PT - JOURNAL ARTICLE AU - Allahvirdi-Zadeh, Amir AU - El-Mowafy, Ahmed TI - Array-Aided Precise Orbit and Attitude Determination of CubeSats using GNSS AID - 10.33012/navi.651 DP - 2024 Sep 21 TA - NAVIGATION: Journal of the Institute of Navigation PG - navi.651 VI - 71 IP - 3 4099 - https://navi.ion.org/content/71/3/navi.651.short 4100 - https://navi.ion.org/content/71/3/navi.651.full SO - NAVIGATION2024 Sep 21; 71 AB - CubeSats hold promise for various applications, but their viability in demanding missions such as future low Earth orbiting position, navigation, and timing (LEO-PNT) systems hinges on higher orbital accuracy and reliable attitude information. To address these challenges, we present an array-aided combined precise orbit and attitude determination model with an optimal solution. In the estimation process, multi- and affine-constrained models are used to precisely determine the attitude, and then, highly precise observations for an antenna array are reconstructed based on fixed ambiguities and a decorrelation step. Validations confirm the significance of integer ambiguities in the model, highlighting the cost-effectiveness of this model compared with star trackers for attitude determination. The reconstructed observations outperform the original observations, leading to improved orbital components, with the three-dimensional root mean square (RMS) equal to 4.1 cm. The observation residuals are smoother, with an RMS of 6 mm, half of that obtained via a single antenna. The developed models offer great potential for CubeSats, advancing their orbit and attitude determination capabilities.