Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Improving GNSS Positioning Using Neural-Network-Based Corrections

Ashwin V. Kanhere, Shubh Gupta, Akshay Shetty, and Grace Gao
NAVIGATION: Journal of the Institute of Navigation December 2022, 69 (4) navi.548; DOI: https://doi.org/10.33012/navi.548
Ashwin V. Kanhere
Department of Aeronautics and Astronautics, Stanford University Stanford, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Shubh Gupta
Department of Aeronautics and Astronautics, Stanford University Stanford, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Akshay Shetty,
Department of Aeronautics and Astronautics, Stanford University Stanford, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grace Gao
Department of Aeronautics and Astronautics, Stanford University Stanford, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Cattaneo, D.,
    2. Vaghi, M.,
    3. Ballardini, A. L.,
    4. Fontana, S.,
    5. Sorrenti, D. G., &
    6. Burgard, W.
    (2019). CMRNet: Camera to lidar-map registration. 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand. https://doi.org/10.1109/ITSC.2019.8917470
  2. ↵
    1. Choy, C.,
    2. Dong, W., &
    3. Koltun, V.
    (2020). Deep global registration. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA. https://doi.org/10.1109/CVPR42600.2020.00259
  3. ↵
    1. Fu, G. M.,
    2. Khider, M., & van
    3. Diggelen, F.
    (2020). Android raw GNSS measurement datasets for precise positioning. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 1925–1937. https://doi.org/10.33012/2020.17628
  4. ↵
    1. Goodfellow, I.,
    2. Bengio, Y., &
    3. Courville, A.
    (2016). Deep learning. MIT press. https://dl.acm.org/doi/abs/10.5555/3086952
  5. ↵
    1. Herrera, A. M.,
    2. Suhandri, H. F.,
    3. Realini, E.,
    4. Reguzzoni, M., & de
    5. Lacy, M.
    (2016). GoGPS: Open-source MATLAB software. GPS Solutions, 20(3), 595–603. https://doi.org/10.1007/s10291-015-0469-x
  6. ↵
    1. Hsu, L. -T.
    (2017). GNSS multipath detection using a machine learning approach. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan. https://doi.org/10.1109/ITSC.2017.8317700
  7. ↵
    1. Kanhere, A. V.,
    2. Gupta, S.,
    3. Shetty, A., &
    4. Gao, G.
    (2021). Improving GNSS positioning using neural network-based corrections. Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 3068–3080. https://doi.org/10.33012/2021.17999
  8. ↵
    1. Kendall, A.,
    2. Grimes, M., &
    3. Cipolla, R.
    (2015). PoseNet: A convolutional network for real-time 6-DOF camera relocalization. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile. https://doi.org/10.1109/ICCV.2015.336
  9. ↵
    1. Kingma, D. P., &
    2. Ba, J.
    (2014). Adam: A method for stochastic optimization. Cornell University arXiv. https://doi.org/10.48550/arXiv.1412.6980
  10. ↵
    1. Lee, J.,
    2. Lee, Y.,
    3. Kim, J.,
    4. Kosiorek, A.,
    5. Choi, S., &
    6. Teh, Y. W.
    (2019). Set transformer: A framework for attention-based permutation-invariant neural networks. Proc. of the 36th International Conference on Machine Learning, 3744–3753. PMLR. https://proceedings.mlr.press/v97/lee19d.html
  11. ↵
    1. McKeown, J. J.,
    2. Stella, F., &
    3. Hall, G.
    (1997). Some numerical aspects of the training problem for feed-forward neural nets. Neural Networks, 10(8), 1455–1463. https://doi.org/10.1016/S0893-6080(97)00015-4
    PubMed
  12. ↵
    1. Mikhailov, N. V., &
    2. Nikandrov, A. V.
    (2012). Identification and mitigation of multipath in GNSS receivers using cluster analysis methods. Gyroscopy and Navigation, 3(1), 20–27. https://doi.org/10.1134/S2075108712010105
  13. ↵
    1. Morton, Y. J.,
    2. van Diggelen, F.,
    3. Spilker Jr., J. J.,
    4. Parkinson, B. W.,
    5. Lo, S., &
    6. Gao, G.
    (2021). Position, navigation, and timing technologies in the 21st century: Integrated satellite navigation, sensor systems, and civil applications (Vol. 2). John Wiley & Sons.
  14. ↵
    1. Mueller, M. W.,
    2. Hehn, M., &
    3. D’Andrea, R.
    (2015). A computationally efficient motion primitive for quadrocopter trajectory generation. IEEE Transactions on Robotics, 31(6), 1294–1310. https://doi.org/10.1109/TRO.2015.2479878
  15. ↵
    1. Munin, E.,
    2. Blais, A., &
    3. Couellan, N.
    (2020). Convolutional neural network for multipath detection in GNSS receivers. 2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT), Singapore. https://doi.org/10.1109/AIDA-AT48540.2020.9049188
  16. ↵
    1. Peretroukhin, V., &
    2. Kelly, J.
    (2018). DPC-Net: Deep pose correction for visual localization. IEEE Robotics and Automation Letters, 3(3), 2424–2431. https://doi.org/10.1109/LRA.2017.2778765
  17. ↵
    1. Reisdorf, P.,
    2. Pfeifer, T.,
    3. Breßler, J.,
    4. Bauer, S.,
    5. Weissig, P.,
    6. Lange, S.,
    7. Wanielik, G., &
    8. Protzel, P.
    (2016). The problem of comparable GNSS results–An approach for a uniform dataset with low-cost and reference data. The 5th International Conference on Advances in Vehicular Systems, Technologies and Applications (VEHICULAR). https://www.tu-chemnitz.de/projekt/smartLoc/paper/reisdorf2016.pdf
  18. ↵
    1. Savas, C., &
    2. Dovis, F.
    (2019). Multipath detection based on K-means clustering. Proc. of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2019), Miami, FL, 3801–3811. https://doi.org/10.33012/2019.17028
  19. ↵
    1. Skianis, K.,
    2. Nikolentzos, G.,
    3. Limnios, S., &
    4. Vazirgiannis, M.
    (2020). Rep the set: Neural networks for learning set representations. Proc. of the 23rd International Conference on Artificial Intelligence and Statistics, 1410–1420. PMLR. https://proceedings.mlr.press/v108/skianis20a.html
  20. ↵
    1. Soelch, M.,
    2. Akhundov, A.,
    3. van der Smagt, P., &
    4. Bayer, J.
    (2019). On deep set learning and the choice of aggregations. In I. V. Tetko, V. Kůrková, P. Karpov, & F. Theis (Eds.), Artificial neural networks and machine learning – ICANN 2019: Theoretical neural computation (pp. 444–457). Springer International Publishing. https://doi.org/10.1007/978-3-030-30487-4_35
  21. ↵
    1. Sünderhauf, N.,
    2. Brock, O.,
    3. Scheirer, W.,
    4. Hadsell, R.,
    5. Fox, D.,
    6. Leitner, J.,
    7. Upcroft, B.,
    8. Abbeel, P.,
    9. Burgard, W.,
    10. Milford, M., &
    11. Corke, P.
    (2018). The limits and potentials of deep learning for robotics. The International Journal of Robotics Research, 37(4–5), 405–420. https://doi.org/10.1177/0278364918770733
  22. ↵
    1. Vaswani, A.,
    2. Shazeer, N.,
    3. Parmar, N.,
    4. Uszkoreit, J.,
    5. Jones, L.,
    6. Gomez, A. N.,
    7. Kaiser, L., &
    8. Polosukhin, I.
    (2017). Attention is all you need. Proc. of the 31st International Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, 6000–6010. https://dl.acm.org/doi/10.5555/3295222.3295349
  23. ↵
    1. Wang, S.,
    2. Clark, R.,
    3. Wen, H., &
    4. Trigoni, N.
    (2017). DeepVO: Towards end-to-end visual odometry with deep recurrent convolutional neural networks. 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore. https://doi.org/10.1109/ICRA.2017.7989236
  24. ↵
    1. Wen, W.,
    2. Zhou, Y.,
    3. Zhang, G.,
    4. Fahandezh-Saadi, S.,
    5. Bai, X.,
    6. Zhan, W.,
    7. Tomizuka, M., &
    8. Hsu, L. -T.
    (2020). UrbanLoco: A full sensor suite dataset for mapping and localization in urban scenes. 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France. https://doi.org/10.1109/ICRA40945.2020.9196526
  25. ↵
    1. Zaheer, M.,
    2. Kottur, S.,
    3. Ravanbhakhsh, S.,
    4. Póczos, B.,
    5. Salakhutdinov, R., &
    6. Smola, A. J.
    (2017). Deep sets. Proc. of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, 3394–3404. https://dl.acm.org/doi/10.5555/3294996.3295098
  26. ↵
    1. Zhang, G.,
    2. Xu, P.,
    3. Xu, H., &
    4. Hsu, L. -T.
    (2021). Prediction on the urban GNSS measurement uncertainty based on deep learning networks with long short-term memory. IEEE Sensors Journal, 21(18), 20563–20577. https://doi.org/10.1109/JSEN.2021.3098006
  27. ↵
    1. Zhu, N.,
    2. Marais, J.,
    3. Bétaille, D., &
    4. Berbineau, M.
    (2018). GNSS position integrity in urban environments: A review of literature. IEEE Transactions on Intelligent Transportation Systems, 19(9), 2762–2778. https://doi.org/10.1109/TITS.2017.2766768
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 69 (4)
NAVIGATION: Journal of the Institute of Navigation
Vol. 69, Issue 4
Winter 2022
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Improving GNSS Positioning Using Neural-Network-Based Corrections
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Improving GNSS Positioning Using Neural-Network-Based Corrections
Ashwin V. Kanhere, Shubh Gupta, Akshay Shetty,, Grace Gao
NAVIGATION: Journal of the Institute of Navigation Dec 2022, 69 (4) navi.548; DOI: 10.33012/navi.548

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Improving GNSS Positioning Using Neural-Network-Based Corrections
Ashwin V. Kanhere, Shubh Gupta, Akshay Shetty,, Grace Gao
NAVIGATION: Journal of the Institute of Navigation Dec 2022, 69 (4) navi.548; DOI: 10.33012/navi.548
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 RELATED WORK
    • 3 DEEP LEARNING ON SETS
    • 4 PROPOSED METHOD
    • 5 EXPERIMENTS
    • 6 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Thirty Years of Maintaining WGS 84 with GPS
  • Doppler Positioning Using Multi-Constellation LEO Satellite Broadband Signals as Signals of Opportunity
  • Federated Learning of Jamming Classifiers: From Global to Personalized Models
Show more Original Article

Similar Articles

Keywords

  • deep learning
  • global navigation satellite system
  • position-domain models
  • set transformer

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire