Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

ONCLE (One Clock Ensemble) for Galileo’s Next-Generation Robust Timing System

Qinghua Wang and Pascal Rochat
NAVIGATION: Journal of the Institute of Navigation September 2022, 69 (3) navi.536; DOI: https://doi.org/10.33012/navi.536
Qinghua Wang
Orolia Switzerland SA (Spectratime) 2000 Neuchâtel, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Pascal Rochat
Orolia Switzerland SA (Spectratime) 2000 Neuchâtel, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Bertacco, E. K.,
    2. Calonico, D.,
    3. Cantoni, E.,
    4. Cerretto, G.,
    5. Costa, R.,
    6. Fiasca, F.,
    7. Formichella, V.,
    8. Levi, F.,
    9. Mura, A.,
    10. Perucca, A.,
    11. Pizzocaro, M.,
    12. Pollastri, F.,
    13. Sellone, M.,
    14. Sesia, I.,
    15. Signorile, G.,
    16. Terzi, P.,
    17. Thai, T. T.,
    18. Costanzo, G. A., &
    19. Rovera, G. D.
    (2020). Latest improvements at INRIM time laboratory. Proc. of the 51st Annual Precise Time and Time Interval Systems and Applications Meeting, San Diego, CA, 159–168. https://doi.org/10.33012/2020.17296
  2. ↵
    1. Brown, K. R.
    (1991). The theory of the GPS composite clock. Proc. of the 4th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1991), Albuquerque, NM, 223–242. https://www.ion.org/publications/abstract.cfm?articleID=4867
  3. ↵
    1. European Space Agency (ESA)
    . (n.d.) Galileo system. https://www.esa.int/Applications/Navigation/Galileo/Galileo_system
  4. ↵
    1. Felbach, D.,
    2. Heimbuerger, D.,
    3. Herre, P., &
    4. Rastetter, P.
    (2003). Galileo payload 10.23 MHz master clock generation with a Clock Monitoring and Control Unit (CMCU). IEEE International Frequency Control Symposium and PDA Exhibition Jointly with 17th European Frequency and Time Forum, Tampa, FL, 583–586. https://doi.org/10.1109/FREQ.2003.1275156
  5. ↵
    1. Galleani, L., &
    2. Tavella, P.
    (2012). Detection of atomic clock frequency jumps with Kalman filter. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(3), 504–509. https://doi.org/10.1109/TUFFC.2012.2221
    PubMed
  6. ↵
    1. Galleani, L.,
    2. Signorile, G.,
    3. Formichella, V., &
    4. Sesia, I.
    (2019). Generating a real-time time scale with an ensemble clock and a primary frequency standard. 2019 Joint Conference of IEEE International Frequency Control Symposium and European Frequency and Time Forum, Orlando, FL. https://doi.org/10.1109/FCS.2019.8856076
  7. ↵
    1. Huang, X.,
    2. Gong, H., &
    3. Ou, G.
    , Detection of weak frequency jumps for GNSS onboard clocks. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 61(5), 747–755. https://doi.org/10.1109/TUFFC.2014.2967
  8. ↵
    1. Khare, A.,
    2. Arora, R.,
    3. Banik, A., &
    4. Mehta, S. D.
    (2016), Autonomous Rubidium clock weak frequency jump detector for onboard navigation satellite system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63(2), 326–335. https://doi.org/10.1109/TUFFC.2015.2508939
  9. ↵
    1. Krauss, P. A.,
    2. Zenzinger, A., &
    3. Fischer, S.
    (2014). Robust timing subsystem––Generating the next generation timing signal. Proc. of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, FL, 3380–3388. https://www.ion.org/publications/abstract.cfm?articleID=12460
  10. ↵
    1. Morante, Q.,
    2. Cretoni, D.,
    3. Putortì, G.,
    4. Varriale, E.,
    5. Blanchi, M.,
    6. Cantelmo, C.,
    7. Baig, J. F.,
    8. Nogues, J. F.,
    9. Aouad, A. T.,
    10. Siccardi, M.,
    11. Mudrack, A., &
    12. Schlarmann, B.
    (2016). Performance results of the Galileo precise timing facility. 2016 IEEE Metrology for Aerospace (MetroAeroSpace), Florence, Italy, 484–488. https://doi.org/10.1109/MetroAeroSpace.2016.7573263
  11. ↵
    1. Riley, W. J.
    (2008). Algorithms for frequency jump detection. Metrologia, 45, S154–S161. http://dx.doi.org/10.1088/0026-1394/45/6/S21
  12. ↵
    1. Rochat, P.,
    2. Droz, F.,
    3. Wang, Q., &
    4. Froidevaux, S.
    (2012). Atomic clocks and timing systems in global navigation satellite systems. The European Navigation Conference, Gdansk, Poland. https://www.orolia.com/wp-content/uploads/2021/07/GNSS_Atomic_Clocks-1.pdf
  13. ↵
    1. Signorile, G.
    (2014). Analysis of a Kalman filter detector for atomic clock anomalies. 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China. https://doi.org/10.1109/URSIGASS.2014.6928990
  14. ↵
    1. Soualle, F.,
    2. Beck, T.,
    3. Trautenberg, H.,
    4. Felbach, D.,
    5. Stopfucken, L.,
    6. Wendel, J.,
    7. Fernandez, F. A.,
    8. Fernandez, A., &
    9. Sanchez Nogales, M.
    (2010). New concept for the on-board master clock generation unit for future Galileo satellites. Proc. of the 2010 International Technical Meeting of the Institute of Navigation, San Diego, CA, 880–894. https://www.ion.org/publications/abstract.cfm?articleID=8869
  15. ↵
    1. Stehlin, X.,
    2. Wang, Q.,
    3. Jeanneret, F.,
    4. Rochat, P., &
    5. Detoma, E.
    (2006). Galileo system time physical generation. Proc. of the 38th Annual Precise Time and Time Interval Systems and Applications Meeting, Reston, VA, 395–406. https://www.ion.org/publications/abstract.cfm?articleID=13664
  16. ↵
    1. Stein, S. R.
    (2003). Time scales demystified. IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum. Tampa, FL, 223–227. https://doi.org/10.1109/FREQ.2003.1275093
  17. ↵
    1. Thomas, C.,
    2. Wolf, P., &
    3. Tavella, P.
    (1994). Time scales, BIPM. Monographie, 94(1). https://www.bipm.org/en/publications/other-monographies
  18. ↵
    1. Trainotti, C.,
    2. Schmidt, T. D., &
    3. Furthner, J.
    (2019). Simulating the realization of a mixed clock ensemble. 2019 Joint Conference of IEEE International Frequency Control Symposium and European Frequency and Time Forum, Orlando, FL. https://doi.org/10.1109/FCS.2019.8856103
  19. ↵
    1. Wang, Q.,
    2. Rochat, P., &
    3. Stehlin, X.
    (2008). Backup hydrogen maser steering system for Galileo precise timing facility. International Journal of Navigation and Observation, 730284. https://doi.org/10.1155/2008/730284
  20. ↵
    1. Wang, Q., &
    2. Rochat, P.
    (2009). An anomaly clock detection algorithm for a robust clock ensemble. Proc. of the 41st Annual Precise Time and Time Interval Systems and Applications Meeting, Santa Ana Pueblon NM, 121–129. https://www.ion.org/publications/abstract.cfm?articleID=10678
  21. ↵
    1. Wang, Q.,
    2. Droz, F., &
    3. Rochat, P.
    (2015). Robust clock ensemble for time and frequency reference system. 2015 Joint Conference of the IEEE International Frequency Control Symposium & European Frequency and Time Forum, Denver, CO, 374–378. http://doi.org/10.1109/FCS.2015.7138861
  22. ↵
    1. Wang, Q., &
    2. Rochat, P.
    (2019). Algorithms development and verification for next generation on-board clock monitoring and control unit. 2019 Joint Conference of IEEE International Frequency Control Symposium & European Frequency and Time Forum, Orlando, FL. https://doi.org/10.1109/FCS.2019.8856006
  23. ↵
    1. Zanello, R.,
    2. Blanch, M.,
    3. Piras, C.,
    4. Detoma, E.,
    5. Capetti, P.,
    6. Bellotti, A., &
    7. Villabruna, D.
    (2009). Implementing the Galileo Precise Timing Facility. 2009 IEEE International Frequency Control Symposium Joint With the 22nd European Frequency and Time Forum, Besancon, France. http://doi.org/10.1109/FREQ.2009.5168263
  24. ↵
    1. Zenzinger, A.,
    2. Bartusch, T.,
    3. Kuehl, C.,
    4. Fischer, S., &
    5. Shrestha, A.
    (2012). Failure detection and correction for clock ensemble in space. 2012 6th ESA Workshop on Satellite Navigation Technologies (Navitec 2012) & European Workshop on GNSS Signals and Signal Processing, Noordwijk, Netherlands. https://doi.org/10.1109/NAVITEC.2012.6423054
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (3)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 3
Fall 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
ONCLE (One Clock Ensemble) for Galileo’s Next-Generation Robust Timing System
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
ONCLE (One Clock Ensemble) for Galileo’s Next-Generation Robust Timing System
Qinghua Wang, Pascal Rochat
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.536; DOI: 10.33012/navi.536

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
ONCLE (One Clock Ensemble) for Galileo’s Next-Generation Robust Timing System
Qinghua Wang, Pascal Rochat
NAVIGATION: Journal of the Institute of Navigation Sep 2022, 69 (3) navi.536; DOI: 10.33012/navi.536
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 ONCLE CONCEPT
    • 3 ONBOARD TIMING SYSTEM FOR GALILEO SPACE SEGMENT
    • 4 TIMING SYSTEM FOR GALILEO GROUND SEGMENT
    • 5 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Commercial GNSS Radio Occultation on Aerial Platforms With Off-The-Shelf Receivers
  • Improving GNSS Positioning Using Neural-Network-Based Corrections
  • Resilience Monitoring for Multi-Filter All-Source Navigation Framework With Assurance
Show more Original Article

Similar Articles

Keywords

  • algorithm
  • clock ensemble
  • GNSS
  • onboard
  • robust
  • time and frequency system

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2023 The Institute of Navigation, Inc.

Powered by HighWire