benchmarking it against prior works that utilized neural-network-based correc-
tions, specifically the study by DeepGNSS (Kanhere et al., 2022), on the GSDC data 

FIGURE 8 Horizontal positioning error on the Mountain View test data set (a) Our algorithm 
(b) Kalman filter baseline
Our approach has fewer outliers (>5 m error) and provides more accurate positioning compared 
with the Kalman filter baseline.

(a) (b)

FIGURE 9 Horizontal positioning error on the Los Angeles data set (a) Our algorithm 
(b) Kalman filter baseline
Our approach has fewer outliers and provides more accurate positioning, even in cities previously 
unseen in the training data set.

(a) (b)
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sets. We adopted a similar division strategy as performed in DeepGNSS, where the 
evaluation was conducted at the trace level.

Our evaluation process involved training our GCNN on 49 data sets comprising 
traces from various phones located in Mountain View. We then tested the perfor-
mance of our approach in the cities of San Jose and Spring Valley Lake. Note that 
we utilized the updated version of the GSDC data sets from 2021 in the same cities.

To assess the accuracy of our proposed GCNN, we evaluated its performance 
using north–east–down corrections, following a methodology similar to that 
employed in DeepGNSS. The evaluation was conducted on the entire testing data 
set, allowing for a comprehensive analysis of our approach. For a fair compari-
son, we compared our results with the best-performing approach from DeepGNSS, 
which utilized data augmentation and an initialization range of 15 m.

The performance comparison of our GCNN approach against the best-performing 
approach from DeepGNSS is summarized in Table 3.

The results presented in Table 3 demonstrate the effectiveness of our approach. 
Our GCNN outperforms DeepGNSS in all three spatial directions: north, east, and 
down. Specifically, our GCNN achieves significantly lower position errors, with 
reductions of 4.4 m (north), 2.4 m (east), and 1.3 m (down) compared with the 
previous approach.

The improvement in the performance of our proposed GCNN approach com-
pared with the previous set-based deep learning method can be attributed to sev-
eral key factors. Firstly, our GCNN can capture and exploit spatial relationships in 
the input data. By leveraging the graph structure inherent in GNSS measurements, 
the GCNN is able to effectively model the dependencies and correlations between 
different satellites and their measurements. Secondly, our approach benefits from 
the integration of features and initialization from a Kalman filter. This combination 
of a model-based technique with the data-driven capabilities of the GCNN allows 
for a more comprehensive and robust approach to positioning. Lastly, the features 
used in our GCNN incorporate a wider range of information compared with the 
previous set-based deep learning method, such as ADR and Doppler smoothing 
of the pseudorange measurements and connections among satellites with similar 
measurement residuals. This enhanced feature set enables the GCNN to improve 
the positioning performance in both urban environments such as San Jose and 
suburban environments such as Spring Valley Lake.

6  CONCLUSIONS

We have designed a hybrid approach for inferring position corrections from 
smartphone GNSS measurements using a GCNN and an initial position estimate 
from a Kalman filter. For the GCNN, we created features using measurement 
residuals and LOS vectors from multiple GNSS constellations and multiple signal 

TABLE 3
Comparison of Position Errors (in Meters) From Our GCNN With the Best Performing Neural 
Network From Kanhere et al. (2022) 
Our algorithm outperforms this baseline in the north, east, and down directions in terms of the 
mean positioning error. 

Approach North East Down 

Best Deep Neural Network from Kanhere et al. (2022) 6.4 ± 5.2 5.9 ± 5.0 6.2 ± 4.9 

Our Proposed GCNN 2.0 ± 1.2 3.5 ± 0.9 4.9 ± 5.4 
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frequencies after applying carrier smoothing. The GCNN performed aggregation 
across all available satellites and learned the position correction in an end-to-end 
manner. We evaluated our approach on real-world data sets collected in urban 
environments. Our approach demonstrated improved positioning accuracy and 
error distribution when compared against model-based approaches such as WLS 
and Kalman filter methods. Thus, our approach is a promising fusion of existing 
model-based and data-driven methods for achieving high smartphone positioning 
accuracy in urban environments.
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