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O R I G I N A L  A R T I C L E

Effect of User Antenna Group Delay Variation Error on 
Advanced RAIM

Eugene Bang  Mihaela-Simona Circiu  Stefano Caizzone  Markus Rippl 
Omar Garcia Crespillo

1  INTRODUCTION

Global navigation satellite system (GNSS) radio signals on different carrier fre-
quencies experience time delay, referred to as a (differential) group delay, while 
passing through different analog and digital signal paths, including the satellite 
transmitting antenna and the receiving antenna (Caizzone, Circiu, Elmarissi, 
Enneking, & Felux, 2019; Kaplan & Hegarty, 2017). Such timing delay can result in 
pseudorange measurement biases within the user receiver. The effect of the group 
delay caused by the satellite antenna can be mitigated by using satellite broadcast 
parameters such as the timing group delay (TGD) and group delay differential cor-
rections for different frequencies (IS-GPS-200N, 2022; OS SIS ICD, 2021).

At the receiver side, the receiver antenna group delay would have no impact on 
user position accuracy if the user antenna pattern were isotropic and hence the 
group delay were constant over a range of angles, because the group-delay-induced 
errors would be projected into the receiver clock bias estimation. However, in the 
literature, it has been shown that antenna group delay variation (AGDV) with 
respect to frequency and angle of arrival due to nonuniformity in the user antenna 
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Abstract
This study investigates the impact of antenna group delay variation 
(AGDV)-induced error on advanced receiver autonomous integrity monitoring. 
We model the AGDV error contribution not only as a measurement bias but 
also as a random process sigma term in protection-level computations by using 
AGDV errors analyzed within the European Dual Frequency Multipath Model 
for Aviation (DUFMAN) project. We also apply the new multipath and AGDV 
error models developed for aviation use to assess the availability of localizer 
performance with vertical guidance down to 200 feet. The results show that the 
fraction of users with ≥99.5% availability increases by approximately 5% when 
the newly derived DUFMAN models are used. In contrast, considering the 
AGDV effect alone as the worst-case bias has a weaker impact at the current 
user range accuracy standard.
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pattern results in pseudorange measurement biases (Caizzone, Circiu, Elmarissi, 
Enneking, & Felux, 2019; Wanninger et al., 2017).

Since the initial publication of the standard multipath model for the global posi-
tioning system (GPS) L1 signal for aviation purposes (Murphy et al., 1996, 2000), 
the effect of pseudorange group delay variation versus direction of arrival due to 
antenna effects has been identified as a partially overlooked error source, as there 
is no allocation for this term in the protection-level (PL) equation (Working Group 
C. ARAIM Technical Subgroup, 2016). Because this error source was not removed 
from the data used to validate the standard multipath model, the group delay vari-
ation for the antennas tested has been partially included in the multipath model. 
Furthermore, using an antenna other than that used for multipath model valida-
tion could result in larger group delay variation, which would result in error con-
tributions not included in the multipath model.

Slowly varying bias-like errors present in measurements can stem from a num-
ber of sources, including clock and orbit biases, nominal signal deformation biases, 
inter-frequency biases, and satellite antenna biases. These sources were identified and 
evaluated for the GPS constellation by Walter et al. (2018), with each error contribut-
ing to a total expected value of 75 cm. In particular, the contribution of GPS satellite 
antenna phase and group delay variations to the bound accounts for approximately 
40 cm (Haines et al., 2012; Walter et al., 2018). The expected value of 75 cm has been 
consistently used in numerous works on advanced receiver autonomous integrity mon-
itoring (ARAIM) as a suitable maximum bias term, bnom, to bound these errors under 
nominal conditions. The constant bound, provided to the receiver via the integrity sup-
port message (ISM), is considered in the current baseline user algorithm for ARAIM 
(Blanch et al., 2015) and has been introduced in the document (Working Group C. 
ARAIM Technical Subgroup, 2016) recently updated from the WG-C Advanced RAIM 
Technical Subgroup. However, unlike the satellite antenna bias contribution in bnom, 
the impact of user AGDV on user position is currently considered to be integrated into 
the receiver code noise and multipath (CNMP) term within the legacy error model 
(Working Group C. ARAIM Technical Subgroup, 2016), which may lead to an under-
estimation of user PLs. Therefore, during ARAIM development, it is crucial to predict 
and review the performance for modeling error sources in the worst case.

In previous work (M. Circiu et al., 2020), we developed airborne multipath mod-
els for the Dual Frequency Multipath Model for Aviation (DUFMAN) project by col-
lecting GPS and Galileo measurements from several test flights using aviation GNSS 
antenna and receivers. The multipath error models were derived by characterizing 
the user antenna error biases and separating their contribution from observed mul-
tipath errors. Griggs et al. (2020) addressed the impact of the preliminary DUFMAN 
multipath and user antenna error models on ARAIM performance. Particularly, 
in that investigation, the antenna-induced error contribution was considered in 
the nominal bias term (i.e., bnom) of the current ARAIM user algorithm; however, 
accounting for the antenna effect within the bias term may not be completely opti-
mal (Griggs et al., 2020). More recently, the antenna errors were accounted for 
with a sigma term, which is added to multipath-only models (Circiu et al., 2021). 
Although the models were based on extensive dual-frequency dual-constellation 
data collection and precise estimation processes of multipath and antenna errors, 
they were derived in terms of the root mean square (RMS) of the corresponding 
error distributions in order to maintain compliance with the existing GPS L1 model. 
Thus, if the new models appear to be overly optimistic for ARAIM implementation, 
more rigorous methods for integrity purposes may be needed.

This paper extends upon the existing approach (Griggs et al., 2020) to exam-
ine the impact of pseudorange error caused by user AGDV, denoted as AGDV 
(induced) error, on ARAIM. We also present different approaches to account for 
antenna errors in ARAIM. For this purpose, user-satellite geometries are first 
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simulated based on 24 GPS/Galileo constellations and a predefined global user grid 
formation for ten sidereal days, which corresponds to the repetition period of the 
Galileo constellation (Working Group C. ARAIM Technical Subgroup, 2016). Next, 
user AGDV errors in signals propagated to the users are computed based on actual 
antenna measurements, as presented in our previous investigation (M. Circiu et al., 
2020; Circiu et al., 2019). In this study, we apply two approaches to assess the effect 
of AGDV-induced errors and the new multipath model on ARAIM performance: 
measurement and position domain analysis.

We first analyze the position error due to antenna errors based on instantaneous 
user geometry and the corresponding set of AGDV errors. In this study, we investigate 
user antenna errors for different constellations and frequencies, such as the GPS L1/
L5 and Galileo E1/E5a frequencies and a GPS/Galileo dual-frequency ionosphere-free 
(IF) combination. Based on empirical observations for the different cases, the statis-
tical properties of the antenna error projected to the position domain are analyzed. 
Relevant overbounding distributions are also constructed by applying the Gaussian 
cumulative distribution function (CDF) overbounding method (DeCleene, 2000). We 
then apply the resulting Gaussian parameters for the overbounding distributions to 
the current user PL computation. In addition to the bias effect, the newly developed 
dual-frequency multi-constellation multipath model is also substituted for the mul-
tipath contribution within the ARAIM airborne error model.

Next, a Gaussian overbounding model of the antenna errors is derived in the 
measurement domain as a function of satellite elevation angle. For this, the 
antenna-induced errors for the IF combination of GPS L1/L5 and Galileo E1/E5a 
are computed using the same user–satellite geometries examined for the position 
domain analysis. The AGDV-induced errors are then sorted into elevation bins of 
5° separation. The mean and standard deviation of the bias errors in each bin are 
computed and used to normalize the bias errors. Based on the distribution of nor-
malized antenna errors, Gaussian overbounds are determined for different eleva-
tion bins. In this case, we apply the sum of squares of the upper bound on the 
AGDV errors and the DUFMAN multipath model for the airborne error model.

To examine the impact of the newly proposed AGDV error models on ARAIM per-
formance, we conduct ARAIM service volume simulations for localizer performance 
with vertical guidance down to 200 feet (LPV-200). All simulations are carried out using 
the Stanford MATLAB Algorithm Availability Simulation Tool (MAAST) (MATLAB 
Algorithm Availability Simulation Tool, 2021) for ARAIM with some modifications and 
the key simulation parameters outlined by the Working Group C, ARAIM Technical 
Subgroup (2016). Several simulation scenarios are investigated in our approach:

1.	 Baseline case: Current CNMP model (Blanch et al., 2015)
2.	 New DUFMAN multipath and antenna error models (root sum squared 

together) instead of the legacy CNMP
3.	 DUFMAN multipath model implemented in the CNMP term and the 

overbounding model for antenna-induced position errors in the PL 
computation

4.	 Root sum of squares of the DUFMAN multipath model and the overbounding 
antenna pseudorange error

5.	 DUFMAN multipath model in the CNMP term and the AGDV error considered 
within a bias term added to PLs

This work examines the increase in PL that can be expected in the scope of ARAIM 
by thoroughly considering the AGDV effect. This paper is organized as follows. In 
Sections 2, the new DUFMAN error model is briefly introduced, and the methodol-
ogy for AGDV error modeling is presented in Sections 3 and 4. Simulation results are 
then discussed in Section 5, and Section 6 concludes with remarks for future work.
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2  DUFMAN MULTIPATH AND AGDV-INDUCED ERROR 
MODELS

The current baseline ARAIM airborne algorithm (Blanch et al., 2015) employs 
the Airborne Accuracy Designator – Model A (AAD-A) (Murphy et al., 2000) with 
a GPS L1/L5 CNMP budget that consists of the airborne multipath (σMP) contribu-
tion and receiver tracking noise (σnoise) contribution:

	 � � �CNMP
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L L
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f f
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where fL1 (or L5) indicates the frequency (L1 =  1575.42  MHz or L5 =  1176  MHz) 
and the same level of multipath and noise is assumed for both frequencies. As 
mentioned in Section 1, the σMP term in the legacy airborne error model contains 
the antenna error contribution due to AGDV. However, the multipath estimation 
process includes removal of the carrier-phase cycle ambiguity, which is achieved 
by leveling the processed data, and some of the slowly varying (i.e., bias-like) 
AGDV-induced error would have been eliminated during this step.

Therefore, in the derivation of the DUFMAN models, the AGDV error con-
tribution (i.e., σAGDV) was separated from the multipath error contribution for 
single-frequency L1/E1 and L5/E5a and a dual-frequency IF combination to rig-
orously characterize the errors. Final airborne user error models for different fre-
quencies have been proposed for those frequency combinations by combining the 
two error contributions (Circiu et al., 2021) as follows:

	 � � �MP AGDV MP AGDV�&� � �2 2 � (2)

Moreover, in the DUFMAN models, the terms σMP and σAGDV were derived such 
that the resulting standard deviation (or RMS) of multipath estimates (or AGDV 
estimates) is bounded by the sigma term, σMP (or σAGDV), i.e., not in the form of 
an overbounding sigma for integrity purposes, in order to be consistent with the 
legacy architecture of the error budget and the error bounding concepts for GPS 
L1 (Circiu et al., 2021). Thus, in this work, we apply a few approaches to model the 
AGDV error contribution as an overbounding sigma in the worst-case scenario, as 
described in the following sections.

Figure 1 shows the presented multipath and AGDV error RMS model (σMP&AGDV) 
for the IF combination (blue), which will be used for the ARAIM performance 
simulations in this work. Because the single-frequency model is not addressed in 
this study, it is not presented in this figure. The red curve indicates the conven-
tional GPS L1 multipath error bound (Murphy et al., 2000), which is multiplied by 
a factor of 2.59 for the dual-frequency IF combination. As reported by Circiu et al. 
(2021), the proposed DUFMAN model is significantly less conservative than the 
legacy GPS L1 model for low elevation angles, for instance, at angles smaller than 
approximately 40°. Note that the derivation of the legacy model was based on con-
servative assumptions on receiver thermal noise and interference and the antenna 
error (Murphy et al., 2000), and old equipment were considered for the develop-
ment of the model. Although the new DUFMAN model was developed via the 
same methodology, the new model considered less-conservative assumptions on 
the antenna error (M.-S. Circiu et al., 2020).

Figure 2 (left) shows the new σMP bound (i.e., not including the AGDV con-
tribution) for the IF combination. Because the performances of the multipath 
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models derived for Galileo and GPS were comparable, a common model has 
been proposed for the IF combination (Circiu et al., 2021). The new model 
is shown to be significantly less conservative than the legacy GPS model for 
low elevations.

Figure 2 (right) shows the DUFMAN σAGDV bound obtained by isolating the 
AGDV  contribution from the multipath estimation process. Because the perfor-
mances of L1/E1 and L5/E5a were comparable (Circiu et al., 2021), a single shared 
model has been presented, as described for the multipath model. The results 
demonstrate that the significant elevation dependency of the combined model 
shown above comes arises from the σAGDV model. Although AGDV errors are deter-
ministic for one antenna, it is considered too complicated to apply a different cali-
bration step for every antenna in practice. Thus, it is preferable to model the error 
with a single parameter, such as the standard deviation (see Figure 2 [right]) from 
a zero-mean Gaussian distribution, in a manner similar to methods employed for 
other error sources.

FIGURE 1 The recently proposed DUFMAN multipath and AGDV error models for the 
dual-frequency IF combination are shown in blue (Circiu et al., 2021). The red curve shows the 
conventional GPS L1 multipath sigma bound, which is increased to 2.59 times that of the original 
L1 multipath model (Murphy et al., 2000) for the IF combination.

FIGURE 2 New DUFMAN multipath error bound for the dual-frequency IF combination 
(left) and AGDV error bound for the IF combination for GPS and Galileo (right)
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Table 1 summarizes the DUFMAN models derived for the multipath-only model, 
AGDV-only models, combined models for L1/E1 and L5/E5a, and dual-frequency 
IF combination. Note that the DUFMAN models provide Gaussian models with 
zero mean and the standard deviations summarized in Table 1. More details of the 
newly proposed models, including the methodologies used, can be found in the 
report by Circiu et al. (2021).

Lastly, the combined sigma model in Equation (2) should be augmented by the 
code noise error component such that the combined user model complies with the 
legacy CNMP model as follows:

	 � � � �CNMP MP AGDV noise� � �2 2 2 � (3)

In the DUFMAN studies, the final multipath models were derived with the 
assumption that σnoise is 0.03 m for all signals and 0.04 m for the IF combination 
(M. Circiu et al., 2020). A more detailed examination of the receiver noise was per-
formed in a recent study (Harris et al., 2020), and the obtained values were slightly 
lower than the values assumed in DUFMAN. However, the impact of the different 
models is considered marginal, and in this paper, the value of 0.04 m assumed in 
DUFMAN is used for simulation purposes.

Figure 3 shows the AAD-A results (Murphy et al., 2000) used to bound the 
receiver thermal noise and interference error for the ARAIM framework (blue 
curve), represented as a function of elevation angle according to the recommen-
dation of airborne receiver minimum operational performance standards (MOPS) 
(RTCA SC-159, 2004, 2016). The magenta line shows the constant model value 
of 0.04 m, which is more optimistic than the legacy model for the noise bound. 
However, it should be noted that the DUFMAN values were conservatively esti-
mated through initial studies and require further confirmation.

TABLE 1
Proposed Models for Multipath and AGDV Errors

Type Model E1 Model E5a Model IF

Multipath only (σMP) 0.11 + 0.03 * e-θ/80 0.07 + 0.06 * e-θ/50 0.26 + 0.08 * e-θ/80

AGDV only (σAGDV) 0.065 + 0.2 * e-θ/14 0.065 + 0.2 * e-θ/14 0.17 + 0.5 * e-θ/15

Multipath & AGDV (σMP&AGDV) 0.13 + 0.17 * e-θ/13 0.11 + 0.18 * e-θ/15 0.34 + 0.4 * e-θ/14

FIGURE 3 Existing receiver noise and interference error model used for the current ARAIM 
algorithm (blue) and the constant DUFMAN model value of 0.04 m (magenta)
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3  AGDV ERROR ESTIMATES

The antenna-induced errors for the pseudorange were estimated from measure-
ments obtained in an anechoic antenna measurement chamber over all GNSS 
bands. The measured antenna transfer function was then processed through an 
ideal receiver, and the residual error was obtained, as shown in our prior work 
(Caizzone, Circiu, Elmarissi, Enneking, & Felux, 2019). Because the receiver com-
ponents are ideal, the pseudorange error obtained from this technique results only 
from antenna imperfections (i.e., AGDV behavior); thus, we refer to the pseudo-
range range as AGDV (pseudorange) error hereafter. Note that the interaction of 
the antenna with the installation platform influences the results. As suggested in 
antenna MOPS (RTCA, 2006), the antenna was measured on a rolled-edge ground 
plane (Figure 4) to model, at best, the metallic vicinity of the antenna for inclusion 
in the antenna-intrinsic error. The interactions from further elements of the air-
craft were modeled through multipath effects/errors, as presented in Equation (3) 
and as also foreseen in EUROCAE (2019).

Multiple commercial antennas were examined at the German Aerospace Center 
(DLR), and indeed, each antenna showed specific errors, different from those of 
other antennas. For the derivation of the initial AGDV models, an antenna, fitting 
into the standard ARINC 743 footprint and having group delay variations for L1/
E1 and L5/E5a frequencies close to the allowable limits, was chosen to be represen-
tative of a minimally MOPS-compliant commercial antenna (RTCA SC-159, 2018) 
and was also used in this work. The AGDV characterization results are presented 
in Section 2.4.

4  METHODS

This section presents a few methods for evaluating the impact of AGDV error 
on ARAIM. The new DUFMAN multipath and AGDV error models will first 
be described, and three different approaches for modeling the user antenna 
bias error will then be explained. The details of each step are described in the 
following sections.

FIGURE 4 Commercially available avionic antenna as measured (on a ground plane with 
rolled edges, as specified in the antenna MOPS (RTCA, 2006)) at the DLR anechoic chamber
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4.1  Considering User Antenna Errors Caused by AGDV in 
the Position Domain

As mentioned previously, there is no allocation for the antenna bias caused by group 
delay variations in the standard PL equation for ARAIM. Moreover, the manner in 
which the antenna-induced error should be included within the standard ARAIM user 
algorithm, for instance, as a deterministic bias term or as a random process, has yet 
to be standardized (Working Group C. ARAIM Technical Subgroup, 2016). Thus, this 
paper aims to evaluate how the AGDV-induced error affects ARAIM performance by 
investigating different methods for considering its impact and incorporating it into the 
PL. In this section, we first describe the modeling of position errors caused by AGDV 
and then directly incorporate the resulting models into the current PL equation. In 
subsequent sections, we present other approaches in which AGDV-associated errors 
are modeled in the range domain using the sigma and bias terms. Lastly, the impact of 
the different models on ARAIM performance are examined.

The AGDV errors for L1/L5 and E1/E5a dual-frequency measurements are esti-
mated by using the following IF combination of single-frequency AGDV errors 
estimated on the different frequencies, L1/ L5 (or E1/E5):

	 b
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in which bAGDVL1
 and bAGDVL5

 are AGDV errors estimated for the L1 and 
L5  frequencies, respectively. This work uses the AGDV error estimates collected 
and  analyzed in the DUFMAN project (Circiu et al., 2021) to derive the σAGDV 
bound shown in Figure 2 for characterizing position errors caused by AGDV errors. 
We then derive the errors that contribute to the position solution by eliminating the 
common bias over satellites in view that will affect the receiver clock bias estimation 
in order to characterize position errors caused by the antenna contribution. For this, 
antenna residual errors to be projected into the position domain are calculated as 
in Equation (5). Ie we consider GPS and Galileo constellations for ARAIM, the bias 
removal is performed independently for each constellation:
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where i is the satellite index, j is the constellation index, Nj is the number of 
satellites in view within constellation j (j = 1, 2, i.e., GPS or Galileo), and � ,δbAGDV i
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is the antenna bias residual for the measurement from the i-th satellite within 
constellation j.

The AGDV residual error for each satellite at each epoch is then projected into 
the position domain as follows:
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Here, e is an vector whose components are antenna error contributions projected 
to the states (i.e., position errors and clock biases for GPS and Galileo), G is a geom-
etry matrix, and W is a weight matrix determined from pseudorange measurement 
error models such as satellite ephemeris/clock, tropospheric delay, and CNMP 
error models.

More specifically, we have the following:

	 W 1� ��� � (7)

where:
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For dual-frequency-based ARAIM, variances for each measurement, σ i
2 ,  are 

constructed by considering the satellite ephemeris and clock error, tropospheric 
error, and CNMP error components (Blanch et al., 2015):

	 � � � �i URA i tropo i user i
2 2 2 2� � �, , , � (9)

where i is the satellite index, σURA i,  is the standard deviation of the clock and 
ephemeris error for the i-th satellite used for integrity purposes, σ tropo i,  is the stan-
dard deviation of the tropospheric delay corresponding to the signal from the i-th 
satellite, and σuser i,  is the standard deviation of the airborne multipath and inter-
ference error (equivalent to the user CNMP error in this paper) relevant to the 
signal from the i-th satellite.

The AGDV effect should be considered in addition to the existing error compo-
nents in Equation (9), represented as εεothers ,  to construct the projection from the 
measurement domain to the position domain as follows:

	 ∆ = − = = + = +( )ˆv v vx x x v v others AGDV v others v AGDVS S b S S bε ε δ ε δ � (10)

where v is the index for the state, e.g., the east, north, and up components. Sv is 
a row vector of the projection matrix for each v-th state, and ∆xv is the state esti-
mation error, e.g., the position error in the up coordinate. ˆvx  and xv are the state 
estimate and the true value of the state, respectively. ε is the measurement error 
vector, εothers is the measurement error due to satellite ephemeris/clock error, tro-
pospheric error, and multipath, and δ  bAGDV is the antenna bias error vector.

Equation (10) implies that the two random variables (i.e., the AGDV contribu-
tion and the other contribution to the position error) can be combined into a single 
random variable by the root sum square of their variances, which will be applied to 
incorporate the AGDV effect into the PL calculation in this section.

In the remainder of the paper, for simplicity, we assume the state of interest as 
the vertical position coordinate. In Equation (10), the error vector, εothers, contains 
pseudorange errors for different satellites due to the error sources represented in 
Equation (9). As shown in Equation (10), the projection by matrix S is a linear 
transformation. Therefore, if the antenna error, represented as δ  bAGDV, is statis-
tically independent of εothers in the range domain, these two terms are also inde-
pendent in the position domain. ARAIM provides the vertical PL (VPL), the region 
assured to contain the indicated vertical position with the required probability for a 
specific navigation mode, such that the user can assess the integrity risk at a given 
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measurement epoch. The VPL equation for ARAIM (Blanch et al., 2015) is shown 
in Equation (11):

	 2 0
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where Q is the tail probability of a zero-mean unit Gaussian distribution, σ0 is the 
standard deviation of the all-in-view position solution (H0), σk is the standard devi-
ation of fault-tolerant position solution for Hk (k = 1, …, N), bk is the nominal bias 
for Hk (k = 0, 1, …, N), Pfault, k is the prior probability of fault for Hk (k = 1, …, N), 
Tk is the threshold for the solution separation (SS) test for the k-th fault mode, and 
PHMImonitored is the integrity risk allocation for monitored faults (in this example, 
for the vertical coordinate).

If the position error caused by the AGDV effect in the measurement domain 
has a Gaussian distribution for the k-th fault mode, i.e., N(bk, AGDV, σk, AGDV), the 
standard deviation and mean can be directly incorporated in the PL equation, as 
shown in Equation (12). Note that, in this section, the Gaussian overbound pub-
lished in the standards is applied to model the AGDV-induced position error while 
ensuring a margin of conservatism for integrity purposes. Because the AGDV effect 
can be considered as statistically independent from the other error contribution, 
the worst-case impact of the bias due to the AGDV error (bk, AGDV) is considered by 
augmenting the nominal bias term bk:
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To characterize the distribution of the antenna-induced error such that the PL 
(the term VPL) is determined from Equation (12), we first examine the antenna 
error contribution projected to the position error, as shown in Equation (10), by 
running a vertical ARAIM (V-ARAIM) service volume simulation with the ISM 
parameters and critical parameters listed in Table 2. All of the simulations per-
formed in this work are based on a set of ISM parameters defined for the current 
baseline airborne ARAIM algorithm outlined by the Working Group C, ARAIM 
Technical Subgroup (2016). Particularly, the value of Pconst  =  10-8 for the GPS 
constellation-wide fault is consistent with the GPS constellation specification out-
lined in the fifth edition (the latest edition) of the GPS Standard Positioning Service 
Performance Standard. Thus, the value of 10-8 is chosen in our analysis; however, 
there have been discussions on other possible values because of the uncertainty 
regarding whether the amount of data corresponding to observed operational data 
during GPS history is sufficient to thoroughly verify such a low probability. Thus, 
future work should include further validation and updates if necessary.

For the simulation, we used the MAAST for ARAIM (MATLAB Algorithm 
Availability Simulation Tool, 2021) with some modifications. All of the simulations 
in this work were performed for a period of ten sidereal days, which corresponds 
to the repetition period of the Galileo constellation, with an interval of 600 s over a 
user grid formation of 5° by 5°. Because the position error distribution should be dif-
ferent for different fault types, we investigated the fraction of different fault modes 
separately. For the parameters and 24 GPS and 24 Galileo constellations assumed 
by the Working Group C, ARAIM Technical Subgroup (2016), three different types 
of fault modes were primarily observed in our investigation: a fault-free mode, 
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GPS/Galileo single-satellite failure, and Galileo constellation fault, as displayed 
in Table 3. Table 3 also shows that the GPS and Galileo single-satellite faults are 
dominant for the V-ARAIM implementation, and the fault-free mode is observed 
as often as Galileo constellation faults.

Observing that these three fault modes are more dominant than other 
multiple-satellite fault modes, the error caused by AGDV is characterized by the 
Gaussian parameters, i.e., bk, AGDV , σK, AGDV , with a focus on the three fault hypothe-
ses in this work. Figure 5 shows a histogram of position errors caused by the AGDV 
residual errors in Equation (6) in the vertical position coordinate for the Galileo 
constellation fault (left), the probability density of the position error normalized by 
its mean and standard deviation (middle), and 1 – CDF of the normalized position 
errors (right). Note that as mentioned above, the position error resulting from the 
antenna contribution is our main interest in this examination.

The histogram shows that the distribution has a mean of approximately 0.3 m, 
and the maximum position error due to the antenna error in the vertical coordinate 
is approximately 1.7 m for the Galileo constellation fault when the antenna-induced 
pseudorange error is considered.

TABLE 2
ARAIM Simulation Parameters

Parameter Description

Constellation 24 GPS + 24 GAL

bnom 0.75 m

σURE GPS (Walter & Blanch, 2015) / GAL (Perea et al., 2017)

σURA 1 m for GPS/GAL (2.5 m for H-ARAIM)

Psat 10-5

Pconst GPS: 10-8 / GAL: 10-4

Mask angle 5°

User grid formation 5° by 5°

Simulation time interval 10 min

Simulation duration 10 days

TABLE 3
Fraction of Different Fault Modes for ARAIM Over 10 Days

All in view Single-satellite fault Dual-satellite fault GAL constellation fault

~5.3% ~89.3% 0% ~5.3%

FIGURE 5 Histogram of vertical position errors caused by the AGDV effect obtained under 
the Galileo constellation fault (left); PDF of the normalized vertical position error based on the 
Galileo constellation fault (PGAL = 10-5) (middle); 1–CDF of the normalized error (blue) and the 
overbounding curve when an inflation factor of 1.45 is applied (red) (right)
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In Figure 5 (middle), the errors are normalized by the mean and standard 
deviation, and the blue dotted curve indicates the probability density function (PDF) 
of normalized position errors on a log scale. The solid magenta curve is the PDF of 
a unit Gaussian distribution. Comparison of the empirical PDF and the theoretical 
standard Gaussian PDF shows that the position error due to the AGDV effect has a 
non-Gaussian tail, particularly for probabilities lower than 10-3. Therefore, we derive 
an overbounding variance for the empirical error distribution using the commonly 
used 1–CDF overbounding method (DeCleene, 2000). In Figure 5 (right), the empir-
ical error distribution with the non-Gaussian tail (blue curve) is bounded by the dis-
tribution with the variance inflated by a factor of 1.45 (red curve).

Table 4 summarizes the standard deviation and mean of the position error dis-
tribution for the three fault hypotheses for the horizontal and vertical coordinates.

In addition to the position error distributions, we must consider the effect of 
AGDV on the fault detection threshold T in Equation (11). The ARAIM fault 
detection threshold, Tk, for the k-th fault mode is determined from the standard 
deviation of the SS, σSS, k, as shown in Equation (13):

	 T K k hk k SS k� �� , , , , ,for 1 2  � (13)

Here, the factor Kk is obtained from the continuity requirement allocated to the 
k-th fault hypothesis. The SS, denoted as ˆkdx  in Equation (14), is defined as the 
difference between the all-in-view solution, 0ˆ ,x  and the subset solution, ˆ ,kx  which 
is determined by using all satellites except the faulty satellites under the hypothesis 
(Blanch et al., 2015):

	 = − = − = = 0 ( ) ,              for 1, 2ˆ ,ˆ ˆ ,k kdx x x i h0S S y dS yi i � (14)

Here, dSi is the matrix used to generate the SS, and y indicates a vector whose 
components are pseudorange measurements for satellites in view. Because the 
matrix dSi is defined as the difference Si -  S0 and the projection by dSi is linear, 
we can examine the AGDV effect on the SS domain, as the position errors due to the 
AGDV residual error were characterized in Equations (6) and (10). The AGVD resid-
ual errors are projected from the measurement domain to the SS domain as follows:
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Thus, we simulate position errors for different possible fault modes in different 
coordinates based on the same ARAIM service volume simulation and perform the 
same process as those for the position error results in Table 4. The corresponding 
results are summarized in Table 5.

The σSS, k term in Equation (12) is modified through the root sum square of the 
baseline σSS and the overbounding parameters, σSS, AGDV , shown in Table 5 for 

TABLE 4
Position Error Statistics for the Fault-Free Case, Single-Satellite Fault Mode, and Galileo Constellation 
Fault Mode

Fault mode Vertical Horizontal (east) Horizontal (north)

bk, AGDV [m] σk, AGDV [m] bk, AGDV [m] σk, AGDV [m] bk, AGDV [m] σk, AGDV [m]

Fault-free (H0) 0.34 0.25 0.05 0.10 0.16 0.11

Single-sat. fault 0.33 0.26 0.05 0.10 0.12 0.144

GAL cons. fault 0.37 0.51 0.05 0.12 0.16 0.197
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different fault modes, and the corresponding threshold TK is then applied to the 
VPL equation (Equation (11)). Whereas the bias effect projected into the position 
domain for different fault modes is considered for integrity purposes, as presented 
in Table 4, the bias effect on the test is not taken into account for the σSS, AGDV term 
used to compute the SS test threshold because the monitor threshold is determined 
for continuity purposes, in line with the current ARAIM development framework 
(Blanch et al., 2015). The possible bias caused by the AGDV effect is addressed 
within the term bk, AGDV in the PL calculation in Equation (12).

In this section, the antenna errors due to AGDV were considered in the posi-
tion domain. However, because this approach is subject to a specific set of satellite 
constellation geometries and error models, including ISM parameters, it can be 
far from optimal for a rigorous assessment of the impact of antenna errors, partic-
ularly for safety-critical applications. Therefore, although the satellite geometries 
and error models assumed for the current ARAIM framework are employed for 
position domain modeling, in this paper, we will consider the approach for sim-
ulation purposes and compare it with other methods. Further work is needed to 
generalize the direct modeling of this error in the position domain.

4.2  Modeling AGDV-Induced Error as a Random Sigma 
Term in the Range Domain

Having considered the AGDV error effect in the user PL domain, we now describe 
another approach for considering the error effect, where the AGDV errors are mod-
eled in the range domain as a random variable (i.e., a sigma term). For this pur-
pose, the AGDV errors in Equation (4) are first collected in the range domain based 
on the ARAIM simulation described in the previous section. We then apply the 
same approach as the GNSS airborne antenna MOPS (RTCA SC-159, 2018), where 
AGDV-induced errors and the corresponding acceptable bounds are modeled as a 
function of elevation angle. Figure 6 (left) shows a two-dimensional histogram of 
the number of observations as a function of both the AGDV residual error and the 
elevation angle. The horizontal axis divides the elevation angles into bins, and the 
vertical axis divides observations of the residuals into bins. The color of each pixel 
indicates the number of measurements counted.

The AGDV varies more at low elevations, where the antenna gain pattern is 
not uniform; thus, Figure 6 (left) shows that the histograms at low elevations are 
widely spread. In contrast, the group delay variations diminish at high elevations 
because the patterns are more regular. Therefore, in Figure 6 (right), we obtained 
higher sigma values (red curve) as the elevation decreases. However, because the 
antenna is mounted on a metallic ground plane, according to published standards 
(RTCA, 2006; RTCA SC-159, 2018), small biasing effects appear at high elevations, 
as shown in the blue curve in Figure 6 (right).

In addition, each histogram for each elevation bin in the left figure contains dif-
ferent antenna group delays for different azimuth angles. Therefore, the delay does 
not necessarily monotonically increase or decrease with elevation angle, as shown 

TABLE 5
Overbounding Parameters for AGDV Errors Projected into the SS Domain in Different Coordinates

Fault mode Vertical Horizontal (east) Horizontal (north)

σSS, k, AGDV [m] σSS, k, AGDV [m] σSS, k, AGDV [m]

Single satellite 0.088 0.075 0.104

GAL constellation 0.523 0.117 0.146
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in Figure 6. In particular, Figure 6 (left) shows that several distributions for different 
elevation bins have non-zero means and even two different peaks, i.e., the distribu-
tion is bimodal. The pair-bounding technique (Rife et al., 2006) was developed to cre-
ate a pair of overbounding distributions for an actual error distribution that is neither 
symmetric nor unimodal. However, it has been found to be challenging to meet the 
pair-bounding condition if the actual error distribution is represented by an empirical 
histogram (Blanch et al., 2019). A more recent study (Blanch et al., 2019) presented 
an approach combining the single-CDF (DeCleene, 2000) and the pair-bounding 
techniques to overcome limitations on the existing pair-bounding technique. This 
method may be optimal, as it provides a tighter bound than the paired overbounding 
distribution. However, both methods provide a pair of Gaussian parameters, i.e., a 
bias and an overbounding sigma, representing the resulting overbounding distribu-
tion. In this section, as mentioned above, we consider the error within the random 
sigma term to be compliant with the current ARAIM error models (Working Group 
C. ARAIM Technical Subgroup, 2016). In the next section, the AGDV is considered 
as a bias term in the PL computation in the worst-case scenario.

Here, we take a simple and practical tail bounding approach, where the single 
CDF bound is applied only to the tails, not the core part, of the actual distribution 
because the tails lead to the most significant sigma values. In addition, to conserva-
tively account for the non-zero mean, the absolute value of the mean is then added 
to the overbounding sigma such that the resulting zero-mean Gaussian distribu-
tion with the overbounding sigma can overbound the tail of the actual distribution. 
This simple approach for integrity purposes has often been used to characterize dif-
ferent GNSS errors whose empirical distributions are not symmetric or unimodal, 
for instance, regarding satellite ephemeris and clock errors (Walter et al., 2018) 
and ionospheric delay errors in the ground-based augmentation system framework 
(Lee et al., 2007).

Next, the sigma overbounding method is used to characterize the AGDV residual 
errors as follows. The mean (µAGDV) and standard deviation (σAGDV of the resid-
uals in each bin are calculated and used to normalize the residuals; the mean is 
removed and the residuals are divided by their standard deviation in each bin. 
In this step, an additional margin for the sample means and standard deviations, 
i.e., µAGDV and σAGDV, is considered because the amount of data may be insuffi-
cient to ensure the stringent integrity requirement of 10-7 for ARAIM applications. 
The upper bound of the sample standard deviation can be derived by considering 

FIGURE 6 The left figure shows histograms of AGDV residual errors for different satellite 
elevation bins. The right figure shows the empirical means (blue) and standard deviations (red) 
for different elevation bins and the overbounding sigma terms, σAGDV, overbound (magenta).
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a  χ2-distributed-based confidence interval with a 1 - a confidence level. In this 
work, a 95% confidence level was considered, and the length of the confidence level 
is determined as follows (Hayter, 2012):
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where n is the number of samples in each bin and σAGDV is the standard deviation 
of the sample distribution in each bin. The corresponding two-sided confidence 
interval for the sample mean is then constructed as follows:
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where t
n�

2
1, �

 represents the critical point of the t-distribution with n - 1 degrees 

of freedom for which the t-distributed random variable takes the tail probability  
of a 2.

In this investigation, the upper bound of the interval is taken as the worst bound 
of the sample mean ( ˆ )AGDVµ  for each bin:
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Based on the distribution of normalized AGDV residuals, the inflation factor (L) 
is then determined in each bin, as shown in the previous position domain analy-
sis. Lastly, the “σAGDV overbound” for each bin (see Figure 6 (right)) is computed 
as follows:

	 = +, ˆ ˆAGDV overbound AGDV AGDVLσ µ σ � (19)

Figure 6 (right) shows the overbound result, i.e., σAGDV, overbound. The estimated 
overbounds (magenta curve with asterisks) are similar to the one-sigma values (red 
curve with circles) at elevation angles lower than 45°. In contrast, the estimated 
overbounds reach approximately 0.4 m at elevation angles higher than 45°, while 
the one-sigma values are below approximately 0.15 m. Table 6 shows the over-
bounding sigma values for each bin.

In this section, the AGDV-induced error has been considered within a random 
sigma value as a function of elevation angle. In the next section, the error effect is 
considered as the worst-case bias in the PL calculation.

4.3  Modeling the User Antenna Effect as the Worst-Case 
Bias Term

This section considers the AGDV error effect with respect to the VPL in the 
worst-case scenario by adding a new user antenna bias bound to PLs derived by the 
baseline user algorithm (see Equation (10)) as follows:

	 VPL VPL buser AGDV ii
n� ��� ,Si � (20)
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Here, VPLuser denotes the VPL computed by the baseline user algorithm. Si indi-
cates each measurement error projection into the vertical position domain, and 
bAGDV, i represents the antenna bias error for each pseudorange measurement. In 
this study, two types of observables were used: AGDV errors derived from the 
DUFMAN work (Circiu et al., 2019) and an upper bound outlined by the antenna 
MOPS (RTCA SC-159, 2018). Because Circiu et al. (2021) demonstrated that the 
MOPS limit stated in DO-373 can overbound the observed AGDV for the L1/E1 and 
L5/E5a bands, this paper applies the limit in DO-373 for simulation purposes.

5  SIMULATION RESULTS

In this section, we conduct V-ARAIM service volume simulations for LPV-200. 
All simulations are performed via the Stanford MAAST for ARAIM (MATLAB 
Algorithm Availability Simulation Tool, 2021) with some modifications and the key 
simulation parameters listed in Table 2. The following six simulation scenarios are 
examined, as summarized in Table 7.

Case 1: The legacy user CNMP measurement error model (Blanch et al., 2015) 
is used.

Case 2: The DUFMAN multipath and AGDV error models are applied (Circiu et al., 
2021).

Case 3: The DUFMAN multipath model is used, and the overbounding sigma 
values in the range domain, i.e., σAGDV in Equation (19), are used for the AGDV 
error contribution.

Case 4: The DUFMAN multipath model is used, and the overbounding sigma 
values derived in the position domain, i.e., σAGDV in Table 4 and Table 5, are used 
for the PL equation in Equation (11).

Case 5: The DUFMAN multipath model is applied, and the AGDV error 
bound based on the actual antenna error measurements is added to the VPL (see 
Equation (20)).

TABLE 6
AGDV Error as a Function of Elevation Angle

Elevation (deg) σAGDV, overbound (m)

5 < 0.3719

10 < 0.3435

15 < 0.3278

20 < 0.3123

25 < 0.2911

30 < 0.2595

35 < 0.2154

40 < 0.1584

45 < 0.1393

50 < 0.1747

55 < 0.2291

60 < 0.2935

65 < 0.3544

70 < 0.4027

75 < 0.4324

80 < 0.4373

85 < 0.4232
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Case 6: The DUFMAN multipath model is applied, and the AGDV error bound 
based on the MOPS upper bound (RTCA SC-159, 2018) is added to the VPL.

Global ARAIM VPL maps for the cases listed above are also compared with the 
result from the baseline scenario in which the AGDV errors are lumped together 
with the legacy GPL L1 MOPS multipath model (RTCA SC-159, 2004).

5.1  Impact of the New Combined Multipath and AGDV 
Model (Case 1 vs. Case 2)

We first assess the baseline performance based on the legacy CNMP model. 
Figure 7 (left) shows the 99.5% LPV-200 availability map as a function of user 
location when the legacy model is applied as described for Case 1. The availabil-
ity indicates the percentage of time during which the user horizontal/vertical PL 
(H/VPL) is less than the corresponding horizontal/vertical alert limit (H/VAL). In 
the availability map, the coverage for users with availability higher than 99.5% corre-
sponds to approximately 90.54% of the map. This coverage indicates the fraction of 
users within the region that had a time availability of 99.5% or greater, represented 
as purple or dark purple regions. Next, we examine the DUFMAN multipath and 
antenna model, as described for Case 2, by replacing the legacy multipath model 
(i.e., σMP in Equation (1)) with the modified σMP&AGDV . Because the receiver noise 
contribution was not considered in the construction of the DUFMAN multipath 
model (Circiu et al., 2021), the existing receiver code noise model is still included, 
as shown below:

	 � � �CNMP MP AGDV DUFMAN
L L

L L

Noise
f f

f f
� �

�

�� �
�

�
�
�

�

�
�
�

& ,
2 1

4
5
4

1
2

5
2 2

22 �� (21)

Figure 7 (right) shows the availability map obtained when the newly derived 
multipath and user antenna error models are used. This figure shows that the 
global availability increases by approximately 5% if the new DUFMAN multipath 
and user antenna error models are applied for the ARAIM fault detection and 
PL computation. This result occurs because, as discussed earlier, the modified mul-
tipath model for GPS L1/L5 and Galileo E1/E5a has lower bounds than the legacy 
GPS L1 multipath model, particularly for low satellite elevation angles.

Figure 8 shows 99.5% VPL maps for the two cases, and Figures 9 and 10 pres-
ent other requirements for LPV-200, i.e., σacc and the effective monitor threshold 
(EMT), which are criteria that determine the availability performance. In this 

TABLE 7
Simulation Scenarios

Scenario Multipath AGDV error Receiver noise

Case 1 Baseline CNMP (Blanch et al., 2015)

Case 2 σMP&ADGV, DUFMAN (RMS)

0.04 m

Case 3 σMP, DUFMAN σAGDV for different elevation angles

Case 4 σMP, DUFMAN σSS, AGDV , σAGDV , and bAGDV for different fault hypotheses

Case 5 σMP, DUFMAN

|S|bAGDV
(actual bias measurements (Caizzone, Circiu, 

Elmarissi, Enneking, & Winterstein, 2019))

Case 6 σMP, DUFMAN
|S|bAGDV

(MOPS upper bound (RTCA SC-159, 2018))
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study, the thresholds for σacc and EMT are 1.87 m and 15 m for 99.5% LPV-200, 
respectively (Working Group C. ARAIM Technical Subgroup, 2016). σacc indi-
cates the standard deviation of the vertical position solution used for the accuracy 
requirement. The EMT is defined as the maximum value of detection thresholds 
of faults whose prior probability is equal to or higher than a given requirement 
(Blanch et al., 2015). As shown in Figure 8, the VPL magnitude decreases in the 
majority of regions in the map when the new model is applied. However, because 
the alert limit for LPV-200 operation is 35 m (Working Group C. ARAIM Technical 
Subgroup, 2016), a comparison of Figures 7 and 8 shows that effective improve-
ments with respect to availability can be achieved in high-latitude regions while 
VPL reductions in mid-latitude and equatorial regions are not actually counted. 
Thus, despite the noticeable decrease in VPL in almost all regions, an improvement 
of 5% can be achieved with respect to availability.

It is evident from Figure 9 and Figure 10 that σacc and EMT improve in the major-
ity of areas if the less-conservative model is applied. In particular, the coverage in 

FIGURE 7 99.5% availability map for LPV-200 when the legacy noise and multipath model 
are applied (left) and a corresponding availability map for when the newly derived multipath 
and user antenna model (i.e., DUFMAN σMP&ADGV in Equation (2)) are used for the ARAIM fault 
detection algorithm (right)
The simulation parameters listed in Table 2, including ISM parameters, were applied.

FIGURE 8 99.5% VPL map based on the legacy noise and multipath mode (left) and 
DUFMAN σMP&ADGV (right)
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which the EMT requirement, i.e., lower than 15 m, is met extends noticeably in 
high-latitude areas, resulting in an availability coverage improvement. In contrast, 
the σacc requirement is already met for both cases.

However, because the combined error model (σMP&AGDV) was considered, the 
improvements shown above may be due to the combined effect of multipath 
and AGDV contributions. Evaluating the extent of improvement that can be 
achieved by the new AGDV error model alone (or multipath model alone) is chal-
lenging because, unlike the new DUFMAN model in which the multipath and 
AGDV contributions are characterized separately, the contributions are mixed 
within the legacy model. Alternatively, to examine the AGDV impact in VPL, 
Figure 11 shows the difference between the VPL based on the combined model 
VPL

MP AGDV� &� �  and that based on σMP VPL
MP�� �,  i.e., with σAGDV removed from 

σMP&AGDV in Equation (2). It is shown that an additional increase of more than 
1.3 m in the 99.5% VPL can result from σAGDV in high-latitude areas, where the 
availability coverage predominantly expands.

FIGURE 9 Standard deviation of the vertical position solution (σacc) based on the existing 
noise and multipath model (left) and based on DUFMAN σMP&ADGV (right)

FIGURE 10 EMT based on the legacy noise and multipath model (left) and DUFMAN 
σMP&ADGV (right)`
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However, this work is more focused on the AGDV error contribution, and such 
increases in VPL due to the AGDV error might be still optimistic because the 
DUFMAN model is an RMS-based model. Thus, as mentioned above, we further 
examine the impact of the AGDV error contribution in the worst-case scenario by 
taking different approaches to modeling the AGDV error in the following sections.

5.2  Impact of AGDV-Induced Error Contribution for 
Different Modeling Approaches (Case 3 – Case 6)

Now that we have examined the impact of the new combined model (σMP&AGDV) 
with respect to the legacy GPS CNMP model in the previous section, this section 
describes how the AGDV error affects the ARAIM performance when different 
modeling approaches are applied (see Cases 3–6 in Table 7) and evaluates the worst 
impact of the error.

As discussed earlier, in prior work (Circiu et al., 2021), the Gaussian term 
σMP&AGDV in Equation (2) was derived in the form of an RMS. Because this inves-
tigation is focused on the AGDV error contribution, in this case, the new over-
bounding sigma term for the AGDV derived in the range domain is applied for 
the term σMP&AGDV while the same RMS multipath model is used. Figure 12 shows 
global maps in which the increase in the 99.5% VPL (left) and 99.5% HPL (right) is 
represented when the overbounding σAGDV, instead of the RMS bound, is applied 
for σCNMP in Equation (20). The results show that the maximum increase is approx-
imately 0.7 m in the VPL and 0.3 m in the HPL, which is not significant enough to 
affect the global availability coverage.

Because the change in the PLs seems to be marginal for almost all regions in the 
map, we sought to investigate the impact of different error modeling methods on 
the VPL magnitude in greater detail. Thus, the VPLs computed in the availability 
simulation at a specific user location (110°W, 65°N) for a single day are shown 
in Figure 13. The VPL is calculated at this location because the 99.5% LPV-200 
availability decreases/increases significantly in this region when the different error 
models are applied, as shown in Figure 7.

In Figure 13, the results for three scenarios are shown: Case 2, Case 3, and 
Case 4 from Table 7. Because the DUFMAN error model considers the RMS of the 

FIGURE 11 Difference between 99.5% VPL based on the combined � �MP AGDV VPL
MP AGDV& &� � 

and that based on σMP instead of � �MP AGDV VPL
MP& � �
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multipath and AGDV errors (i.e., Case 2), it results in an optimistic VPL (solid blue 
line). We also investigate the extent of VPL margin that can be achieved by apply-
ing different approaches to the user antenna error modeling. For this, the VPLs 
based on the overbounding sigma values in the range domain (Case 3) and position 
domain (Case 4) are plotted in Figure 13. The green curve and light blue curve rep-
resent the VPL for Cases 3 and 4, respectively. As expected, the AGDV error bound 
in the range domain results in a higher VPL than the RMS model-based VPL. In 
addition, for the most part, the VPLs based on the position domain overbounds 
are slightly higher than those based on the range domain overbounds. This result 
primarily arises from the fact that in the position domain approach, each sigma 
overbound for each fault mode was determined from the worst satellite geometry 
for each fault mode.

FIGURE 12 Increase in the VPL (left) and HPL (right) magnitude for Case 3
The maximum increase in the VPL and HPL is approximately 0.7 m and 0.3 m, respectively, when 
the AGDV effect (σAGDV) is considered for the PL calculation.

FIGURE 13 VPLs based on different error models: the DUFMAN model (Case 2 in Table 7) 
(blue), overbounding in the range domain (Case 3) (green), and overbounding in the position 
domain (Case 4) (light blue)
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In Figure 14, the black line shows the VPL when the additional position bias 
term was applied for the VPL computation using DUFMAN AGDV error estimates. 
The VPL based on the bias term is comparable to that based on the position domain 
overbound (light blue). Lastly, the magenta line shows the VPL when the MOPS 
bounds on AGDV errors were applied for the VPL calculation as the additional 
bias term. As expected, considering the upper bounds within the bias term results 
in the worst impact on the VPL. Because the antenna chosen for this investigation 
had the worst performance among the antennas examined in DUFMAN and the 
corresponding AGDV errors were at the limit of the bound defined in the MOPS, 
the VPL results of the actual observables are not substantially different from those 
of the MOPS bounds.

The VPLs based on the six different cases are shown together in Figure 15. The 
results show that different improvements in the VPL can be achieved depending 
on the manner in which the AGDV effect is modeled and implemented at the algo-
rithm level. As indicated in Figure 14, consideration of the MOPS bound within the 
bias term in the PL computation results in the worst impact on the VPL. To eval-
uate the impact of AGDV error in the worst-case scenario, Case 6 must be exam-
ined in greater detail. Figure 16 shows the difference between the VPL obtained 
from the MOPS bound VPL

MP MOPS� & ,� �  which corresponds to the magenta line in 
Figure 15, and that based on the combined model VPL

MP AGDV� &
,� �  where the AGDV 

error contribution is modeled as the RMS bound. An additional increase in VPL of 
more than 1.3 m, compared with the RMS model i.e.,VPL

MP AGDV� &
,� �  is observed 

when the worst impact of the AGDV error is taken into account, and the additional 
margin results in an availability loss of approximately 1%. Note that the DUFMAN 
multipath model is applied to both VPL

MP MOPSσ &  and VPL
MP AGDVσ &

.
However, considering that the VAL for LPV-200 is 35 m (see Figure 15), the 

impact of AGDV error on the LPV-200 ARAIM availability performance appears to 
not be of major relevance if we employ the newly proposed (or less-conservative) 
multipath and noise models.

The impact of the different AGDV models, including the combined DUFMAN 
model, on V-ARAIM has been presented under various scenarios. However, 

FIGURE 14 Comparison of VPLs for Case 4 (light blue), Case 5 (black), and Case 6 (magenta)
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considering that ARAIM should begin with horizontal service only, i.e., hori-
zontal ARAIM (H-ARAIM), we also examine how the different models affect 
the HPL. For the initial implementation of H-ARAIM, the ISM parameters in 
Table 2 have been considered for GPS and Galileo by the community (Working 
Group C. ARAIM Technical Subgroup, 2016), and we applied the same param-
eters. Figure 17 shows HPLs for the different AGDV modeling approaches, sim-
ilar to Figure 15. Only the worst-case bias scenario (Case 6) results in an HPL 
increase of 1–1.5 m. In contrast, the other methods result in comparable HPLs, 
which is in line with the VPL comparison in Figure 15. Because an HAL of 185 m 
is defined for required navigation performance (RNP) 0.1, which is the target 

FIGURE 15 VPLs for the different scenarios from Cases 2–6

FIGURE 16 Difference between 99.5% VPLs obtained by considering the MOPS bound on 
AGDV error within the PL computation VPL

MP MOPS� &� �  and the VPL based on the combined 

multipath and AGDV model VPLMP AGDV&� �  (left); 99.5% availability for LPV-200 when the worst 

PL VPL
MP MOPS� &� �  is applied (right)
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performance of H-ARAIM, it is evident that an improvement in availability will 
not be observed. Thus, only the HPLs are compared in this section.

In this section, we investigated the effect of AGDV on ARAIM performance in 
different aspects, including the protection bounds, position accuracy, and EMT, by 
applying a baseline user algorithm and different multipath and AGDV models. It 
should be noted, however, that this analysis is based on limited results (e.g.,  the 
AGDV error model for a specific antenna type), and variations in parameters 
such as the user range accuracy value employed in the simulations could lead to 
different results.

6  CONCLUSION

In this paper, we have applied several approaches to model the user antenna 
bias error within a bias term and as a random process sigma term in both the posi-
tion and range domains and assessed the ARAIM performance for the different 
error modeling approaches. The results showed a maximum increase of approxi-
mately 5% in the 99.5% global availability for LPV-200 when the newly constructed 
DUFMAN multipath and antenna error models for GPS L1/L5 and Galileo E1/E5a 
were accounted for in the ARAIM fault detection algorithm. A preliminary assess-
ment also showed that the worst impact of the AGDV error contribution resulted 
in an availability loss of only about 1% for LPV-200 with the current standard, i.e., 
σURA = 1 m, for both GPS and Galileo.

These findings extend those of a recent investigation by Griggs et al. (2020), 
confirming that even if the worst-case user antenna error contribution, i.e., the 
dual-frequency dual-constellation MOPS bound, is integrated within the nominal 
bias term of the ARAIM user algorithm, the user antenna impact on the 99.5% 
LPV-200 availabliity would be marginal. Most notably, to our knowledge, this is the 
first study to rigorously examine the effect of user antenna bias errors on ARAIM 
performance by isolating this contribution as a deterministic and stochastic error.

FIGURE 17 HPLs for the different scenarios from Cases 2–6
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However, some limitations are worth noting. Although extensive simulations 
supported our findings with different realistic modeling scenarios, the results pre-
sented in this study were derived from a limited set of ISM parameters such as σURA, 
the constant fault probability of a GPS constellation-wide fault, and a baseline fault 
detection algorithm. The influence of AGDV error on ARAIM performance may 
differ depending on the underlying assumptions of parameters and algorithms. 
Thus, future work should include follow-up work designed to reassess the impact 
across a wide range of the ISM parameters with an optimized estimation algorithm 
(Blanch et al., 2015).
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APPENDIX

This section provides more details of the user CNMP model used for the baseline 
ARAIM user algorithm. The CNMP model for L1/L5 is based on two different error 
sources: multipath and receiver tracking noise error. The multipath is modeled by 
Airframe Multipath Designator A for GPS L1 (Murphy et al., 2000):
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The noise contribution is modeled by AAD-A for GPS L1 code noise:
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A lookup table given as a function of elevation angle (see Table A1) has been 
used for Galileo E1/E5a for predicting the performance in the frame of ARAIM 
(Blanch et al., 2015).

TABLE A1
Galileo E1/E5a User Error Model According to Elevation 
Angle (Blanch et al., 2015)

Elevation (deg) σCNMP, GAL (m)

5° 0.4529

10° 0.3553

15° 0.3063

20° 0.2638

25° 0.2593

30° 0.2555

35° 0.2504

40° 0.2438

45° 0.2396

50° 0.2359

55° 0.2339

60° 0.2302

65° 0.2295

70° 0.2278

75° 0.2297

80° 0.2310

85° 0.2274

90° 0.2277
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