Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

A Robust Detection and Optimization Approach for Delayed Measurements in UWB Particle-Filter-Based Indoor Positioning

Ning Zhou, Lawrence Lau, Ruibin Bai, and Terry Moore
NAVIGATION: Journal of the Institute of Navigation June 2022, 69 (2) navi.514; DOI: https://doi.org/10.33012/navi.514
Ning Zhou
1International Doctoral Innovation Centre, University of Nottingham Ningbo China, Ningbo, China
2School of Civil Engineering and Architecture, Ningbo Tech University, Ningbo, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lawrence Lau
3Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ruibin Bai,
4School of Computer Science, University of Nottingham Ningbo China, Ningbo, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Terry Moore
5Nottingham Geospatial Institute, University of Nottingham, Nottingham, U.K.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Abbasi, A., &
    2. Kahaei, M. H.
    (2009). Improving source localization in LOS and NLOS multipath environments for UWB signals. 2009 14th International CSI Computer Conference, Tehran, Iran.
  2. ↵
    1. Al-Samman, A. M.,
    2. Rahman, T. A.,
    3. Hadri, M.,
    4. Khan, I., &
    5. Chua, T. H.
    (2017). Experimental UWB indoor channel characterization in stationary and mobility scheme. Measurement, 111, 333–339. https://doi.org/10.1016/j.measurement.2017.07.053
  3. ↵
    1. Alavi, B., &
    2. Pahlavan, K.
    (2006). Modeling of the TOA-based distance measurement error using UWB indoor radio measurements. IEEE Communications Letters, 10(4), 275–277. https://doi.org/10.1109/LCOMM.2006.1613745
    CrossRef
  4. ↵
    1. Albaidhani, A.,
    2. Morell, A., &
    3. Vicario, J. L.
    (2016). Ranging in UWB using commercial radio modules: Experimental validation and NLOS mitigation. 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain. https://doi.org/10.1109/IPIN.2016.7743639
  5. ↵
    1. Basiri, A.,
    2. Lohan, E. S.,
    3. Moore, T.,
    4. Winstanley, A.,
    5. Peltola, P.,
    6. Hill, C.,
    7. Amirian, P., &
    8. Figueiredo e Silva, P.
    (2017). Indoor location based services challenges, requirements, and usability of current solutions. Computer Science Review, 24, 1–12. https://doi.org/10.1016/j.cosrev.2017.03.002
  6. ↵
    1. Borras, J.,
    2. Hatrack, P., &
    3. Mandayam, N.
    (1998). Decision theoretic framework for NLOS identification. 48th IEEE Vehicular Technology Conference, Ottawa, ON, Canada. https://doi.org/10.1109/VETEC.1998.686556
  7. ↵
    1. Cao, B.,
    2. Wang, S.,
    3. Ge, S., &
    4. Liu, W.
    (2020). Improving positioning accuracy of UWB in complicated underground NLOS scenario using calibration, VBUKF, and WCA. IEEE Transactions on Instrumentation and Measurement, 70, 1–13. https://doi.org/10.1109/TIM.2020.3035579
  8. ↵
    1. Casas, R.,
    2. Marco, A.,
    3. Guerrero, J. J., &
    4. Falcó, J.
    (2006). Robust estimator for non-line-of-sight error mitigation in indoor localization. EURASIP Journal on Advances in Signal Processing. https://doi.org/10.1155/asp/2006/43429
  9. ↵
    1. Chen, P. -C.
    (1999). A non-line-of-sight error mitigation algorithm in location estimation. 1999 IEEE Wireless Communications Networking Conference, New Orleans, LA. https://doi.org/10.1109/WCNC.1999.797838
  10. ↵
    1. Chen, Z.
    (2003). Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics: A Journal of Theoretical and Applied Statistics, 182(1). https://doi.org/10.1080/02331880309257
  11. ↵
    1. Cong, L., &
    2. Zhuang, W.
    (2005). Nonline-of-sight error mitigation in mobile location. IEEE Transactions on Wireless Communications, 4(2), 560–573. https://doi.org/10.1109/TWC.2004.843040
    CrossRefWeb of Science
  12. ↵
    1. Djaja-Josko, V., &
    2. Kolakowski, M.
    (2017). A new map based method for NLOS mitigation in the UWB indoor localization system. 2017 25th Telecommunication Forum (TELFOR), Belgrade, Serbia. https://doi.org/10.1109/TELFOR.2017.8249314
  13. ↵
    1. Feng, D.,
    2. Wang, C.,
    3. He, C.,
    4. Zhuang, Y., &
    5. Xia, X. -G.
    (2020). Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation. IEEE Internet of Things Journal, 7(4), 3133–3146. https://doi.org/10.1109/JIOT.2020.2965115
  14. ↵
    1. Gezici, S.,
    2. Kobayashi, H., &
    3. Poor, H. V.
    (2003). Nonparametric nonline-of-sight identification. 2003 IEEE 58th Vehicular Technology Conference, Orlando, FL. https://doi.org/10.1109/VETECF.2003.1285996
  15. ↵
    1. González, J.,
    2. Blanco, J. L.,
    3. Galindo, C.,
    4. Ortiz-De-Galisteo, A.,
    5. Fernández-Madrigal, J. A.,
    6. Moreno, F. A., &
    7. Martínez, J. L.
    (2009). Mobile robot localization based on ultra-wide-band ranging: A particle filter approach. Robotics and Autonomous Systems, 57(5), 496–507. https://doi.org/10.1016/j.robot.2008.10.022
    CrossRef
  16. ↵
    1. Gordon, N. J.,
    2. Salmond, D. J., &
    3. Smith, A. F. M.
    (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140(2), 107–113. https://doi.org/10.1049/ip-f-2.1993.0015
    CrossRefWeb of Science
    1. Güvenç, I.,
    2. Chong, C. -C.,
    3. Watanabe, F., &
    4. Inamura, H.
    (2008). NLOS identification and weighted least-squares localization for UWB systems using multipath channel statistics. EURASIP Journal on Advances in Signal Processing. https://doi.org/10.1155/2008/271984
  17. ↵
    1. Hammes, U., &
    2. Zoubir, A. M.
    (2010). Robust mobile terminal tracking in NLOS environments based on data association. IEEE Transactions on Signal Processing, 58(11), 5872–5882. https://doi.org/10.1109/TSP.2010.2063425
  18. ↵
    1. Heidari, M.,
    2. Akgul, F. O., &
    3. Pahlavan, K.
    (2007). Identification of the absence of direct path in indoor localization systems. 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece. https://doi.org/10.1109/PIMRC.2007.4394450
  19. ↵
    1. Hol, J. D.,
    2. Schon, T. B., &
    3. Gustafsson, F.
    (2006). On resampling algorithms for particle filters. 2006 IEEE Nonlinear Statistical Signal Processing Workshop, Cambridge, UK. https://doi.org/10.1109/NSSPW.2006.4378824
  20. ↵
    1. Jiang, H.,
    2. Xu, J., &
    3. Li, Z.
    (2010). NLOS mitigation method for TDOA measurement. 2010 6th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Darmstadt, Germany. https://doi.org/10.1109/IIHMSP.2010.56
  21. ↵
    1. Khodjaev, J.,
    2. Park, Y., &
    3. Malik, A. S.
    (2010). Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments. Annals of Telecommunications, 65, 301–311. https://doi.org/10.1007/s12243-009-0124-z
  22. ↵
    1. Lau, L.,
    2. Quan, Y.,
    3. Wan, J.,
    4. Zhou, N.,
    5. Wen, C.,
    6. Qian, N., &
    7. Jing, F.
    (2018). An autonomous ultra-wide band-based attitude and position determination technique for indoor mobile laser scanning. ISPRS International Journal of Geo-Information, 7(4). https://doi.org/10.3390/ijgi7040155
  23. ↵
    1. Le, B. L.,
    2. Ahmed, K., &
    3. Tsuji, H.
    (2003). Mobile location estimator with NLOS mitigation using Kalman filtering. 2003 IEEE Wireless Communications and Networking, New Orleans, LA. https://doi.org/10.1109/WCNC.2003.1200689
  24. ↵
    1. Liu, L., &
    2. Fan, P.
    (2010). An efficient geometry-constrained NLOS mitigation algorithm based on ML-detection. IET 3rd International Conference on Wireless, Mobile and Multimedia Networks, Beijing, China. https://doi.org/10.1049/cp.2010.0687
  25. ↵
    1. Macoir, N.,
    2. Bauwens, J.,
    3. Jooris, B.,
    4. Van Herbruggen, B.,
    5. Rossey, J.,
    6. Hoebeke, J., &
    7. De Poorter, E.
    (2019). UWB localization with battery-powered wireless backbone for drone-based inventory management. Sensors, 19(3), 467. https://doi.org/10.3390/s19030467
  26. ↵
    1. Maranò, S.,
    2. Gifford, W. M.,
    3. Wymeersch, H., &
    4. Win, M. Z.
    (2010). NLOS identification and mitigation for localization based on UWB experimental data. IEEE Journal on Selected Areas in Communications, 28(7), 1026–1035. https://doi.org/10.1109/JSAC.2010.100907
    CrossRef
  27. ↵
    1. Pak, J. M.,
    2. Ahn, C. K.,
    3. Shi, P.,
    4. Shmaliy, Y. S., &
    5. Lim, M. T.
    (2017). Distributed hybrid particle/FIR filtering for mitigating NLOS effects in TOA-based localization using wireless sensor networks. IEEE Transactions on Industrial Electronics, 64(6), 5182–5191. https://doi.org/10.1109/TIE.2016.2608897
  28. ↵
    1. Parikh, H. K., &
    2. Michalson, W. R.
    (2008). Impulse radio UWB or multicarrier UWB for non-GPS based indoor precise positioning systems. NAVIGATION, 55(1), 29–37. https://doi.org/10.1002/j.2161-4296.2008.tb00416.x
  29. ↵
    1. Sahinoglu, Z.,
    2. Gezici, S., &
    3. Guvenc, I.
    (2008). Ultra-wideband positioning systems: Theoretical limits, ranging algorithms, and protocols. Cambridge University Press.
  30. ↵
    1. Savic, V., &
    2. Larsson, E. G.
    (2016). Experimental study of indoor tracking using UWB measurements and particle filtering. 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications, Edinburgh, UK. https://doi.org/10.1109/SPAWC.2016.7536853
  31. ↵
    1. Shen, G.,
    2. Zetik, R.,
    3. Hirsch, O., &
    4. Thomä, R. S.
    (2010). Range-based localization for UWB sensor networks in realistic environments. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1155/2010/476598
  32. ↵
    1. Suzuki, T.
    (2019). Mobile robot localization with GNSS multipath detection using pseudorange residuals. Advanced Robotics, 33(12), 602–613. https://doi.org/10.1080/01691864.2019.1619622
  33. ↵
    1. Uren, J., &
    2. Price, B.
    (2010). Surveying for engineers (5th ed.). Basingstoke: Palgrave Macmillan.
  34. ↵
    1. Venkatraman, S.,
    2. Caffery, J., &
    3. You, H. -R.
    (2002). Location using LOS range estimation in NLOS environments. IEEE 55th Vehicular Technology Conference, Birmingham, AL. https://doi.org/10.1109/VTC.2002.1002609
  35. ↵
    1. Wang, S.,
    2. Wang, S.,
    3. Liu, W., &
    4. Tian, Y.
    (2020). A study on the optimization nodes arrangement in UWB localization. Measurement, 163. https://doi.org/10.1016/j.measurement.2020.108056
  36. ↵
    1. Wang, Y., &
    2. Li, X.
    (2017). The IMU/UWB fusion positioning algorithm based on a particle filter. ISPRS International Journal of Geo-Information, 6(8). https://doi.org/10.3390/ijgi6080235
  37. ↵
    1. Wu, S.,
    2. Li, J., &
    3. Liu, S.
    (2014). Single threshold optimization and a novel double threshold scheme for non-line-of-sight identification. International Journal of Communication Systems, 27(10), 2156–2165. https://doi.org/10.1002/dac.2464
  38. ↵
    1. Wu, S.,
    2. Ma, Y.,
    3. Zhang, Q., &
    4. Zhang, N.
    (2007). NLOS error mitigation for UWB ranging in dense multipath environments. 2007 IEEE Wireless Communications and Networking Conference, Hong Kong, China. https://doi.org/10.1109/WCNC.2007.295
  39. ↵
    1. Wymeersch, H.,
    2. Marano, S.,
    3. Gifford, W. M., &
    4. Win, M. Z.
    (2012). A machine learning approach to ranging error mitigation for UWB localization. IEEE Transactions on Communications, 60(6), 1719–1728. https://doi.org/10.1109/TCOMM.2012.042712.110035
    CrossRef
  40. ↵
    1. Yan, J.,
    2. Tiberius, C. C. J. M.,
    3. Bellusci, G., &
    4. Janssen, G. J. M.
    (2013). Non-line-of-sight identification for indoor positioning using ultra-wideband radio signals. NAVIGATION, 60(2), 97–111. https://doi.org/10.1002/navi.31
  41. ↵
    1. Yin, F.,
    2. Fritsche, C.,
    3. Gustafsson, F., &
    4. Zoubir, A. M.
    (2013). TOA-based robust wireless geolocation and Cramér-Rao lower bound analysis in harsh LOS/NLOS environments. IEEE Transactions on Signal Processing, 61(9), 2243–2255. https://doi.org/10.1109/TSP.2013.2251341
  42. ↵
    1. Yousefi, S.,
    2. Chang, X. -W., &
    3. Champagne, B.
    (2014). Distributed cooperative localization in wireless sensor networks without NLOS identification. 2014 11th Workshop on Positioning, Navigation and Communication, Dresden, Germany. https://doi.org/10.1109/WPNC.2014.6843290
  43. ↵
    1. Yu, K., &
    2. Guo, Y. J.
    (2007). NLOS error mitigation for mobile location estimation in wireless networks. 2007 IEEE 65th Vehicular Technology Conference, Dublin, Ireland. https://doi.org/10.1109/VETECS.2007.228
  44. ↵
    1. Yu, K.,
    2. Wen, K.,
    3. Li, Y.,
    4. Zhang, S., &
    5. Zhang, K.
    (2018). A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments. IEEE Transactions on Vehicular Technology, 68(1), 686–699. https://doi.org/10.1109/TVT.2018.2883810
  45. ↵
    1. Zhang, Y., &
    2. Duan, L.
    (2021). A phase-difference-of-arrival assisted ultra-wideband positioning method for elderly care. Measurement, 170. https://doi.org/10.1016/j.measurement.2020.108689
  46. ↵
    1. Zhao, X.,
    2. Geng, S., &
    3. Coulibaly, B. M.
    (2013). Path-loss model including LOS-NLOS transition regions for indoor corridors at 5 GHz. IEEE Antennas and Propagation Magazine, 55(3), 217–223. https://doi.org/10.1109/MAP.2013.6586668
  47. ↵
    1. Zhou, N.,
    2. Lau, L.,
    3. Bai, R., &
    4. Moore, T.
    (2021a). A genetic optimization resampling based particle filtering algorithm for indoor target tracking. Remote Sensing, 13(1). https://doi.org/10.3390/rs13010132
  48. ↵
    1. Zhou, N.,
    2. Lau, L.,
    3. Bai, R., &
    4. Moore, T.
    (2021b). Novel prior position determination approaches in particle filter for ultra wideband (UWB)-based indoor positioning. NAVIGATION, 68(2), 277–292. https://doi.org/10.1002/navi.415
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (2)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 2
Summer 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Robust Detection and Optimization Approach for Delayed Measurements in UWB Particle-Filter-Based Indoor Positioning
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
A Robust Detection and Optimization Approach for Delayed Measurements in UWB Particle-Filter-Based Indoor Positioning
Ning Zhou, Lawrence Lau, Ruibin Bai,, Terry Moore
NAVIGATION: Journal of the Institute of Navigation Jun 2022, 69 (2) navi.514; DOI: 10.33012/navi.514

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A Robust Detection and Optimization Approach for Delayed Measurements in UWB Particle-Filter-Based Indoor Positioning
Ning Zhou, Lawrence Lau, Ruibin Bai,, Terry Moore
NAVIGATION: Journal of the Institute of Navigation Jun 2022, 69 (2) navi.514; DOI: 10.33012/navi.514
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 RELATED WORKS
    • 3 PROPOSED ALGORITHM
    • 4 EVALUATION AND ANALYSIS OF THE PROPOSED ALGORITHM
    • 5 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • ATLAS: Orbit Determination and Time Transfer for a Lunar Radio Navigation System
  • GNSS L5/E5a Code Properties in the Presence of a Blanker
  • Robust Interference Mitigation in GNSS Snapshot Receivers
Show more Original Article

Similar Articles

Keywords

  • delayed range measurement
  • indoor positioning
  • particle-filtering algorithm
  • time-of-arrival (TOA)
  • ultrawideband (UWB)

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire