Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Other Publications
    • ion

User menu

  • My alerts

Search

  • Advanced search
NAVIGATION: Journal of the Institute of Navigation
  • Other Publications
    • ion
  • My alerts
NAVIGATION: Journal of the Institute of Navigation

Advanced Search

  • Home
  • Current Issue
  • Archive
  • About Us
    • About NAVIGATION
    • Editorial Board
    • Peer Review Statement
    • Open Access
  • More
    • Email Alerts
    • Info for Authors
    • Info for Subscribers
  • Follow ion on Twitter
  • Visit ion on Facebook
  • Follow ion on Instagram
  • Visit ion on YouTube
Research ArticleOriginal Article
Open Access

Euclidean Distance Matrix-Based Rapid Fault Detection and Exclusion

Derek Knowles and Grace Gao
NAVIGATION: Journal of the Institute of Navigation March 2023, 70 (1) navi.555; DOI: https://doi.org/10.33012/navi.555
Derek Knowles
1Department of Mechanical Engineering, Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grace Gao
2Department of Aeronautics and Astronautics, Stanford University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Ahn, H. -S., &
    2. Oh, K. -K.
    (2010). Command coordination in multi-agent formation: Euclidean distance matrix approaches. ICCAS 2010 - International Conference on Control, Automation and Systems, 1592–1597. https://doi.org/10.1109/iccas.2010.5669671
  2. ↵
    1. Bilich, A., &
    2. Larson, K. M.
    (2007). Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Science, 42(6). https://doi.org/10.1029/2007RS003652
  3. ↵
    1. Blanch, J.,
    2. Walter, T., &
    3. Enge, P.
    (2012). Satellite navigation for aviation in 2025. Proc. of the IEEE, 100, 1821–1830. https://doi.org/10.1109/JPROC.2012.2190154
  4. ↵
    1. Borowski, H.,
    2. Isoz, O.,
    3. Eklöf, F.,
    4. Lo, S., &
    5. Akos, D.
    (2012). Detecting false signals with automatic gain control. GPS World, 23(4), 38–43. https://www.gpsworld.com/detecting-false-signals-automatic-gain-control-12804
  5. ↵
    1. Dattorro, J.
    (2015). Convex optimization: Euclidean distance geometry. Meboo.
  6. ↵
    1. Destino, G.,
    2. Macagnano, D., &
    3. Abreu, G.
    (2007). A clusterized WLS localization algorithm for large scale WSNs. 4th Workshop on Positioning, Navigation and Communication 2007, Hannover, Germany. https://doi.org/10.1109/wpnc.2007.353643
  7. ↵
    1. Dokmanic, I.
    (2015). Listening to distances and hearing shapes: inverse problems in room acoustics and beyond [Doctoral dissertation, École Polytechnique Fédérale de Lausanne]. EPFL. https://doi.org/10.5075/EPFL-THESIS-6623
  8. ↵
    1. Dokmanic, I.,
    2. Parhizkar, R.,
    3. Ranieri, J., &
    4. Vetterli, M.
    (2015). Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Processing Magazine, 32(6), 12–30. https://doi.org/10.1109/MSP.2015.2398954
  9. ↵
    1. Drineas, P.,
    2. Javed, A.,
    3. Magdon-Ismail, M.,
    4. Pandurangan, G.,
    5. Virrankoski, R., &
    6. Savvides, A.
    (2006). Distance matrix reconstruction from incomplete distance information for sensor network localization. 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Reston, VA. https://doi.org/10.1109/SAHCN.2006.288510
  10. ↵
    1. Enge, P. K.
    (1994). The Global Positioning System: signals, measurements, and performance. International Journal of Wireless Information Networks, 1(2), 83–105. https://doi.org/10.1007/BF02106512
  11. ↵
    1. Fu, G.,
    2. Khider, M., &
    3. van Diggelen, F.
    (2020). Android raw GNSS measurement datasets for precise positioning. Proc. of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020), 1925–1937. https://doi.org/10.33012/2020.17628
  12. ↵
    1. Holm, L., &
    2. Sander, C.
    (1993). Protein structure comparison by alignment of distance matrices. Journal of Molecular Biology, 233(1), 123–138. https://doi.org/10.1006/jmbi.1993.1489
    CrossRefPubMedWeb of Science
  13. ↵
    1. Horn, R. A., &
    2. Johnson, C. R.
    (2013). Matrix analysis (2nd edition). Cambridge University Press. https://doi.org/10.1017/cbo9780511810817
  14. ↵
    1. Joerger, M.,
    2. Chan, F. -C., &
    3. Pervan, B.
    (2014). Solution separation versus residual-based RAIM. NAVIGATION, 61(4), 273–291. https://doi.org/10.1002/navi.71
  15. ↵
    1. Kalman, R. E.
    (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, Transactions of the ASME, 82(1), 35–45. https://doi.org/10.1115/1.3662552
  16. ↵
    1. Knight, N. L.,
    2. Wang, J., &
    3. Rizos, C.
    (2010). Generalised measures of reliability for multiple outliers. Journal of Geodesy, 84(10), 625–635. https://doi.org/10.1007/s00190-010-0392-4
  17. ↵
    1. Knowles, D., &
    2. Gao, G.
    (2021a). EDM-FDE [Code repository]. https://github.com/betaBison/edm-fde
  18. ↵
    1. Knowles, D., &
    2. Gao, G.
    (2021b). Euclidean distance matrix-based rapid fault detection and exclusion. Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 3382–3391. https://www.ion.org/publications/abstract.cfm?articleID=17973
  19. ↵
    1. Ma, X.,
    2. Yu, K.,
    3. Montillet, J. -P., &
    4. He, X.
    (2019). Equivalence proof and performance analysis of weighted least squares residual method and weighted parity vector method in RAIM. IEEE Access, 7, 97803–97814. https://doi.org/10.1109/ACCESS.2019.2929073
  20. ↵
    1. Oguz-Ekim, P.,
    2. Gomes, J. P.,
    3. Xavier, J., &
    4. Oliveira, P.
    (2011). Robust localization of nodes and time-recursive tracking in sensor networks using noisy range measurements. IEEE Transactions on Signal Processing, 59(8), 3930–3942. https://doi.org/10.1109/TSP.2011.2153848
  21. ↵
    1. Parkinson, B. W., &
    2. Axelrad, P.
    (1988). Autonomous GPS integrity monitoring using the pseudorange residual. NAVIGATION, 35(2), 255–274. https://doi.org/10.1002/J.2161-4296.1988.TB00955.X
  22. ↵
    1. Pullen, S., &
    2. Joerger, M.
    (2021). GNSS integrity. In Y. J. Morton, F. van Diggelen, J. J. Spilker Jr.., B. W. Parkinson, S. Lo, & G. X. Gao (Eds.), Position, navigation, and timing technologies in the 21st century: integrated satellite navigation, sensor systems, and civil applications, Vol. 2 (pp. 591–617). Wiley. https://www.wiley.com/en-us/Position,+Navigation,+and+Timing+Technologies+in+the+21st+Century:+Integrated+Satellite+Navigation,+Sensor+Systems,+and+Civil+Applications,+Volume+2-p-9781119458494
  23. ↵
    1. Reisdorf, P.,
    2. Pfeifer, T.,
    3. Breßler, J.,
    4. Bauer, S.,
    5. Weissig, P.,
    6. Lange, S.,
    7. Wanielik, G., &
    8. Protzel, P.
    (2016). The problem of comparable GNSS results––an approach for a uniform dataset with low-cost and reference data. 5th International Conference on Advances in Vehicular Systems, Technologies and Applications (VEHICULAR). https://www.tu-chemnitz.de/projekt/smartLoc/paper/reisdorf2016.pdf
  24. ↵
    1. Tenenbaum, J. B.,
    2. De Silva, V., &
    3. Langford, J. C.
    (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. https://doi.org/10.1126/science.290.5500.2319
    Abstract/FREE Full Text
  25. ↵
    1. Wang, L.,
    2. Groves, P. D., &
    3. Ziebart, M. K.
    (2015). Smartphone shadow matching for better cross-street GNSS positioning in urban environments. Journal of Navigation, 68(3), 411–433. https://doi.org/10.1017/S0373463314000836
  26. ↵
    1. Wu, Z.,
    2. Yao, Z., &
    3. Lu, M.
    (2019). Coordinate establishment of ground-based positioning systems with anchor information. IEEE Transactions on Vehicular Technology, 68(3), 2517–2525. https://doi.org/10.1109/TVT.2019.2893456
  27. ↵
    1. Yang, L.,
    2. Wang, J.,
    3. Knight, N. L., &
    4. Shen, Y.
    (2013). Outlier separability analysis with a multiple alternative hypotheses test. Journal of Geodesy, 87(6), 591–604. https://doi.org/10.1007/s00190-013-0629-0
  28. ↵
    1. Zhu, N.,
    2. Marais, J.,
    3. Bétaille, D., &
    4. Berbineau, M.
    (2018). GNSS position integrity in urban environments: a review of literature. IEEE Transactions on Intelligent Transportation Systems, 19(9), 2762–2778. https://doi.org/10.1109/TITS.2017.2766768
PreviousNext
Back to top

In this issue

NAVIGATION: Journal of the Institute of Navigation: 70 (1)
NAVIGATION: Journal of the Institute of Navigation
Vol. 70, Issue 1
Spring 2023
  • Table of Contents
  • Index by author
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on NAVIGATION: Journal of the Institute of Navigation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Euclidean Distance Matrix-Based Rapid Fault Detection and Exclusion
(Your Name) has sent you a message from NAVIGATION: Journal of the Institute of Navigation
(Your Name) thought you would like to see the NAVIGATION: Journal of the Institute of Navigation web site.
Citation Tools
Euclidean Distance Matrix-Based Rapid Fault Detection and Exclusion
Derek Knowles, Grace Gao
NAVIGATION: Journal of the Institute of Navigation Mar 2023, 70 (1) navi.555; DOI: 10.33012/navi.555

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Euclidean Distance Matrix-Based Rapid Fault Detection and Exclusion
Derek Knowles, Grace Gao
NAVIGATION: Journal of the Institute of Navigation Mar 2023, 70 (1) navi.555; DOI: 10.33012/navi.555
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • 1 INTRODUCTION
    • 2 EUCLIDEAN DISTANCE MATRIX PRELIMINARIES
    • 3 GNSS EDM FORMULATION
    • 4 APPROACH
    • 5 RESULTS
    • 6 CONCLUSION
    • HOW TO CITE THIS ARTICLE
    • ACKNOWLEDGEMENTS
    • APPENDIX A TIME COMPLEXITY DERIVATIONS
    • REFERENCES
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Candidate Design of New Service Signals in the NavIC L1 Frequency Band
  • Thirty Years of Maintaining WGS 84 with GPS
  • Doppler Positioning Using Multi-Constellation LEO Satellite Broadband Signals as Signals of Opportunity
Show more Original Article

Similar Articles

Keywords

  • GNSS
  • Euclidean distance matrix
  • fault detection
  • fault exclusion
  • fault isolation

Unless otherwise noted, NAVIGATION content is licensed under a Creative Commons CC BY 4.0 License.

© 2025 The Institute of Navigation, Inc.

Powered by HighWire