TABLE 1

Processing standards for Galileo orbit determination and prediction

Data, models, algorithmsPreciseTailored
ObservationsDual-frequency code and phase observations from 80 globally distributed monitoring stations of the International GNSS Service (IGS; Johnston et al., 2017)Cartesian satellite positions
Data arc3 d2 d
Sampling5 min5 min
Reference frame transformationsIAU2006/2000 precession/nutation (Petit & Luzum, 2010); USNO Δ UT1, estimated LOD and polar motion, linear predictionIAU 1976 precession, IAU 1980 nutation (106 terms) and sidereal time (Seidelmann, 2006); IGS Earth orientation parameters (linear extrapolation)
Earth gravityEIGEN-05C (12 × 12; Förste et al., 2008), solid Earth and pole tides (IERS Conventions 2010, Petit & Luzum, 2010), ocean tides (FES2004; Lyard et al., 2006), post-Newtonian relativity approximation (IERS Conventions 2010, Petit & Luzum, 2010)GGM01S model (9 × 9), k2 tides (Rizos & Stolz, 1985), no relativity
Third-body perturbationsSun, Moon, all planets, Pluto; DE405 (Standish, 1998)Sun and Moon; analytical series truncated to 5″ and 2″ (Montenbruck & Pfleger, 2000)
Radiation pressure5-param. ECOM-1 model (estimated; Beutler et al., 1994) with a priori box-wing-model (Steigenberger & Montenbruck, 2017); conical Earth and Moon shadow; Earth radiation pressure (Springer, 2009); antenna thrust (Steigenberger et al., 2018)3-param. ECOM-1 model (estimated; Beutler et al., 1994) with a priori 2-param. cuboid model (Montenbruck et al., 2015); conical Earth and Moon shadow
Numerical integration8th-order Adams-Bashforth-Moulton multi-step predictor-corrector method with 8th-order Runge-Kutta starting step (Springer, 2009); shadow boundary handling5th-order Dormand-Prince Runge-Kutta method (Dormand & Prince, 1980) with 4th-order interpolant (Hairer et al., 1987); optional shadow boundary handling