
Received: 3 October 2022   Revised: 19 July 2023   Accepted: 15 September 2023

DOI: 10.33012/navi.622

NAVIGATION, 70(4)	 Licensed under CC-BY 4.0� © 2023 Institute of Navigation

Abstract
Smartphone receivers comprise approximately 1.5 billion global navigation sat-
ellite system receivers currently manufactured worldwide. Smartphone receivers
provide measurements with lower signal levels and higher noise than commer-
cial receivers. Because of constraints on size, weight, power consumption, and
cost, it is challenging to achieve accurate positioning with these receivers, partic-
ularly in urban environments. Traditionally, global positioning system measure-
ments are processed via model-based approaches, such as weighted least-squares
and Kalman filtering approaches. While model-based approaches can provide
meter-level positioning accuracy in a postprocessing manner, these approaches
require strong assumptions on the corresponding noise models and require
manual tuning of parameters such as covariances. In contrast, learning-based
approaches have been proposed that make fewer assumptions about the data
structure and can accurately model environment-specific errors. However, these
approaches provide lower accuracy than model-based methods and are sensitive
to initialization. In this paper, we propose a hybrid framework for learning posi-
tion correction, which corresponds to the offset between the true receiver posi-
tion and the estimated position. For a learning-based approach, we propose a
graph convolution neural network (GCNN) that can learn different graph struc-
tures with multi-constellation and multi-frequency signals. For better initializa-
tion of the GCNN, we use a Kalman filter to estimate a coarse receiver position.
We then use this coarse receiver position to condition the input features to the
graph. We test our proposed approach on real-world data sets from the Google
Smartphone Decimeter Challenge and show improved positioning performance
over model-based methods such as the weighted least-squares and Kalman filter
methods.

Keywords
AI, convolutions, GNSS, graph learning, machine learning, urban environment

O R I G I N A L A R T I C L E

Learning GNSS Positioning Corrections for Smartphones
Using Graph Convolution Neural Networks

Adyasha Mohanty  Grace Gao

Department of Aeronautics and
Astronautics, Stanford University

Correspondence
Grace Gao
Department of Aeronautics and
Astronautics, Stanford University
Stanford, CA, USA, 94305
Email: gracegao@stanford.edu

1  INTRODUCTION

High-precision positioning with smartphones could bring in-demand tech-
nologies to users around the world, enabling applications such as lane-level

MOHANTY and GAO    

accuracy for road users and autonomous cars, precise mapping, indoor posi-
tioning, and improved localization in augmented reality-based gaming envi-
ronments. Over the last few years, raw global navigation satellite system
(GNSS) measurements from smartphone receivers have become more publicly
accessible, as demonstrated by the release of the Android GNSS application
program in 2016 (Humphreys et al., 2016) and the Google open data sets in
2020 (Fu et al., 2020). More recently, Google launched the Google Smartphone
Decimeter Challenge (GSDC) (Fu et al., 2020) to invest in the development of
novel technologies that can achieve high-precision positioning from smart-
phone measurements.

The current challenge with smartphone receivers is that they can only offer 3–5 m
of positioning accuracy under good multipath conditions and over 10-m accuracy
under harsh multipath environments. Because of limitations in GNSS chipset, size,
and hardware cost, GNSS measurements from smartphones have lower signal lev-
els and higher noise than commercial receivers (Guangcai & Jianghui, 2019; Zhang
et al., 2018).

However, new opportunities have emerged that can be leveraged to design
novel positioning algorithms. For example, with the advent of the new Android
application programming interface (API) (Humphreys et al., 2016), raw GNSS
measurements have become more publicly accessible, which has encouraged the
development of new tools and software for processing these data sets. We also have
access to multi-frequency and multi-constellation measurements, which provide
redundancy while navigating in dense urban canyons, whereas GNSS measure-
ments from a single frequency/constellation can be sparse. Lastly, we also have the
capability to utilize more precise measurements, such as carrier-phase measure-
ments, for providing decimeter-level accuracy.

Many works in the literature use a model-based approach to provide a position-
ing solution from raw GNSS measurements. In the work by Realini et al. (2017), the
authors used the open-source goGPS software to achieve decimeter-level accuracy
in stationary scenarios. In the study by van Diggelen and Wang (2018), Google
designed APIs to obtain high-precision GNSS positioning with the use of the accu-
mulated delta range (ADR) from carrier-phase measurements. Other researchers
have designed algorithms combining real-time kinematics and inertial measure-
ment units (IMUs) to achieve meter-level accuracy (Bochkati et al., 2020). The
author of the winning paper of the GSDC challenge for 2021 and 2022 designed
a factor graph global optimization method using ADR observations and corrected
pseudorange observations from GNSS reference stations as constraints, to achieve
nearly meter-level accuracy (Suzuki, 2021). Although model-based approaches
have shown promising results in the GSDC challenge, these approaches require
manual tuning of parameters such as covariances and require strong assumptions
for the noise models.

In contrast, some learning-based approaches have been proposed that make
fewer assumptions about the underlying data structure and are known for their
ability to model complex environmental errors using data. Instead of learning
the position directly, one can instead learn the positioning correction, which
refers to the offset of the baseline position from a standard algorithm such as the
weighted least-squares (WLS) or Kalman filter algorithm from the ground truth.
In the work by Siemuri et al. (2021), the authors trained machine learning algo-
rithms such as linear regression, Bayesian ridge regression, and neural network
algorithms as well as a weighted combination of all three approaches to predict
the positioning correction. The results showed that the weighted combination

    MOHANTY and GAO

approach outperformed all three algorithms in terms of positioning accuracy.
Another line of work (Kanhere et al., 2022) proposed the use of deep neural net-
works (DNNs) to learn the correction, with pseudorange residuals and satellite
line-of-sight (LOS) vectors as inputs. The DNN leveraged a set transformer (Lee
et al., 2019) that accounts for the varying number of measurements at different
time instances while being permutation-invariant to the order of input measure-
ments. The approach showed an improvement in the positioning error over the
WLS baseline on real-world data. However, the positioning accuracy was limited
by approximation errors from linearization around the initial position estimate
and the reliance on only pseudorange measurements.

In general, learning-based approaches have not been able to outperform
model-based methods, specifically on the GSDC data sets. Moreover, standalone
learning-based methods have been shown to be sensitive to initialization and fea-
ture design. A notable work from 2021 (Han et al., 2021) attempted to use rein-
forcement learning to tune measurement noise covariances in a Kalman filter that
combines GNSS-IMU measurements. However, adopting a reinforcement learning
approach requires manual tuning of the reward function to learn the right measure-
ment noise covariances. With the exception of this work, few studies have consid-
ered a hybrid approach, i.e., one that combines the benefits of both learning-based
approaches and model-based approaches.

In this work, we propose a hybrid framework to learn position corrections from
smartphone GNSS measurements. For the learning-based approach, we use a
graph convolutional neural network (GCNN) that predicts a position correction
given an initial coarse receiver position. To overcome the sensitivity of the GCNN
to the inputs, we use a Kalman filter as a model-based approach to predict an
initial position and to condition the input measurements to the graph. The GCNN
then predicts a finer position correction by applying convolution operations to
the input graph. Given the success of factor graphs in winning both the 2020
and 2021 GSDC challenges (Suzuki, 2021), the GCNN forms our design choice
for the learning-based approach because the GCNN can learn such a graph with
satellite positions as nodes and preconditioned inputs from a Kalman filter. The
GCNN is also capable of handling varying satellite visibility in urban environ-
ments via an unordered structure of nodes and of modeling measurements from
multiple constellations and multiple signal frequencies. Given a graph structure
that is derived from known properties of GNSS measurements and the Kalman
filter solution, the GCNN performs inference in an end-to-end manner, where the
graph structure helps propagate information among neighboring nodes (Kipf &
Welling, 2017).

In our work, we provide the following contributions. This paper is based on our
recent Institute of Navigation GNSS+ 2022 conference paper (Mohanty & Gao,
2022).

•	 We propose a hybrid framework using model-based and learning-based
methods to learn position corrections from smartphone GNSS measurements.

•	 For the learning-based module, we design a GCNN that can represent different
graph structures.

•	 We use a Kalman filter for better initialization of the GCNN, as well as for
conditioning the input features to the graph.

•	 We evaluate our proposed approach on real-world data sets collected in urban
environments.

MOHANTY and GAO    

2  PROPOSED ALGORITHM

2.1  Background of GCNNs

Traditionally, neural networks have shown high predictive power in learning
tasks that require fixed-size, regularly structured inputs. However, graph neural
networks can operate on vector data structures such as a graph and make more
informed predictions by utilizing features from the graph nodes. As a subset of
graph neural networks, GCNNs (Kipf & Welling, 2017) offer the same advantages
with the extended capability of performing convolutions on arbitrary graphs.
Although ordinary convolutions are not node-invariant, GCNNs still retain the
permutation-invariance properties of a graph neural network. This property indi-
cates that the function learned by the graph is independent of the rows and col-
umns in the adjacency matrix. Moreover, this property also implies that changing
the order of the inputs (or the nodes in the graph) does not affect the graph-level
prediction. This feature makes GCNNs suitable for modeling the varying number
of GNSS satellites at each time step.

As shown in Figure 1, a GCNN takes as input a connected graph G V E= (,),
where V represents the nodes and E represents the edges (Kipf & Welling, 2017).
We also define the cardinalities of the edges and nodes as | |V n= and | |E m= ,
respectively. The graph also takes additional inputs. The first input is an adjacency
matrix representation A that depicts the connection of each node to its neighbor-
ing nodes. In A, an element has a value of 1 if two nodes i and j are connected.
From A, we define the degree matrix for the graph as D, where D i i A i jj

n(,) (,)1�
�� ,

and the Laplacian matrix as L D A� � . The normalized symmetric version of the
Laplacian matrix is denoted as L I D AD� � � �1/2 1/2 .

The second input to the graph is a feature matrix X that describes the graph
signal for each node. The matrix X has n rows, contains d signals of the graph,
and represents all of the node features stacked together.

FIGURE 1 Multilayer GCNN with an example convolution layer
A GCNN takes two inputs: a feature description for every node, as indicated via different colors
in the figure, and a description of the graph structure, as represented via edge connections among
the nodes. The model first predicts a node-level output, which is then passed through the fully
connected layer to produce a graph-level output. Figure adapted from Jian et al. (2018).

    MOHANTY and GAO

Each layer of the neural network is then described by a nonlinear function as
follows:

	 H g H Al l(1) (,)� � � (1)

where Hl and H l(+1) represent the output from the hidden layers of the net-
work and the function g(.) is learned by the GCNN. Kipf and Welling (2017) for-
mulated the propagation rule for each convolution layer of the GCNN as follows:

	 f H A D AD H Wl l l(,) ()1/2 1/2��   

� � � (2)

where A A I� � , D is the diagonal degree matrix of A and Wl refers to the
weights that are learned by the GCNN.

The above equation alludes to the Weisfeiler–Lehman (WL) isomorphism test
(Weisfehler & Leman, 1968), which is a heuristic for graph isomorphism testing
and is used to analyze the discriminative power of graph neural networks or the
ability to distinguish between different types of representations. Two graphs are
considered isomorphic if there is a mapping between the nodes of the graphs that
preserves node adjacencies, as illustrated in Figure 2. The WL test produces a
canonical form for each graph. If the canonical forms of two graphs are not equiv-
alent, then the graphs are not isomorphic. In a message-passing layer within a
GCNN, the features of each node are updated by aggregating the features of the
node’s neighbors. The choice of the convolution and aggregation layers is import-
ant because only certain choices of GCNN satisfy the WL test and are thus able to
learn different graph structures.

After performing several layer-wise propagations in the GCNN, we can generate
a latent representation for each node and infer a node-level output Z from the
graph, which can then be aggregated using pooling operations to produce a single
graph-level output. In general, this operation can be summarized as follows:

	 h mean max sum h h hG
K K K= / / (, , , ...)1 2 3 � (3)

where hG is the pooling operation on the entire graph and hiK refers to the prop-
agation output from each hidden layer of the network. Note that, similar to the
weight-sharing mechanism in a standard convolutional neural network, the GCNN
reuses the same filter weights across all of the different nodes because of the
layer-wise propagation rule. Because of this property, the number of parameters in

FIGURE 2 Graph 1 and Graph 2 are isomorphic. The correspondence between nodes is
illustrated by the colored nodes. If we execute the WL test on these graphs, we arrive at the same
canonical form for both graphs, indicating that these graphs might be isomorphic. Figure adapted
from Beiber (2019).

MOHANTY and GAO    

the GCNN is not limited to the size of the graph, which makes the GCNN scalable
for large predictive tasks and flexible to varying input sizes. The final prediction
can be represented as follows:

	 ˆ ()Gy predict h= � (4)

where predict denotes any standard neural network, such as a perceptron or a
fully connected network.

2.2  Problem Setup

Let xt represent the position of the receiver at time t, with an associated GNSS
measurement set M m mt t t

S= (, ...)1 , where S denotes the total number of satellites
from multiple constellations. The constellations are denoted by C and span 1−3
where 1: GPS, 2: GALILEO, and 3: GLONASS. For this work, we use code-phase,
ADR, and Doppler measurements from GPS, GLONASS, and GALILEO constella-
tions. For GPS, we use the L1, L2, and L5 frequencies. For GLONASS, we use the
L1 and L2 frequencies, and for GALILEO, we use the E1 and E5 signal frequen-
cies. The satellites are denoted by sv and indexed with j S= 1, 2, ... , with measured
pseudoranges given as ρt

j and positions given as pt
j . In addition to Mt , we also

have access to an initial position estimate xt from a model-based approach, i.e.,
the Kalman Filter approach. We use this initial position estimate to compute the
expected range rt

j and the true correction using the ground truth, ∆∆xt . At each
time step, the GCNN learns both a positioning correction δ xt using the measure-
ment set Mt and the latent function f (.), which captures the relationship of vari-
ous node features to the predicted correction.

2.3  Architecture

Figure 3 presents an overview of our proposed algorithm, and each module is
described below.

•	 Kalman Filter Initialization: To mitigate the sensitivity of the network to
initial inputs, we provide an initial position to the network, which is a coarse
estimate of the receiver’s true position. We choose a Kalman filter as our
model-based approach because the Kalman filter uses the temporal history
of GNSS measurements, converges quickly, and is computationally efficient.
We first select GNSS measurements based on carrier-to-noise density power
ratio (C/N0), satellite elevation, and carrier error values and then compute the
receiver’s position using the Kalman filter.

•	 Feature Preprocessing: We preprocess the GNSS measurements using the
following steps:
1.	We group all measurements into different constellations and signal types.
2.	We eliminate inter-system and inter-frequency biases, clock biases, and

tropospheric and ionospheric errors from the code-phase measurements.
3.	We apply carrier smoothing over two consecutive time epochs to the

code-phase measurements by utilizing the ADR measurements. In the
event of a cycle slip, we use Doppler values for smoothing the code-phase
measurements. Note that the presence of a cycle slip is indicated by a bitwise
operation that is recorded from the receiver.

    MOHANTY and GAO

Using the satellite grouping (Step 1) and smoothed code-phase
measurements (Step 3), we construct feature vectors for each satellite.
Because the choice of features is a design choice, as a proof of concept, we
use simple features for the GCNN, such as LOS vectors and measurement
residuals. Given the initial position estimate from the Kalman filter and
satellite positions, we compute the LOS vector and measurement residuals
for each satellite as follows:

	    x
x p

x p
x rLOS

t t
j

t t
j RES t

j
t
j� �





�

�
�

 

, � � (5)

where xLOS is the LOS vector and xRES is the measurement residual.
•	 GCNN: In the graph, we represent each node using the satellite position pt

j .
Note that the graph is dynamic in nature because, for every t, we have a new set
of measurements Mt and a new set of satellite positions. For every satellite,
we concatenate the LOS vector and the measurement residual to form a 4 1×
feature vector. Given the feature vectors for each node, we can form the feature
matrix for the entire graph. A sample feature vector and feature matrix are
illustrated in Figure 4.

To create the adjacency matrix, we establish edge connections between satellites
that belong to the same constellation as well as connections between satellites from
different constellations if their node features have similar measurement residuals.
Mathematically, this step is described as follows:

	
A sv sv C x xij i j iRES jRES� 1, | () |<
0,

if and or
otherwise

� ��
�
�

��

�
� (6)

where C refers to the constellation type, τ is a hyperparameter that dictates the
threshold for determining whether two nodes have similar measurement residu-
als, and i j, are two arbitrary nodes in the graph. This threshold is important for

FIGURE 3 Our proposed hybrid framework has three core modules, which are highlighted.
We use a Kalman filter to obtain a coarse position correction and to condition the GNSS
measurements for better initialization of the learning module (feature preprocessing). The
learning-based module uses a GCNN to aggregate measurements across satellites from multiple
constellations and signal frequencies and fine-tunes the initial position correction.

MOHANTY and GAO    

connecting different clusters to leverage multi-constellation measurements and
improve aggregation over the entire graph. Otherwise, the GCNN loses its discrim-
inative power and is reduced to a simpler nonlinear network. A sample adjacency
matrix is illustrated in Figure 5.

Convolution Layers and Prediction: There are many available choices of
convolution layers. For our work, we choose graph isomorphism network (GIN)
convolution (Xu et al., 2019) layers because these layers satisfy the WL graph iso-
morphism test and achieve maximum discriminative power among all other graph
neural networks.

FIGURE 4 A sample feature vector and feature matrix X
The feature vector contains the measurement residuals and the LOS vectors for every satellite
computed with respect to the initial position from the Kalman filter. The feature matrix contains
the feature vectors for all of the satellites, across all constellations and signal frequencies.

FIGURE 5 A sample adjacency matrix
In our graph, we establish an edge between satellites if they either belong to the same constellation
or have similar measurement residuals as determined by a threshold. Having dense connections in
the graph allows the GCNN to perform aggregation and provide improved positioning corrections
compared with a fully connected network.

    MOHANTY and GAO

Instead of following the traditional node representation, as shown in
Equation (2), the GIN operator updates the node representation as follows:

	 h MLP h hv
k K k

v
k

u v
u
k� (1) 1

()

1� ��

�

��ε
N

� (7)

where MLP denotes a multilayer perceptron that can represent the composition of
several functions,  is a fixed scalar, hvk is the feature vector of node v at the kth
layer, and  ()v is the set of nodes adjacent to node v.

We learn an aggregation function over the features associated with each node
in the graph, akin to the concept of an attention module, as explored by Lee et al.
(2019). There are multiple choices for the aggregator function, such as the mean
aggregator, long short-term memory aggregator, and pooling aggregator. For this
work, we perform a mean pooling across all of the graph nodes because our final
output is a graph-level prediction instead of a node-level prediction. Pooling
instantiates message passing among different nodes of the network, allowing the
neighboring nodes to update their features and weights concurrently. Pooling also
reduces the spatial resolution of the graph for subsequent layers and is mathemat-
ically described as follows:

	 h ReLU W mean h u v vv
k

u
k� ((, ()))1� � � ��  � (8)

where ReLU is the activation function and W is a learnable matrix containing
weights for the previous layer. After aggregation, we pass the updated features at
every node through a series of fully connected linear layers, which increases graph
expressivity and improves our final prediction.

To infer the position correction, we train the entire graph using a standard
Euclidean loss function or one of its derivatives. The loss function is constructed
from the estimated positioning correction and the true correction obtained from
the ground truth, as shown below:

	 Loss x
i

N

t t�
�1

2|| ||� �� ��x � (9)

where the first term is the predicted correction from the GCNN and the second
term is the true correction calculated from the Kalman filter position and the true
receiver position. Note that we can construct this loss function only during train-
ing, as we do not have access to the true correction during inference.

3  EXPERIMENTS AND SETUP

Training: We tested our proposed algorithm on the GSDC 2021 data sets
(Fu et al., 2020) that contain GNSS code-phase, ADR, and Doppler measurements
and ground truth from an integrated GNSS inertial navigation system. The setup
for data collection and sample trajectories showing routes of the collected data are
displayed in Figure 6.

Baselines and Metrics: We compared our proposed algorithm against two base-
lines: A WLS solution, which is a snapshot positioning method, and a Kalman filter
solution, which is a temporal method. We tuned both baselines using Bayesian
hyperparameter optimization to achieve maximum performance on the test data
sets. For evaluation, we used quantitative metrics such as the mean, median,

MOHANTY and GAO    

maximum, and minimum horizontal positioning error. We also studied the dis-
tribution of positioning error for the baselines and our algorithm. For qualita-
tive results, we compared the predicted trajectory from all of the algorithms with
respect to the ground-truth trajectory.

Evaluation and Key Parameters: We split the GSDC data sets into 81 training
data sets and 17 test data sets. Some of the test data sets contain data that were col-
lected in cities previously absent from the training data sets. We made this design
choice to enable us to stress-test our proposed approach. We leveraged the publicly
available Pytorch Geometric tool (Fey & Lenssen, 2019) to design, train, and test
the GCNN module of our framework. We trained the GCNN for 100 epochs using
a mean squared error loss function and Adam optimizer (Kingma & Ba, 2015).
We performed training across multiple hardware platforms such as Kaggle, Google
Colab, and Amazon AWS using graphical processing unit and tensor processing
unit accelerators for faster training. The network architecture and the number of
parameters in each layer are shown in Table 1.

TABLE 1
Parameters of the GCNN Architecture

Module Layer Parameter

GINConv(1) Linear 4 × 32

ReLU* -

Linear 4 × 32

GINConv(2) Linear 32 × 32

ReLU -

Linear 32 × 32

LayerNorm 32

Post-Message Passing Linear 32 × 32

Dropout p = 0.25

Linear 32 × 3

*rectified linear unit

FIGURE 6 GSDC data sets: Setup and sample trajectories (Fu et al., 2020) (a) Setup of the
smartphones in the cars during data collection (b) Ground-truth trajectories plotted from GSDC
data sets for various cities

    MOHANTY and GAO

4  RESULTS

We first analyzed the horizontal positioning error across all 17 unseen test
data sets. As shown in Table 2, our algorithm outperforms both the snapshot
method (WLS) and the temporal method (Kalman filter) for each metric. Our
approach leads to the lowest mean, median, minimum, and maximum error on
all 17 data sets.

We present qualitative results in Figure 7 via sample trajectory plots that were
generated by plotting the position predictions from our algorithm and the Kalman
filter baseline for the Mountain View data set. The figure indicates that our algo-
rithm is able to closely track the ground-truth trajectory while showing improve-
ment in regions that are depicted by the magnified plots. In these regions, we
observe that the predictions from the Kalman filter baseline show some deviations.
However, the GCNN module is able to fine-tune the correction and compensate for
the deviations, leading to improved results from our algorithm.

For the next set of results, we only show results from the Kalman filter baseline
for easier comparison, as the predicted positions from the WLS baseline always
have the highest errors. We studied the distribution of the horizontal positioning
error on selected test data sets. For this purpose, we consider both the Mountain
View data set and an additional data set collected in Los Angeles.

TABLE 2
Summary of Positioning Error on Test Data Sets
Our algorithm outperforms the WLS and Kalman filter approaches across all
17 unseen test data sets.

Error Metric (m) WLS Kalman Filter Our Approach

Mean 5.7 4.6 3.4

Median 4.4 3.9 3.3

Minimum 1.7 2.4 1.4

Maximum 25.5 7.8 5.6

FIGURE 7 Trajectory tracking on one test data set from our algorithm and the Kalman filter
baseline for the Mountain View data set
The left plot shows the entire trajectory as plotted in the city of Mountain View. The right plots
show magnified maps of selected portions of the entire trajectory. Our approach follows the
ground truth more closely than the estimated position obtained by the Kalman filter.

MOHANTY and GAO    

Figure 8 shows the error distribution from our evaluation of the Mountain View
data set. We observe that, compared with the Kalman filter baseline, our algorithm
has few outliers, which are defined to be positioning errors > 5 m. Additionally, our
algorithm provides more accurate positioning than the Kalman filter, as our error
distribution has higher instances of error in the range of 0–3 m.

We also analyzed the error distribution on the Los Angeles data set, as shown in
Figure 9. Similar to the Mountain View test data set, our approach provides posi-
tioning with fewer outliers than the Kalman filter baseline and shows improved
positioning, with most errors in the range of 1–3 m.

5  ADDITIONAL EVALUATION

We conducted a comprehensive evaluation of our proposed GCNN approach by
benchmarking it against prior works that utilized neural-network-based correc-
tions, specifically the study by DeepGNSS (Kanhere et al., 2022), on the GSDC data

FIGURE 8 Horizontal positioning error on the Mountain View test data set (a) Our algorithm
(b) Kalman filter baseline
Our approach has fewer outliers (>5 m error) and provides more accurate positioning compared
with the Kalman filter baseline.

(a) (b)

FIGURE 9 Horizontal positioning error on the Los Angeles data set (a) Our algorithm
(b) Kalman filter baseline
Our approach has fewer outliers and provides more accurate positioning, even in cities previously
unseen in the training data set.

(a) (b)

    MOHANTY and GAO

sets. We adopted a similar division strategy as performed in DeepGNSS, where the
evaluation was conducted at the trace level.

Our evaluation process involved training our GCNN on 49 data sets comprising
traces from various phones located in Mountain View. We then tested the perfor-
mance of our approach in the cities of San Jose and Spring Valley Lake. Note that
we utilized the updated version of the GSDC data sets from 2021 in the same cities.

To assess the accuracy of our proposed GCNN, we evaluated its performance
using north–east–down corrections, following a methodology similar to that
employed in DeepGNSS. The evaluation was conducted on the entire testing data
set, allowing for a comprehensive analysis of our approach. For a fair compari-
son, we compared our results with the best-performing approach from DeepGNSS,
which utilized data augmentation and an initialization range of 15 m.

The performance comparison of our GCNN approach against the best-performing
approach from DeepGNSS is summarized in Table 3.

The results presented in Table 3 demonstrate the effectiveness of our approach.
Our GCNN outperforms DeepGNSS in all three spatial directions: north, east, and
down. Specifically, our GCNN achieves significantly lower position errors, with
reductions of 4.4 m (north), 2.4 m (east), and 1.3 m (down) compared with the
previous approach.

The improvement in the performance of our proposed GCNN approach com-
pared with the previous set-based deep learning method can be attributed to sev-
eral key factors. Firstly, our GCNN can capture and exploit spatial relationships in
the input data. By leveraging the graph structure inherent in GNSS measurements,
the GCNN is able to effectively model the dependencies and correlations between
different satellites and their measurements. Secondly, our approach benefits from
the integration of features and initialization from a Kalman filter. This combination
of a model-based technique with the data-driven capabilities of the GCNN allows
for a more comprehensive and robust approach to positioning. Lastly, the features
used in our GCNN incorporate a wider range of information compared with the
previous set-based deep learning method, such as ADR and Doppler smoothing
of the pseudorange measurements and connections among satellites with similar
measurement residuals. This enhanced feature set enables the GCNN to improve
the positioning performance in both urban environments such as San Jose and
suburban environments such as Spring Valley Lake.

6  CONCLUSIONS

We have designed a hybrid approach for inferring position corrections from
smartphone GNSS measurements using a GCNN and an initial position estimate
from a Kalman filter. For the GCNN, we created features using measurement
residuals and LOS vectors from multiple GNSS constellations and multiple signal

TABLE 3
Comparison of Position Errors (in Meters) From Our GCNN With the Best Performing Neural
Network From Kanhere et al. (2022)
Our algorithm outperforms this baseline in the north, east, and down directions in terms of the
mean positioning error.

Approach North East Down

Best Deep Neural Network from Kanhere et al. (2022) 6.4 ± 5.2 5.9 ± 5.0 6.2 ± 4.9

Our Proposed GCNN 2.0 ± 1.2 3.5 ± 0.9 4.9 ± 5.4

MOHANTY and GAO    

frequencies after applying carrier smoothing. The GCNN performed aggregation
across all available satellites and learned the position correction in an end-to-end
manner. We evaluated our approach on real-world data sets collected in urban
environments. Our approach demonstrated improved positioning accuracy and
error distribution when compared against model-based approaches such as WLS
and Kalman filter methods. Thus, our approach is a promising fusion of existing
model-based and data-driven methods for achieving high smartphone positioning
accuracy in urban environments.

a c k n o w l e d g e m e n t s
We would like to thank Google for releasing the smartphone data sets for 2020

and 2021. We would also like to acknowledge Zach Witzel and Nikhil Raghuraman
for their help with debugging and Adam Dai and Daniel Neamati for reviewing the
paper. Lastly, we would like to thank members of the Stanford NAVLab for their
insightful discussions and feedback.

r e f e r e n c e s
Beiber, D. (2019). Weisfeiler-Lehman isomorphism test. Online blog post. https://davidbieber.com/

post/2019-05-10-weisfeiler-lehman-isomorphism-test/
Bochkati, M., Sharma, H., Lichtenberger, C. A., & Pany, T. (2020). Demonstration of fused RTK

(fixed) + inertial positioning using android smartphone sensors only. Proc. of the IEEE/ION
Position, Location and Navigation Symposium (PLANS), Portland, OR, 1140–1154. https://
www.doi.org/10.1109/PLANS46316.2020.9109865

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric. Proc. of
the International Conference on Learning Representations Workshop on Representation Learning
on Graphs and Manifolds. New Orleans, LA. https://doi.org/10.48550/arXiv.1903.02428

Fu, G. M., Khider, M., & van Diggelen, F. (2020). Android raw GNSS measurement datasets for
precise positioning. Proc. of the 33rd International Technical Meeting of the Satellite Division of
the Institute of Navigation (ION GNSS + 2020), 1925–1937. https://doi.org/10.33012/2020.17628

Guangcai, L., & Jianghui, G. (2019). Characteristics of raw multi-GNSS measurement error from
Google Android smart devices. GPS Solutions, 23, 1–16. https://doi.org/10.1007/s10291-019-
0885-4

Han, K., Lee, S., Song, Y.-J., Lee, H.-B., Park, D.-H., & Won, J.-H. (2021). Precise positioning
with machine learning based Kalman filter using GNSS/IMU measurements from android
smartphone. Proc. of the 34th International Technical Meeting of the Satellite Division
of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 3094–3102. https://doi.
org/10.33012/2021.18005

Humphreys, T. E., Murrian, M., Diggelen, F. V., Podshivalov, S., & Pesyna, K. M. (2016). On the
feasibility of cm-accurate positioning via a smartphone’s antenna and GNSS chip. Proc. of
the 2016 IEEE/ION Position, Location, and Navigation Symposium (PLANS), Savannah, GA,
232–242. https://doi.org/10.1109/plans.2016.7479707

Jian, D., Shi, J., Kar, S., & Moura, J. (2018). On graph convolution for graph CNNS. Proc. of the
2018 IEEE Data Science Workshop (DSW), Lausanne, Switzerland, 1–5. https://doi.org/10.1109/
DSW.2018.8439904

Kanhere, A. V., Gupta, S., Shetty, A., & Gao, G. (2022). Improving GNSS positioning using neural
network-based corrections. NAVIGATION, 69(4). https://doi.org/10.33012/navi.548

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimization. Proc. of the 3rd
International Conference on Learning Representations. San Diego, CA. https://doi.org/10.48550/
arXiv.1412.6980

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional
networks. In Poster presentation at the International Conference on Learning Representations
(ICLR). Toulon, France. https://doi.org/10.48550/arXiv.1609.02907

Lee, J., Lee, Y., Kim, J., Kosiorek, A. R., Choi, S., & Teh, Y. W. (2019). Set transformer: A framework
for attention-based permutation-invariant neural networks. Proc. of the International
Conference on Machine Learning (ICML), Long Beach, CA, 3744–3753. https://doi.org/10.48550/
arXiv.1810.00825

Mohanty, A., & Gao, G. (2022). Learning GNSS positioning corrections for smartphones using
graph convolution neural networks. Proc. of the 36th International Technical Meeting of the
Satellite Division of the Institute of Navigation (ION GNSS+ 2022), Denver, CO, 2215–2225.
https://doi.org/10.33012/2022.18372

Realini, E., Caldera, S., Pertusini, L., & Sampietro, D. (2017). Precise GNSS positioning using
smart devices. Sensors, 17(10), 2434. https://doi.org/10.3390/s17102434

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/
https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/
https://www.doi.org/10.1109/PLANS46316.2020.9109865
https://www.doi.org/10.1109/PLANS46316.2020.9109865
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.33012/2020.17628
https://doi.org/10.1007/s10291-019-0885-4
https://doi.org/10.1007/s10291-019-0885-4
https://doi.org/10.33012/2021.18005
https://doi.org/10.33012/2021.18005
https://doi.org/10.1109/plans.2016.7479707
https://doi.org/10.1109/DSW.2018.8439904
https://doi.org/10.1109/DSW.2018.8439904
https://doi.org/10.33012/navi.548
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1810.00825
https://doi.org/10.48550/arXiv.1810.00825
https://doi.org/10.33012/2022.18372
https://doi.org/10.3390/s17102434

    MOHANTY and GAO

Siemuri, A., Selvan, K., Kuusniemi, H., Välisuo, P., & Elmusrati, M. S. (2021). Improving precision
GNSS positioning and navigation accuracy on smartphones using machine learning. Proc. of
the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS+ 2021), St. Louis, MO, 3081–3093. https://doi.org/10.33012/2021.18004

Suzuki, T. (2021). First place award winner of the smartphone decimeter challenge: Global
optimization of position and velocity by factor graph optimization. Proc. of the 34th International
Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021),
St. Louis, MO, 2974–2985. https://doi.org/10.33012/2021.18109

van Diggelen, F., & Wang, W. (2018). How to achieve 1-meter accuracy in android. GPS World
Online Blog Post. https://www.gpsworld.com/how-to-achieve-1-meter-accuracy-in-android/

Weisfehler, B., & Leman, A. (1968). The reduction of a graph to canonical form and the algebra
which appears therein. Proc. of the Nauchno-Technicheskaya Informatsia (Vol. 9). https://api.
semanticscholar.org/CorpusID:49579538

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural networks? Proc.
of the International Conference on Learning Representations. New Orleans, LA. https://doi.
org/10.48550/arXiv.1810.00826

Zhang, K., Jiao, F., & Li, J. (2018). The assessment of GNSS measurements from android
smartphones. Proc. of the China Satellite Navigation Conference (CSNC), Harbin, China,
147–157. http://dx.doi.org/10.1007/978-981-13-0029-5_14

How to cite this article: Mohanty, A., & Gao, G. (2023). Learning GNSS posi-
tioning corrections for smartphones using graph convolution neural networks.
NAVIGATION, 70(4). https://doi.org/10.33012/navi.622

https://doi.org/10.33012/2021.18004
https://doi.org/10.33012/2021.18109
https://www.gpsworld.com/how-to-achieve-1-meter-accuracy-in-android/
https://api.semanticscholar.org/CorpusID:49579538
https://api.semanticscholar.org/CorpusID:49579538
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.48550/arXiv.1810.00826
http://dx.doi.org/10.1007/978-981-13-0029-5_14
https://doi.org/10.33012/navi.622

	Learning GNSS Positioning Corrections for Smartphones Using Graph Convolution Neural Networks
	Abstract
	Keywords
	1 Introduction
	2 Proposed Algorithm
	2.1 Background of GCNNs
	2.2 Problem Setup
	2.3 Architecture

	3 EXPERIMENTS AND SETUP
	4 RESULTS
	5 ADDITIONAL EVALUATION
	6 Conclusions
	Acknowledgements
	References

