Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Deterministic Heading-Independent Celestial Localization Measurement Model

Ilija Jovanovic and John Enright
NAVIGATION: Journal of the Institute of Navigation September 2022, 69 (3) navi.529; DOI: https://doi.org/10.33012/navi.529
Ilija Jovanovic
Aerospace Engineering, Ryerson University, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
John Enright
Aerospace Engineering, Ryerson University, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Bennett, G. G.
    (2009, May). The calculation of astronomical refraction in marine navigation. The Journal of Navigation, 35(2), 255–259. https://doi.org/10.1017/S0373463300022037
  2. ↵
    1. Crassidis, J. L.,
    2. Markley, F. L., &
    3. Cheng, Y.
    (2007). Survey of nonlinear attitude estimation methods. Journal of Guidance Control and Dynamics, 30(1), 12. https://doi.org/10.2514/1.22452
    CrossRef
  3. ↵
    1. Eisenman, A. R.,
    2. Liebe, C. C., &
    3. Perez, R.
    (2002). Sun sensing on the Mars exploration rovers. Proc. of the 2002 IEEE Aerospace Conference, Big Sky, MT. https://doi.org/10.1109/AERO.2002.1035391
  4. ↵
    1. Enright, J.,
    2. Barfoot, T., &
    3. Soto, M.
    (2012). Star tracking for planetary rovers. 2012 IEEE Aerospace Conference, Big Sky, MT. https://doi.org/10.1109/AERO.2012.6187042
  5. ↵
    1. Jewell Instruments
    . (2018). Electrolytic tiltmeter temperature coefficients [Computer software manual]. http://jewellinstruments.com/wp-content/uploads/TN103_ELSTempCoefficients.pdf
  6. ↵
    1. Jovanovic, I., &
    2. Enright, J.
    (2020). Modeling and calibration of wide range of motion biaxial inclinometers for celestial navigation. 2020 IEEE 7th International Workshop on Metrology for Aerospace, Pisa, Italy. https://doi.org/10.1109/MetroAeroSpace48742.2020.9160118
  7. ↵
    1. Jovanovic, I., &
    2. Enright, J.
    (2017). Towards star tracker geolocation for planetary navigation. 2017 IEEE Aerospace Conference, Big Sky, MT. https://doi.org/10.1109/AERO.2017.7943972
  8. ↵
    1. Li, R.,
    2. Di, K.,
    3. Hwangbo, J., &
    4. Chen, Y.
    (2007). Integration of orbital and ground images for enhanced topographic mapping in Mars landed missions. Proc. of the Annual NASA Science Technology Conference. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2610&rep=rep1&type=pdf
  9. ↵
    1. Li, R.,
    2. Di, K.,
    3. Matthies, L.,
    4. Arvidson, R.,
    5. Folkner, W. M., &
    6. Archinal, B.
    (2004). Rover localization and landing-site mapping technology for the 2003 Mars Exploration Rover mission. Photogrammetric Engineering & Remote Sensing, 70(1), 77–90. https://doi.org/10.14358/PERS.70.1.77
  10. ↵
    1. Li, R.,
    2. Squyers, S. W.,
    3. Arvidson, R. E.,
    4. Archinal, B. A.,
    5. Bell, J.,
    6. Cheng, Y.,
    7. Crumpler, L.,
    8. Des Marais, D. J.,
    9. Di, K.,
    10. Ely, T. A.,
    11. Golombek, M.,
    12. Graat, E.,
    13. Grant, J.,
    14. Guinn, J.,
    15. Johnson, A.,
    16. Greeley, R.,
    17. Kirk, R. L.,
    18. Maimone, M.,
    19. Matthies, L. H., …
    20. Xu, F.
    (2005). Initial results of rover localization and topographic mapping for the 2003 Mars Exploration Rover mission. Photogrammetric Engineering & Remote Sensing, (10), 1129–1142. https://doi.org/10.14358/PERS.71.10.1129
  11. ↵
    1. Mills, D. L.
    (2016). Time transfer for deep-space missions. In D. L. Mills (Ed.), Computer network time synchronization: The network time protocol on Earth and in space (2nd ed., pp. 353–376). CRC Press. https://doi.org/10.1201/b10282
  12. ↵
    1. Pavlis, N. K.,
    2. Holmes, S. A.,
    3. Kenyon, S. C., &
    4. Factor, J. K.
    (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB008916
  13. ↵
    1. Petit, G., &
    2. Luzum, B.
    (2010). IERS conventions (IERS Technical Note No. 36). International Earth Rotation and Reference System Service. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.2287&rep=rep1&type=pdf
  14. ↵
    1. Shuster, M. D.
    (2003). Stellar aberration and parallax: A tutorial. The Journal of Astronautical Sciences, 51(4), 477–494. https://doi.org/10.1007/BF03546295
  15. ↵
    1. Shuster, M. D., &
    2. Oh, S. D.
    (1981). Three-axis attitude determination from vector observations. Journal of Guidance and Control, 4(1), 70–77. https://doi.org/10.2514/3.19717
  16. ↵
    1. Wei, X.,
    2. Cui, C.,
    3. Wang, G., &
    4. Wan, X.
    (2019). Autonomous positioning utilizing star sensor and inclinometer. Measurement, 131, 132–142. https://doi.org/10.1016/j.measurement.2018.08.061
  17. ↵
    1. Wertz, J. R.,
    2. Everett, D. F., &
    3. Puschell, J. J.
    (Eds.). (2011). Space mission engineering: The new SMAD. Microcosm Press.
  18. ↵
    1. Ning, X., &
    2. Fang, J.
    (2009). A new autonomous celestial navigation method for the lunar rover. Robotics and Autonomous Systems, 57(1), 48–54. https://doi.org/10.1016/j.robot.2008.02.006
  19. ↵
    1. Zhan, Y.,
    2. Zheng, Y.,
    3. Li, C.,
    4. Wang, R.,
    5. Zhu, Y., &
    6. Chen, Z.
    (2020). High-accuracy absolute positioning for the stationary planetary rover by integrating the star sensor and inclinometer. Journal of Field Robotics, 37(6), 1063–1076. https://doi.org/10.1002/rob.21944
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 3
Fall 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deterministic Heading-Independent Celestial Localization Measurement Model
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Deterministic Heading-Independent Celestial Localization Measurement Model
Ilija Jovanovic, John Enright
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.529; DOI: 10.33012/navi.529

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Deterministic Heading-Independent Celestial Localization Measurement Model
Ilija Jovanovic, John Enright
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.529; DOI: 10.33012/navi.529
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 MATHEMATICAL FRAMEWORK
    • 3 CALIBRATION METHODOLOGY
    • 4 CALIBRATION
    • 5 MONTE CARLO VALIDATION COVARIANCE MODEL
    • 6 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • CONFLICT OF INTEREST
    • ACKNOWLEDGMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Multi-layered Multi-Constellation Global Navigation Satellite System Interference Mitigation
  • Instantaneous Sub-meter Level Precise Point Positioning of Low-Cost Smartphones
  • SBAS Protection Levels with Gauss-Markov K-Factors for Any Integrity Target
Show more Original Article

Similar Articles

Keywords

  • celestial navigation
  • inclinometer
  • localization
  • star tracker

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire